
IN
F

 3
1
1

0
 –

2
0

1
6

INF3110 – Programming languages

Syntax and Semantics

Eyvind W. Axelsen

eyvinda@ifi.uio.no | @eyvindwa

http://eyvinda.at.ifi.uio.no

Slides adapted from previous years’ slides

made by Birger Møller-Pedersen

birger@ifi.uio.no

9/2/2016 1

mailto:eyvinda@ifi.uio.no
http://eyvinda.at.ifi.uio.no/
mailto:birger@ifi.uio.no

IN
F

 3
1
1

0
 –

2
0

1
6

Plan

 Today

– A little motivation

– Syntax and semantics

– Jumpstart OO?

 Soon

– Mandatory exercise 1 posted

 Next week (09.09)

– Start with OO programming

 16.09

– Volker Stolz, SML and functional programming

9/2/2016 2

IN
F

 3
1
1

0
 –

2
0

1
6

Outline: Syntax and semantics

 Program != program execution

 Compiler/interpreter

– This is not a compiler course…

– …but some basic knowledge of language constructs is needed

 Will be provided!

 Syntax
 Grammars

 Syntax diagrams

 Automata/State Machines

 Scanning/Parsing

 Meta-models

9/2/2016 3

IN
F

 3
1
1

0
 –

2
0

1
6

Program != program execution

9/2/2016 4

Syntax Semantics

MachineProgram Program

execution

int x = 1;

procedure a() {
int x;
b();

}

procedure b() {
x = 2;

}

a();
print x;

Important topics for

this course:

- Understand design

tradeoffs in PL

design

- Understand how

programs are

executed

- How languages are

implemented

(though this is not a

compiler course)

What will be printed?

Which X are we writing to?

IN
F

 3
1
1

0
 –

2
0

1
6

Syntax != Semantics

 A description of a programming language consists of two

main components:

– Syntactic rules
 What form does a legal program have.

– Semantic rules:
 Which programs are meaningful?

 What do the sentences (of meaningful programs) in the language

mean?

– Static semantics: rules that may be checked before the execution

of the program, e.g.:

 All variables must be declared.

 Declaration and use of variables coincide (type check).

 Different languages have different rules!

– Dynamic semantics:

 What shall happen during the execution of the program?

– Operational semantics, that is a semantics that describes the behaviour

of an (idealised) abstract machine performing a program,

– Or, mapping to something else (but well-known and well-defined) -

denotational semantics.9/2/2016 5

IN
F

 3
1
1

0
 –

2
0

1
6

Syntax matters!

9/2/2016 6

IN
F

 3
1
1

0
 –

2
0

1
6

tokens

Scanner

Parser

Static

Semantic

Checker

Code

Generator

Parse/

(Abstract)

Syntax Tree

Abstract

Syntax Tree

decorated

Machine/

Byte Code

Program

(source)

Interpreter

Machine

Virtual

Machine

Compiler/interpreter

 A compiler

translates a

program to another

language
– Typically a machine

language (do you

know any?)

– Or a language for a

virtual machine

(”byte code”)

9/2/2016 7

 An interpreter reads a program and

simulates its operations.

 Both are based upon an abstract syntax

tree representation of the program

IN
F

 3
1
1

0
 –

2
0

1
6

Syntax described by BNF-grammars

9/2/2016 8

e ::= n

e ::= e + e

e ::= e - e

n ::= d

n ::= nd

d ::= 0

d ::= 1

...

d ::= 9

terminal

nonterminal

production, rule

metasymbol

terminal

meta-language

Terminals are

found in the

program text

Non-terminals

are not

IN
F

 3
1
1

0
 –

2
0

1
6

Extended BNF

 In Extended BNF (eBNF) we can use the following

metasymbols on the righthand side:

9/2/2016 9

| alternatives

[…] optionality (alternatively ?)

* zero or more times (from regular expressions – alternatively {...})

+ one or more times (from regular expressions)

(…) grouping symbols (sometimes {...} is used)

e ::= n | e + e | e - e

n ::= d | nd

d ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Grammar from previous slide expressed

more concisely with eBNF

IN
F

 3
1
1

0
 –

2
0

1
6

Derivation of sentences
 The possible sentences in a language

defined by a BNF-grammar are those

that emerge by following this procedure:

1. Start with the start symbol (e).

2. For each nonterminal symbol (e, n,

d) exchange this with one of the

alternatives on the right hand side of

the production defining this

nonterminal.

3. Repeat§2 until only terminal

symbols remain.

 This is called a derivation from the start

symbol to a sentence, represented by a

parse tree / syntax tree

 Removing unnecessary derivations and

nodes gives an abstract syntax tree

9/2/2016

e

e

e e

e

-

+

n n

n

n d

d 2

1

n d

d 5

1

n d

d 0

1

10 - 15 + 12

15 12

e

e

e e

e

-

+10

e ::= n | e + e | e - e

n ::= d | nd

d ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

IN
F

 3
1
1

0
 –

2
0

1
6

Only one possible production?

10 - 15 + 12 = ?

15 12

e

e

e e

e

-

+10

10

12

e

e

+e

e e-

15

10 – (15 + 12) =

10 – 27 =

-17

(10 – 15) + 12 =

-5 + 12 =

7

e ::= n | e + e | e - e

n ::= d | nd

d ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

IN
F

 3
1
1

0
 –

2
0

1
6

Unambiguous/ Ambiguous Grammars
 If every sentence in the language can be derived by one and only one

parse tree, then the grammar is unambiguous, otherwise it is

ambiguous.

 Ambiguity handled by associativity and precedence rules

e ::= 0 | 1 | e + e | e - e | e * e

e

1 -

e

1

e

+

e

1

e

e

1 -

e

1

e

+

e e

1

1 – 1 + 1

Which is «correct»?

IN
F

 3
1
1

0
 –

2
0

1
6

1 – 1 * 1

Which is «correct»?

9/2/2016 13

e

1 -

e

1

e

+

e

1

e

e

1 -

e

1

e

+

e e

1* *

IN
F

 3
1
1

0
 –

2
0

1
6

9/2/2016 1

4

s ::= v := e | s ; s | if b then s | if b then s else s

v ::= x | y | z

e ::= v | 0 | 1 | 2 | 3 | 4

b ::= e = e

A somewhat more interesting language

IN
F

 3
1
1

0
 –

2
0

1
6

if b1 then if b2 then s1 else s2

9/2/2016

15

sb1if then

s

s1b2if then s1then s2else

sb1if then

s

s1b2if then

s2else

b1 = false

b2 = true

no

yes

b1 = true

b2 = false

yes

no

is s2 executed?

IN
F

 3
1
1

0
 –

2
0

1
6

x:=1; y:=2; if x=y then y:=3

9/2/2016

s –> s ; s

s –> assign (x := 1)

s –> s ; s

s –> assign (y := 2)

s –> if b then s

s

y 2

e

s

v :=

x 1

e

s

v :=

y 3

e

s

v :=

x y

e

b

e =

s

s

if then

s ::= v := e | s ; s | if b then s

| if b then s else s

v ::= x | y | z

e ::= v | 0 | 1 | 2 | 3 | 4

b ::= e = e

IN
F

 3
1
1

0
 –

2
0

1
6

17

s

ss

y 3

e

s

v :=

x y

e

b

e =

s

s

if then

x 1

ev :=

s

y 2

ev :=

s –> s ; s

s –> s ; s

s –> assign (x := 1)

s –> assign (y := 2)

s –> if b then s

x:=1; y:=2; if x=y then y:=3

s ::= v := e | s ; s | if b then s

| if b then s else s

v ::= x | y | z

e ::= v | 0 | 1 | 2 | 3 | 4

b ::= e = e

IN
F

 3
1
1

0
 –

2
0

1
6

Alternatives to grammars

 Syntax diagrams

 Automata/State Machines

9/2/2016 1

8

IN
F

 3
1
1

0
 –

2
0

1
6

Syntax diagram

9/2/2016 1

9

exp ::= exp + term | term

term ::= term * num | num

exp +
exp

term

term

term *
term

num

num

- Older textbooks and reference manuals

had this kind of notation for syntax

- «Jernbanediagram»

IN
F

 3
1
1

0
 –

2
0

1
6

20

9/2/2016

Automata/State Machines

 Transitions marked with terminals, one start state and a number

of stop states

 Recognizes a string in the language if the terminals represent a

valid sequence of transitions ending up in a stop state upon

reading the last symbol

 Typically used for the part

of the grammar that

recognizes the smallest

elements (tokens)

IN
F

 3
1
1

0
 –

2
0

1
6

Scanning

9/2/2016 2

1

tokens

Scanner

Parser

Program

(source)

 A scanner groups characters to symbols called tokens
begin

OutText("Hello")

end

 A scanner is normally constructed as an automata/state machine

begin OutText (”Hello”) end

BEGIN IDENT LPAR TEXT RPAR ENDToken:

Value:

IN
F

 3
1
1

0
 –

2
0

1
6

Parsing

 To check that a sentence (or a program) is syntactically

correct, that is to construct the corresponding syntax

tree.

 In general we would like to construct the tree by reading

the sentence once, from left to right.

 Example grammar

9/2/2016 2

2

exp ::= exp + term | term

term ::= term * num | num

IN
F

 3
1
1

0
 –

2
0

1
6

Top-down parsing

9/2/2016

The parse tree is constructed downwards, that is we

start with the start symbol and try to derive the actual

sentence by selecting appropriate rules:

num * num + num

exp

exp term

term

exp ::= exp + term | term

term ::= term * num | num

IN
F

 3
1
1

0
 –

2
0

1
6

Bottom-up parsing

The tree is constructed upwards. Starts by finding

part of the sentence that corresponds to the right

hand side of a production and reduces this part of

the sentence to the corresponding nonterminal.

The goal is to reduce until the start symbol.

9/2/2016 2

4

num * num + num

exp

exp term

term

exp ::= exp + term | term

term ::= term * num | num

IN
F

 3
1
1

0
 –

2
0

1
6

LL(1)-parsing

 LL(1)-parsing is a top-down strategy with a
left derivation from the start symbol (the leftmost symbol).
– A common approach to parsing that is simple and efficient

 Recursive descent – LL(k)
 To each nonterminal there is a method.
 The method takes care of the rule for for this nonterminal, and

may call other methods.
 For each terminal in the right hand side: Check that the next token

(from the scanner) is this terminal.

 For each nonterminal in the right hand side: Call the corresponding
method.

 When the method is called, the scanner shall have as its next
token the first token of the corresponding rule.

 When the method is finished, the scanner shall have as its next
token the first token after the sentence.

9/2/2016 2

5

IN
F

 3
1
1

0
 –

2
0

1
6

Example

9/2/2016 2

6

program ::= stmtList

stmtList ::= stmt +

stmt ::= input | output | assignment

input ::= ? variable

output ::= ! variable

assignment ::= variable = variable operator operand

operator ::= + | -

operand ::= variable | number

variable ::= v digit

digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

number ::= digit + void assignment() {

variable();

readToken('=');

variable();

operator();

operand();

}

IN
F

 3
1
1

0
 –

2
0

1
6

Example

9/2/2016 2

7

program ::= stmtList

stmtList ::= stmt +

stmt ::= input | output | assignment

input ::= ? variable

output ::= ! variable

assignment ::= variable = variable operator operand

operator ::= + | -

operand ::= variable | number

variable ::= v digit

digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

number ::= digit +
void stmt() {

if (checkToken('v')) {

assignment(); }

else if (checkToken('?')) {

input(); }

else if (checkToken('!')) {

output(); }

}

IN
F

 3
1
1

0
 –

2
0

1
6

Yet another alternative: Meta-models
 Object model representing the program (not the execution)

9/2/2016 2

8

statement ::= assignment | if-then-else | while-do

IN
F

 3
1
1

0
 –

2
0

1
6

Why meta models?

 Inspired by abstract syntax trees in terms of object

structures, interchange formats between tools

 Not all modeling/programming tools are parser-based

(e.g. wizards)

 Growing interest in domain specific languages, often with

a mixture of text and graphics

 Meta models often include name binding and type

information in addition to the pure abstract syntax tree

– «annotated syntax tree»

9/2/2016 2

9

IN
F

 3
1
1

0
 –

2
0

1
6

Example Metamodel

9/2/2016 3

0

IN
F

 3
1
1

0
 –

2
0

1
6

Exercises

1. Mandatory

– Mandatory exercise will be out soon!

– Make an interpreter for the ROBOL

language, a simple robot language that

supports moving around on a grid

– Shall be written in both Java?? (OO) and

SML (functional)

2. Weekly

– Is out on the lecture plan, and will be

explained in the group sessions next week.

9/2/2016 31

