
IN
F 3110 - 2016

INF3110 – Programming Languages
Object orientation and types, part I

09/09/16 1

IN
F 3110 - 2016

Follow-up from last time
§  What is the difference between a Context-Free Grammar (CFG) and

BNF?
–  A CFG is (informally) a grammar where all the rules are one-to-

one, one-to-many or one-to-none.
–  The left hand side of a rule in a CFG contains one (and only one)

non-terminal symbol, and no terminal symbols (thus, no context
à context-free)

–  This is the way rules are expressed in BNF too!
§  Thus, BNF is a notation for CFGs.

–  Other notations are possible
–  Notably «Van Wijngaarden form»

09/09/16 2

IN
F 3110 - 2016

09/09/16 3

Object orientation and types

Lecture I (today) Lecture II
§  From predefined (simple) and

user-defined (composite) types
–  via

§  Abstract data types
–  to

§  Classes
–  Type compatibility
–  Subtyping <> subclassing
–  Class compatibility
–  Covariance/contravariance

§  Types of parameters of
redefined methods

§  Advanced oo concepts
–  Specialization of behaviour?
–  Multiple inheritance -

alternatives
–  Inner classes

§  Modularity
–  Packages
–  Interface-implementation

§  Generics

IN
F 3110 - 2016

Why should we care?

Remember from last time: syntax (program text) and
semantics (meaning) are two separate things.

Types and type systems help to ascribe meaning to
programs:

§  What does "Hello" + " World" mean?

§  Which operation is called when you write
System.out.println("INF3110")?

§  What does the concept of a Student entail?

09/09/16 4

IN
F 3110 - 2016

What is a type?
§  A set of values that have a set of operations in common

–  32 bit integers, and the arithmetic operations on them
–  Instances of a Person class, and the methods that operate on

them

§  How is a type identified?
–  By its name (e.g. Int32, Person, Stack): nominal type checking
–  By its structure (fields, operations): structural type checking

§  Does this cover everything a type might be? No.
–  Alternative definition of “type”: A piece of the program to which

the type system is able to assign a label.
–  (but don’t worry too much about this now)

09/09/16 5

IN
F 3110 - 2016

09/09/16 6

Classification of types
§  Predefined, simple types (not built from other types)

–  boolean, integer, real, ...
–  pointers, pointers to procedures
–  string

§  User-defined simple types
–  enumerations, e.g. enum WeekDay { Mon, Tue, Wed, … }

§  Predefined composite types
–  Arrays, lists/collections (in some languages)

§  User-defined, composite types
–  Records/structs, unions, abstract data types, classes

§  Evolution from simple types, via predefined composite types to user-

defined types that reflect parts of the application domain.

IN
F 3110 - 2016

09/09/16 7

Properties of primitive types
§  Classifying data of the program

–  E.g. this is a string, this is an integer, etc

§  Well-defined operations on values
–  Arithmetic operations
–  String concatenation
–  Etc

§  Protecting data from un-intended operations
–  Cannot subtract an integer from a string (in most languages!)

§  Hiding underlying representation
–  Does not allow manipulation of individual bits
–  Are ints big or small endian?
–  Are strings represented as a character array in memory?

IN
F 3110 - 2016

09/09/16 8

Properties of composite types
§  Records, structs

–  (m1,m2,...mn) in M1xM2x...xMn

–  Assignment, comparison
–  Composite values {3, 3.4}
–  Hiding underlying representation?

§  Arrays (mappings)
–  domain → range
–  Possible domains, index bound

checking, bound part of type
definition, static/dynamic?

typedef struct {
 int nEdges;
 float edgeSize;
} RegularPolygon;
RegularPolygon rp={3, 3.4}

rp.nEdges = 4;

char digits[10]

array [5..95] of integer

array[WeekDay] of T,
where
type WeekDay =
 enum{Monday, Tuesday, ...}

IN
F 3110 - 2016

09/09/16 9

Composite types

§  Union
–  Run-time type check

§  Discriminated union

–  Run-time type check
§  Or compile time!

–  Additional discriminator aids
checking

union address {
 short int offset;
 long int absolute; }

typedef struct {
 address location;
 descriptor kind;
} safe_address;

enum descriptor {abs, rel}

address_type = (absolute, offset);

safe_address =
record
 case kind:address_type of
 absolute: (abs_addr: integer);
 offset: (off_addr: short)
end;

typedef union {
 struct {
 unsigned char byte1;
 unsigned char byte2;
 unsigned char byte3;
 unsigned char byte4;
 } bytes;
 unsigned int dword;
} HW_Register;

HW_Register reg;
reg.dword = 0x12345678;
reg.bytes.byte3 = 4;

IN
F 3110 - 2016

TypeScript
2.0 - 2016

09/09/16 10

interface	
 Square	
 {	

	
 	
 	
 	
 kind:	
 "square";	

	
 	
 	
 	
 size:	
 number;	

}	

interface	
 Circle	
 {	

	
 	
 	
 	
 kind:	
 "circle";	

	
 	
 	
 	
 radius:	
 number;	

}	

	

	
 function	
 area(s:	
 Shape)	
 {	

	
 switch	
 (s.kind)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 case	
 "square":	
 return	
 s.size	
 *	
 s.size;	

	
 	
 	
 	
 	
 	
 	
 	
 case	
 "rectangle":	
 return	
 s.width	
 *	
 s.height;	

	
 	
 	
 	
 	
 	
 	
 	
 case	
 "circle":	
 return	
 Math.PI	
 *	
 s.radius	
 *	
 s.radius;	

	
 	
 	
 	
 }	

}	

interface	
 Rectangle	
 {	

	
 	
 	
 	
 kind:	
 "rectangle";	

	
 	
 	
 	
 width:	
 number;	

	
 	
 	
 	
 height:	
 number;	

}	

type	
 Shape	
 =	
 Square	
 |	
 Rectangle	
 |	

Circle;	

Type of s is narrowed base on
«kind» in union type

IN
F 3110 - 2016

09/09/16 11

Type compatibility (equivalence)
§  Nominally compatible

–  Values of types with the
same name are compatible

§  Structurally compatible
–  Types T1 and T2 are

compatible
§  If T1 is nominally

compatible with T2, or
§  T1 and T2 have the same

signature (functions,
variables, including names
of such)

struct Position {
 int x, y, z; };
Position pos;
struct Date { int m, d, y; };
Date today;

void show(Date d);

...; show(today); ...

...; show(pos); ...

struct Complex { real x, y; };

struct Point { real x, y; };

IN
F 3110 - 2016

Subtyping

§  Types can be related through subtyping
–  Relationships can, again, be defined

nominally or structurally

§  A variable of a supertype can at runtime hold
a value of a subtype
–  Without introducing type errors
–  Enables polymorphism, dynamic dispatch
–  However, behavioral subtyping (Liskov)

cannot, in general, be enforced by a
compiler/type system

§  How to best facilitate creation of such
hierarchies are subject to much research and
debate
–  Single/multiple inheritance
–  Traits/mixins
–  Structural/nominal subtyping
–  etc

12

Image from Wikipedia

IN
F 3110 - 2016

Language grammars can naturally be
expressed through the help of subtyping

09/09/16 13

Statement

WhileStatement IfStatement AssignStatement

abstract class Statement { … }
class WhileStatement extends Statement { … }
class IfStatement extends Statement { … }
class AssignStatment extends Statement { … }

Statement ::= WhileStatement | IfStatement | AssignStatement

IN
F 3110 - 2016

So, what is the proper object oriented way to
get rich?

09/09/16 14

Inherit!

IN
F 3110 - 2016

09/09/16 15

Abstract datatypes

Signature of ADT:
§  Constructor
§  Operations

abstype Complex = C of real * real
with

fun complex(x, y: real) = C(x, y)
fun add(C(x1, y1), C(x2, y2)) = C(x1+x2, y1+y2)

end

...; add(c1, c2); ...

An abstract datatype is a user defined
datatype that:
-  Defines representation and

operations in one syntactical unit
-  Hides the underlying representation

from the programmer

IN
F 3110 - 2016

09/09/16 16

Abstract datatypes versus classes
abstype Complex = C of real * real
with

fun complex(x, y: real) = C(x, y)
fun add(C(x1, y1), C(x2, y2)) = C(x1+x2, y1+y2)

end

...; add(c1,c2); ...

class Complex {
real x,y;
Complex(real v1,v2) {x=v1; y=v2}
add(Complex c) {x=x+c.x; y=y+c.y}

}

...; c1.add(c2); ...

With abstract data types:
 operation (operands)

•  meaning of operation is

always the same

With classes:
 object.operation (arguments)

•  meaning depends on object

and operation (dynamic
lookup, method dispatch) Possible to do ’add(c1,c2)’ with classes?

IN
F 3110 - 2016

09/09/16 17

From abstract data types to classes
§  Encapsulation through abstract data types

–  Advantage
§  Separate interface from implementation
§  Guarantee invariants of data structure

–  only functions of the data type have access to the internal representation
of data

–  Disadvantage
§  Not extensible in the way classes are

IN
F 3110 - 2016

09/09/16 18

Abstract data types argument of Mitchell

abstype queue
 with
 mk_Queue: unit -> queue
 is_empty: queue -> bool
 insert: queue * elem -> queue
 remove: queue -> elem
 is …
 in
 program
 end

abstype pqueue // priority queue
 with
 mk_Queue: unit -> pqueue
 is_empty: pqueue -> bool
 insert: pqueue * elem -> pqueue
 remove: pqueue -> elem
 is …
 in
 program
 end

Cannot apply queue code to pqueue, even though signatures are identical

IN
F 3110 - 2016

09/09/16 19

Object Interfaces - Subtyping
§  Interface

–  The operations provided by objects of a certain class
§  Example: Point

–  x : returns x-coordinate of a point
–  y : returns y-coordinate of a point
–  move : method for changing location

§  The interface of an object is its type.

§  If interface B contains all of interface A, then B objects can also be
used as A objects (substitutability)
–  In practice this depends on language implementation and type

system

§  Subclassing <> subtyping

IN
F 3110 - 2016

09/09/16 20

Point and ColorPoint
class Point {
 int x, y;
 move(int dx, dy) {
 x=x+dx; y=y+dy
 }
}

class ColorPoint extends Point {
 Color c;
 changeColor(Color nc) {c= nc}
}

◆  ColorPoint interface contains Point interface
•  ColorPoint is a subtype of Point

Point
 x
 y
 move

ColorPoint
 x
 y
 c
 move
 changeColor

Could not form list of points and colored points if done by abstract data types

IN
F 3110 - 2016

09/09/16 21

Example - Structural (sub) typing
§  Two classes with the same structural type

class GraphicalObject {
move(dx, dy int) {…}
draw() {…}

};

class Cowboy {
move(dx, dy int) {…}
draw() {…}

};
...

class Luke { ... ? } ...; luke.draw();...; luke.draw();

IN
F 3110 - 2016

09/09/16 22

Subclassing
§  Two approaches

–  So-called ’Scandinavian’/Modeling Approach
§  Classes represent concepts from the domain
§  Subclasses represent specialized concepts

–  Overriding is specialization/extension
–  Subclass is subtype

§  Reluctant to multiple inheritance (unless it can be understood as
multiple specialization)

–  So-called ’American’/Programming Approach
§  Classes represent implementations of types
§  Subclasses inherit code

–  Overriding is overriding
§  Subclassing not necessarily the same as subyping
§  Multiple inheritance as longs as it works

IN
F 3110 - 2016

Kristen Nygård and Ole-Johan Dahl

09/09/16 23

IN
F 3110 - 2016

09/09/16 24

Example: Shapes

§  ‘American’/Programming Approach
–  General interface only in

Shape
–  Different kinds of shapes are

implemented differently
–  Square: four points,

representing corners
–  Circle: center point and radius

§  ‘Scandinavian’/Modeling Approach
–  General interface and general

implementation in shape
§  Shape has center point
§  A Shape moves by changing

the position of the center point
–  ’To be or not be’ virtual

§  e.g. move should not be
redefined in subclasses

Shape

Circle Rectangle

Interface of every shape must include center, move, rotate, print

In Simula, C++, C#, a method
specified as virtual may be
overridden.

In Java, a method
specified as final
may not be overridden.

IN
F 3110 - 2016

09/09/16 25

Classification of polymorphism

polymorphism

universal ad-hoc

implicit
(conversion)

overloading parametric Inclusion/
subtype

“Polymorphism: providing a single interface to entities of different types”
 - "Bjarne Stroustrup's C++ Glossary".

IN
F 3110 - 2016

09/09/16 26

Inclusion/subtype polymorphism
Point p;
ColorPoint cp;

...; p.equals(cp); ...

‘equals’ works for cp because
ColorPoint is a subtype of type Point

Will draw a Circle if aShape is a Circle

class Shape {
 void draw() {...}
 ...
};
class Circle extends Shape {
 void draw() {...}
 ...
};
...; aShape.draw(); ...

Override

IN
F 3110 - 2016

09/09/16 27

Overloading – two methods with the same
name

§  only within the same scope
{...}, or

§  across superclass
boundaries

class Shape {
 ...
 bool contains(point pt) {...}
 ...
};

class Rectangle extends Shape {
 ...
 bool contains(int x, int y) {...}
 ...
}

IN
F 3110 - 2016

09/09/16 28

Overloading vs Overriding (Java and similar
languages)
class C {
 ...
 bool equals(C pC) {
 ... // C_equals_1
 }
}

class SC extends C {
 ...
 bool equals(C pC) {
 ... // SC_equals_1
 }

 bool equals(SC pSC) {
 ... // equals_2
 }
}

C c = new C();
SC sc = new SC();
C c’ = new SC();

c.equals(c) //1
c.equals(c’) //2
c.equals(sc) //3

c’.equals(c) //4
c’.equals(c’) //5
c’.equals(sc) //6

sc.equals(c) //7
sc.equals(c’) //8
sc.equals(sc) //9

C_equals_1
C_equals_1
C_equals_1

SC_equals_1
SC_equals_1
SC_equals_1

SC_equals_1
SC_equals_1
equals_2

IN
F 3110 - 2016

09/09/16 29

Covariance/contravariance/novariance

§  Covariance:
–  T1’ must be a subtype of T1
–  T2’ must be a subtype of T2
–  T3’ must be a subtype of T3

§  Contravariance:
–  The opposite

§  Nonvariance: must be the same types

§  Most languages have no-variance
§  Some languages provide covariance

on both: most intuitive?
§  Statically type-safe:

–  Contravariance on parameter
types

–  Covariant on result type

class C {
 T1 v;
 T2 m(T3 p) {
 ...

 }
}

class SC extends C {
 T1’ v;
 T2’ m(T3’ p){
 ...
 }
}

IN
F 3110 - 2016

09/09/16 30

Example: Point and ColorPoint – I: no variance
class Point {
 int x,y;
 move(int dx, dy) {
 x=x+dx; y=y+dy}

 bool equals(Point p) {
 return x=p.x and y=p.y
 }
}

class ColorPoint
 extends Point {
 Color c;
 bool equals(Point p) {
 return x=p.x and
 y=p.y and
 c=p.c
 }
}

Point p1, p2;

ColorPoint c1,c2;

p1.equals(p2)

c1.equals(c2)

p1.equals(c1)

c1.equals(p1)

return
super.equals(p) and
c=p.c

Problem??

IN
F 3110 - 2016

09/09/16 31

Example: Point and ColorPoint – II: covariance
class Point {
 int x,y;
 move(int dx,dy) {
 x=x+dx; y=y+dy}

 bool equals(Point p) {
 return x=p.x and y=p.y
 }
}

class ColorPoint
 extends Point {
 Color c;
 bool equals(ColorPoint cp) {
 return super.equals(cp)
 and
 c=cp.c
 }
}

Point p1, p2;
ColorPoint c1,c2;

Which of these may
be OK, and when
to check?

p1.equals(p2)

c1.equals(c2)

p1.equals(c1)

c1.equals(p1)

OK
OK
OK
OK

run-time
compile-time
compile-time
run-time

IN
F 3110 - 2016

09/09/16 32

Example: Point and ColorPoint – III: casting
class Point {
 int x,y;
 move(int dx,dy) {
 x=x+dx; y=y+dy}

 bool equals(Point p) {
 return x=p.x and y=p.y
 }
}

class ColorPoint
 extends Point {
 Color c;
 bool equals(Point p) {
 return super.equals(p) and
 c=(ColorPoint)p.c
 }
}

Point p1, p2;

ColorPoint c1,c2;

p1.equals(p2)

c1.equals(c2)

p1.equals(c1)

c1.equals(p1)

IN
F 3110 - 2016

09/09/16 33

Example: Point and ColorPoint –
§  Alternative to casting:

–  Virtual classes
with constraints
(OOPSLA ’89)

–  Still run time type
checking

class Point {
 int x,y;
 virtual class Type < Point;

 bool equals(Type p) {
 return x=p.x and y=p.y
 }
}

class ColorPoint
 extends Point {
 Color c;
 Type:: ColorPoint;
 bool equals(Type p) {
 return super.equals(p) and
 c=p.c
 }
}

IN
F 3110 - 2016

09/09/16 34

Example: Contravariant parameter type
§  Statically type safe
§  Not allowed in Java

class A {

 void m(A a) {
 …
 }
}

class B extends A {

 void m(Object a) {
 …
 }
}

IN
F 3110 - 2016

09/09/16 35

Example: Covariant return type
§  Statically type safe
§  Allowed in Java

class A {

 A m() {
 return new A();
 }
}

class B extends A {

 B m() {
 return new B();
 }
}

IN
F 3110 - 2016

Practical info

§  Mandatory 1 out today
–  Deadline September 30th.

§  Next lecture: ML with Volker Stolz

§  Have a nice weekend!

09/09/16 36

