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INF3110 – Programming Languages 
Object orientation and types, part I 
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Follow-up from last time 
§  What is the difference between a Context-Free Grammar (CFG) and 

BNF? 
–  A CFG is (informally) a grammar where all the rules are one-to-

one, one-to-many or one-to-none. 
–  The left hand side of a rule in a CFG contains one (and only one) 

non-terminal symbol, and no terminal symbols (thus, no context 
à context-free) 

–  This is the way rules are expressed in BNF too! 
§  Thus, BNF is a notation for CFGs. 

–  Other notations are possible 
–  Notably «Van Wijngaarden form» 
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Object orientation and types 
  
Lecture I (today)               Lecture II 
§  From predefined (simple) and 

user-defined (composite) types 
–  via 

§  Abstract data types 
–  to 

§   Classes 
–  Type compatibility 
–  Subtyping <> subclassing 
–  Class compatibility 
–  Covariance/contravariance 

§  Types of parameters of 
redefined methods 

§  Advanced oo concepts 
–  Specialization of behaviour?  
–  Multiple inheritance - 

alternatives 
–  Inner classes 

§  Modularity 
–  Packages 
–  Interface-implementation 

§  Generics 
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Why should we care? 
 
Remember from last time: syntax (program text) and 
semantics (meaning) are two separate things. 
 
Types and type systems help to ascribe meaning to 
programs: 
 

§  What does "Hello" + " World" mean? 

§  Which operation is called when you write 
System.out.println("INF3110")?  

§  What does the concept of a Student entail? 
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What is a type? 
§  A set of values that have a set of operations in common 

–  32 bit integers, and the arithmetic operations on them 
–  Instances of a Person class, and the methods that operate on 

them 

§  How is a type identified? 
–  By its name (e.g. Int32, Person, Stack): nominal type checking 
–  By its structure (fields,  operations): structural type checking 
 

§  Does this cover everything a type might be? No. 
–  Alternative definition of “type”: A piece of the program to which 

the type system is able to assign a label. 
–  (but don’t worry too much about this now) 
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Classification of types 
§  Predefined, simple types (not built from other types) 

–  boolean, integer, real, ... 
–  pointers, pointers to procedures 
–  string 

§  User-defined simple types 
–  enumerations, e.g. enum WeekDay { Mon, Tue, Wed, … } 

§  Predefined composite types 
–  Arrays, lists/collections (in some languages) 

§  User-defined, composite types 
–  Records/structs, unions, abstract data types, classes 

 
§  Evolution from simple types, via predefined composite types to user-

defined types that reflect parts of the application domain. 
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Properties of primitive types 
§  Classifying data of the program 

–  E.g. this is a string, this is an integer, etc 

§  Well-defined operations on values  
–  Arithmetic operations 
–  String concatenation 
–  Etc 

§  Protecting data from un-intended operations 
–  Cannot subtract an integer from a string (in most languages!) 

§  Hiding underlying representation 
–  Does not allow manipulation of individual bits 
–  Are ints big or small endian? 
–  Are strings represented as a character array in memory? 
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Properties of composite types 
§  Records, structs 

–  (m1,m2,...mn) in M1xM2x...xMn 

–  Assignment, comparison 
–  Composite values {3, 3.4} 
–  Hiding underlying representation? 

§  Arrays (mappings) 
–  domain → range 
–  Possible domains, index bound 

checking, bound part of type 
definition, static/dynamic? 

typedef struct {
  int nEdges;
  float edgeSize;
} RegularPolygon;
RegularPolygon rp={3, 3.4}

rp.nEdges = 4;

char digits[10]

array [5..95] of integer

array[WeekDay] of T,
where
type WeekDay = 
  enum{Monday, Tuesday, ...} 
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Composite types 

§  Union 
–  Run-time type check 

 
§  Discriminated union 

–  Run-time type check 
§  Or compile time! 

–  Additional discriminator aids 
checking 

union address {
  short int offset;
  long int absolute; }

typedef struct {
  address location;
  descriptor kind;
} safe_address;

enum descriptor {abs, rel} 

address_type = (absolute, offset);

safe_address =
record
  case kind:address_type of
    absolute: (abs_addr: integer);
    offset: (off_addr: short)
end;

typedef union {
    struct {
        unsigned char byte1;
        unsigned char byte2;
        unsigned char byte3;
        unsigned char byte4;
    } bytes;
    unsigned int dword;
} HW_Register;

HW_Register reg;
reg.dword = 0x12345678;
reg.bytes.byte3 = 4;



IN
F 3110 - 2016 

TypeScript 
2.0 - 2016 
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interface	
  Square	
  {	
  
	
  	
  	
  	
  kind:	
  "square";	
  
	
  	
  	
  	
  size:	
  number;	
  
}	
  
interface	
  Circle	
  {	
  
	
  	
  	
  	
  kind:	
  "circle";	
  
	
  	
  	
  	
  radius:	
  number;	
  
}	
  

	
  
	
  function	
  area(s:	
  Shape)	
  {	
  

	
  switch	
  (s.kind)	
  {	
  
	
  	
  	
  	
  	
  	
  	
  	
  case	
  "square":	
  return	
  s.size	
  *	
  s.size;	
  
	
  	
  	
  	
  	
  	
  	
  	
  case	
  "rectangle":	
  return	
  s.width	
  *	
  s.height;	
  
	
  	
  	
  	
  	
  	
  	
  	
  case	
  "circle":	
  return	
  Math.PI	
  *	
  s.radius	
  *	
  s.radius;	
  
	
  	
  	
  	
  }	
  
}	
  

interface	
  Rectangle	
  {	
  
	
  	
  	
  	
  kind:	
  "rectangle";	
  
	
  	
  	
  	
  width:	
  number;	
  
	
  	
  	
  	
  height:	
  number;	
  
}	
  

type	
  Shape	
  =	
  Square	
  |	
  Rectangle	
  |	
  
Circle;	
  

Type of s is narrowed base on 
«kind» in union type 
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Type compatibility (equivalence) 
§  Nominally compatible 

–  Values of types with the 
same name are compatible 

§  Structurally compatible 
–  Types T1 and T2 are 

compatible 
§  If T1 is nominally 

compatible with T2, or 
§  T1 and T2 have the same 

signature (functions, 
variables, including names 
of such) 

struct Position { 
   int x, y, z; };
Position pos;
struct Date { int m, d, y; };
Date today;

void show(Date d);

...; show(today); ...

...; show(pos); ...

struct Complex { real x, y; };

struct Point { real x, y; };
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Subtyping 

§  Types can be related through subtyping 
–  Relationships can, again, be defined 

nominally or structurally 
 

§  A variable of a supertype can at runtime hold 
a value of a subtype 
–  Without introducing type errors 
–  Enables polymorphism, dynamic dispatch 
–  However, behavioral subtyping (Liskov) 

cannot, in general, be enforced by a 
compiler/type system   

§  How to best facilitate creation of such 
hierarchies are subject to much research and 
debate 
–  Single/multiple inheritance 
–  Traits/mixins 
–  Structural/nominal subtyping 
–  etc 

12 

Image from Wikipedia 
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Language grammars can naturally be 
expressed through the help of subtyping 
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Statement 

WhileStatement IfStatement AssignStatement 

abstract class Statement { … } 
class WhileStatement extends Statement { … } 
class IfStatement extends Statement { … } 
class AssignStatment extends Statement { … } 
 

Statement ::= WhileStatement | IfStatement | AssignStatement 
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So, what is the proper object oriented way to 
get rich? 
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Inherit! 



IN
F 3110 - 2016 

09/09/16 15 

Abstract datatypes 

Signature of ADT: 
§  Constructor 
§  Operations 

abstype  Complex = C of real * real  
with

fun complex(x, y: real) = C(x, y)
fun add(C(x1, y1), C(x2, y2)) = C(x1+x2, y1+y2) 

end

...; add(c1, c2); ...







An abstract datatype is a user defined 
datatype that: 
-  Defines representation and 

operations in one syntactical unit 
-  Hides the underlying representation 

from the programmer 
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Abstract datatypes versus classes 
abstype  Complex = C of real * real  
with

fun complex(x, y: real) = C(x, y)
fun add(C(x1, y1), C(x2, y2)) = C(x1+x2, y1+y2) 

end

...; add(c1,c2); ...

class Complex { 
real x,y;
Complex(real v1,v2) {x=v1; y=v2}
add(Complex c) {x=x+c.x; y=y+c.y} 

}

...; c1.add(c2); ...

With abstract data types: 
  operation (operands) 
 
•  meaning of operation is 

always the same 
 
 
With classes: 
  object.operation (arguments) 
 
•  meaning depends on  object  

and  operation (dynamic 
lookup, method dispatch) Possible to do ’add(c1,c2)’ with classes? 
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From abstract data types to classes 
§  Encapsulation through abstract data types 

–  Advantage 
§  Separate interface from implementation 
§  Guarantee invariants of data structure 

–  only functions of the data type have access to the internal representation 
of data 

–  Disadvantage 
§  Not extensible in the way classes are 
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Abstract data types argument of Mitchell 

abstype queue 
       with  
           mk_Queue: unit -> queue 
            is_empty: queue -> bool 
            insert: queue * elem -> queue 
            remove: queue -> elem 
       is  … 
       in 
           program    
      end 

abstype pqueue // priority queue 
   with  
        mk_Queue: unit -> pqueue 
        is_empty: pqueue -> bool 
        insert: pqueue * elem -> pqueue 
        remove: pqueue -> elem 
   is …  
   in 
        program    
   end

Cannot apply queue code to pqueue, even though signatures are identical 
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Object Interfaces - Subtyping 
§  Interface 

–  The operations provided by objects of a certain class 
§  Example: Point 

–  x :  returns x-coordinate of a point 
–  y :  returns y-coordinate of a point 
–  move :  method for changing location  

§  The interface of an object is its type. 

§  If interface B contains all of interface A, then B objects can also be 
used as A objects (substitutability) 
–  In practice this depends on language implementation and type 

system 

§  Subclassing <> subtyping 
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Point and ColorPoint 
class Point {
  int x, y;
  move(int dx, dy) {
    x=x+dx; y=y+dy
  } 
}

class ColorPoint extends Point {
  Color c;
  changeColor(Color nc) {c= nc}
}

◆  ColorPoint interface contains Point interface 
•  ColorPoint is a subtype of Point 

Point 
 x 
 y 
 move 

ColorPoint 
 x 
 y 
 c 
 move 
 changeColor 

Could not form list of points and colored points if done by abstract data types 
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Example - Structural (sub) typing 
§  Two classes with the same structural type 

class GraphicalObject { 
move(dx, dy int) {…}
draw() {…} 

};

class Cowboy { 
move(dx, dy int) {…}
draw() {…} 

};
...

class Luke { ... ? } ...; luke.draw();...; luke.draw();
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Subclassing 
§  Two approaches 

–  So-called ’Scandinavian’/Modeling Approach 
§  Classes represent concepts from the domain 
§  Subclasses represent specialized concepts 

–  Overriding is specialization/extension 
–  Subclass is subtype 

§  Reluctant to multiple inheritance (unless it can be understood as 
multiple specialization) 

–  So-called ’American’/Programming Approach 
§  Classes represent implementations of types 
§  Subclasses inherit code 

–  Overriding is overriding 
§  Subclassing not necessarily the same as subyping 
§  Multiple inheritance as longs as it works 
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Kristen Nygård and Ole-Johan Dahl 
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Example: Shapes 

§  ‘American’/Programming Approach  
–  General interface only in 

Shape 
–  Different kinds of shapes are 

implemented differently 
–  Square: four points, 

representing corners 
–  Circle: center point and radius 

§  ‘Scandinavian’/Modeling Approach 
–  General interface and general 

implementation in shape 
§  Shape has center point 
§  A Shape moves by changing 

the position of the center point 
–  ’To be or not be’ virtual 

§  e.g. move should not be 
redefined in subclasses 

Shape 

Circle Rectangle 

Interface of every shape must include center, move, rotate, print 

In Simula, C++, C#, a method 
specified as virtual may be 
overridden. 
 
 
 
 
 

 

In Java, a method 
specified as final  
may not be overridden. 
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Classification of polymorphism 

polymorphism 

universal ad-hoc 

implicit 
(conversion) 

overloading parametric Inclusion/ 
subtype 

“Polymorphism: providing a single interface to entities of different types”  
     - "Bjarne Stroustrup's C++ Glossary". 
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Inclusion/subtype polymorphism 
Point  p;        
ColorPoint cp;

...; p.equals(cp); ...   

‘equals’ works for cp because  
ColorPoint is a subtype of type Point   

Will draw a Circle if aShape is a Circle 

class Shape {
  void draw() {...}
  ...
};
class Circle extends Shape {
  void draw() {...}
  ...
};
...; aShape.draw(); ...

Override 
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Overloading – two methods with the same 
name 

§  only within the same scope 
{...}, or 

§  across superclass 
boundaries 

class Shape {
   ...
   bool contains(point pt) {...}
   ...
};

class Rectangle extends Shape {
   ...
   bool contains(int x, int y) {...}
   ...
}
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Overloading vs Overriding (Java and similar 
languages) 
class C {
   ...
   bool equals(C pC) {
     ... // C_equals_1
   }
}

class SC extends C {
   ...
   bool equals(C pC) {
      ...   // SC_equals_1
   } 

   bool equals(SC pSC) {
     ...    // equals_2
   }
}

C c   = new C();
SC sc = new SC();
C c’  = new SC();
 
c.equals(c)   //1
c.equals(c’)   //2
c.equals(sc)   //3
 
c’.equals(c)   //4
c’.equals(c’)  //5
c’.equals(sc)  //6
 
sc.equals(c)   //7
sc.equals(c’)  //8
sc.equals(sc) //9
 

C_equals_1
C_equals_1
C_equals_1

SC_equals_1
SC_equals_1
SC_equals_1

SC_equals_1
SC_equals_1
equals_2
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Covariance/contravariance/novariance 

§  Covariance:  
–  T1’ must be a subtype of T1
–  T2’ must be a subtype of T2
–  T3’  must be a subtype of T3

§  Contravariance:  
–  The opposite 

§  Nonvariance: must be the same types  

§  Most languages have no-variance 
§  Some languages provide covariance 

on both: most intuitive? 
§  Statically type-safe:  

–  Contravariance on parameter 
types 

–  Covariant on result type 

class C {
   T1 v;
   T2 m(T3 p) {
     ...

   }
}

class SC extends C {
   T1’ v;
   T2’ m(T3’ p){
      ... 
   } 
}
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Example: Point and ColorPoint – I: no variance 
class Point {
  int x,y;
  move(int dx, dy) {
    x=x+dx; y=y+dy}

  bool equals(Point p) {
    return x=p.x and y=p.y
  }
}

class ColorPoint 
  extends Point {
  Color c;
  bool equals(Point p) {
    return x=p.x and 
              y=p.y and 
              c=p.c
  }
}

Point  p1, p2;        

ColorPoint c1,c2;

 
p1.equals(p2)

c1.equals(c2)

p1.equals(c1) 

c1.equals(p1)

return 
super.equals(p) and 
c=p.c

Problem?? 
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Example: Point and ColorPoint – II: covariance 
class Point {
  int x,y;
  move(int dx,dy) {
    x=x+dx; y=y+dy}

  bool equals(Point p) {
    return x=p.x and y=p.y
  }
}

class ColorPoint 
  extends Point {
  Color c;
  bool equals(ColorPoint cp) {
    return super.equals(cp) 
              and 
              c=cp.c
  }
}

Point  p1, p2;          
ColorPoint c1,c2;

 
Which of these may 
be OK, and when  
to check? 
 
p1.equals(p2)

c1.equals(c2)

p1.equals(c1) 

c1.equals(p1)

OK 
OK      
OK 
OK 

run-time 
compile-time 
compile-time 
run-time 
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Example: Point and ColorPoint – III: casting 
class Point {
  int x,y;
  move(int dx,dy) {
    x=x+dx; y=y+dy}

  bool equals(Point p) {
    return x=p.x and y=p.y
  }
}

class ColorPoint 
  extends Point {
  Color c;
  bool equals(Point p) {
    return super.equals(p) and 
              c=(ColorPoint)p.c
  }
}

Point  p1, p2;        

ColorPoint c1,c2;

p1.equals(p2)

c1.equals(c2)

p1.equals(c1) 

c1.equals(p1)
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Example: Point and ColorPoint –  
§  Alternative to casting: 

–  Virtual classes 
with constraints 
(OOPSLA ’89) 

–  Still run time type 
checking 

class Point {
  int x,y;
  virtual class Type < Point;

  bool equals(Type p) {
    return x=p.x and y=p.y 
  }
}

class ColorPoint 
  extends Point {
  Color c;
  Type:: ColorPoint;
  bool equals(Type p) {
    return super.equals(p) and 
              c=p.c
  }
}
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Example: Contravariant parameter type  
§  Statically type safe 
§  Not allowed in Java 

class A {

  void m(A a) {
    …
  }
}

class B extends A {

  void m(Object a) {
    …
  }
}
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Example: Covariant return type  
§  Statically type safe 
§  Allowed in Java 

class A {

  A m() {
   return new A();
  }
}

class B extends A {

  B m() {
    return new B();
  }
}
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Practical info 

§  Mandatory 1 out today 
–  Deadline September 30th. 

§  Next lecture: ML with Volker Stolz 

§  Have a nice weekend! 
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