
IN
F 3110 -2016

INF3110 – Programming Languages
Object Orientation and Types, part II

11/4/16 1

IN
F 3110 -2016

11/4/16 2

Object Orientation and Types

Lecture I Lecture II - Today
§ From predefined (simple) and

user-defined (composite) types
– via

§ Abstract data types
– to

§ Classes
– Type compatibility
– Subtyping <> subclassing
– Class compatibility
– Covariance/contravariance

§ Types of parameters of
redefined methods

§ Type systems
§ Polymorphism

– Generics
§ Advanced oo concepts

– Specialization of behavior?
– Multiple inheritance -

alternatives
– Inner classes

IN
F 3110 -2016

Repetition

Remember: syntax (program text) and
semantics (meaning) are two separate things.

Types and type systems help to ascribe
meaning to programs:

§ What does "Hello" + " World" mean?

§ Which operation is called when you write
System.out.println("INF3110")?

§ What does the concept of a Student entail?

11/4/16 3

IN
F 3110 -2016

Repetition - What is a type?
§ A set of values that have a set of operations in common

– 32 bit integers, and the arithmetic operations on them
– Instances of a Person class, and the methods that operate on

them

§ How is a type identified?
– By its name (e.g. Int32, Person, Stack): nominal type checking
– By its structure (fields, operations): structural type checking

§ Does this cover everything a type might be? No.
– Alternative definition of “type”: A piece of the program to which

the type system is able to assign a label.
– (but don’t worry too much about this now)

11/4/16 4

IN
F 3110 -2016

11/4/16 5

Repetition - Classification of types
§ Predefined, simple types (not built from other types)

– boolean, integer, real, ...
– pointers, pointers to procedures
– string

§ User-defined simple types
– enumerations, e.g. enum WeekDay { Mon, Tue, Wed, … }

§ Predefined composite types
– Arrays, lists/collections (in some languages)

§ User-defined, composite types
– Records/structs, unions, abstract data types, classes

§ Evolution from simple types, via predefined composite types to user-
defined types that reflect parts of the application domain.

IN
F 3110 -2016

What is a type system?

§ One possible definition
– “A type system is a tractable syntactic method for proving the

absence of certain program behaviors by classifying phrases
according to the kinds of values they compute” [Pierce, 2002]

6

IN
F 3110 -2016

What is a type system?

§ One possible definition
– “A type system is a tractable syntactic method for proving the

absence of certain program behaviors by classifying phrases
according to the kinds of values they compute” [Pierce, 2002]

– We are interested in type systems in relation to programs and
programming languages, and not other kinds of type systems
§ The idea of type systems (or type theory) predates programming languages,

and type theory has other applications as well

7

IN
F 3110 -2016

What is a type system?

§ One possible definition
– “A type system is a tractable syntactic method for proving the

absence of certain program behaviors by classifying phrases
according to the kinds of values they compute” [Pierce, 2002]

– The type system deals with syntactic phrases, or terms, in the
language, and assigns labels (types) to them.
§ This applies to static type systems
§ Dynamic type systems, on the other hand, label and keep track of

data at runtime.

8

IN
F 3110 -2016

What is a type system?

§ One possible definition
– “A type system is a tractable syntactic method for proving the

absence of certain program behaviors by classifying phrases
according to the kinds of values they compute” [Pierce, 2002]

– The goal of the type system is to prove the absence of certain
undesirable behaviors
§ There are hard limits to what kind of undesirable behaviors a type

system can prove things about, e.g. (non)termination

– “The fundamental purpose of a type system is to prevent the
occurrence of execution errors during the running of a
program” [Cardelli, 2004]
§ But what constitutes an execution error? ArrayIndexOutOfBounds?

NullReferenceException?

9

IN
F 3110 -2016

What is a type system?

§ One possible definition
– “A type system is a tractable syntactic method for proving the

absence of certain program behaviors by classifying phrases
according to the kinds of values they compute” [Pierce, 2002]

– In order to attain its goal, the type system should preferably be
computationally tractable
§ Tractable = polynominal time, with regard to length of the program
§ In practice, the degree of the polynominal should not be too high

10

IN
F 3110 -2016

Main categories for programming language
type systems
§ Untyped

– There are no types (e.g. everything is just a bit pattern)
– Or, if you will, everything has the same single type

§ Statically typed
– Types checking is a syntactic process at compile-time
– Rejects programs that do not type check before they can run

§ Dynamically typed (or: dynamically checked)
– Types are checked at runtime

§ By a runtime system, or
§ By code inserted by a compiler

§ Categories are not mutually exclusive
– Most “real-world” languages are somewhere in between, with

elements from more than one category
– There is a tension between safety and expressivity that must be

resolved by the language/type system designer

11

IN
F 3110 -2016

Static type systems
§ Types are assigned to syntactical elements of a program (prior to running it)

– Types annotations can be specified explicitly in the source code by the programmer,
“ALGOL-style”, as in Java, C++, etc

– Or they can be inferred by the compiler, as in ML, Haskell, etc, Hindley-Milner style

§ An AST is typically created from the source code using the language’s grammar
– Some of the nodes in the

tree will be declarations of
types, or type annotations

• Uses the language’s
semantics to establish
relationships between
expressions and types

• Thus type checking
the program

• Checks structural
or nominal conformance
according to language
semantics 12

Image from JTransformer

IN
F 3110 -2016

Static type systems [cont.]
§ Static type systems are always conservative

– They cannot (in general) prove the presence of errors, only the absence of certain
bad behaviors

– They are therefore bound to potentially reject “correct” programs

if(< complex runtime condition that always evaluates to true >)
< valid code >

else
< type error >

§ Mainstream languages typically concede to tradeoffs between flexibility and type
safety

– E.g. covariant array conversions, null-references, runtime contract checking
– Escape hatches to circumvent the type system:

§ Unchecked_ constructs in Ada
§ unsafe { … } in C#
§ Obj.magic in Ocaml

– “license to kill [the type system]” – anonymous
stackoverflow.com user

§ Foreign Function Interfaces in most languages, e.g. ML, JavaScript,
Python, Java, etc

13

IN
F 3110 -2016

Dynamically typed languages
§ Type checks at runtime

– As long as the receiver supports the requested operation,
everything is fine

– Errors due to type-incorrect operations will be caught* at runtime
§ * if the language is safe, otherwise, anything could happen

§ Never need to reject a correct program
– But may indeed end up running many faulty ones

– Extensive testing/TDD may find the errors that a compiler would
otherwise have found
§ A test suite can find an upper bound on correctness, while (static)

type systems find a lower bound

14

IN
F 3110 -2016

Dynamically typed languages [cont.]

§ Freedom of expression where static type system cannot (at present?) correctly type the
program

– Can have meta-object protocols with sophisticated behavior

§ Responding to method calls or not depending on runtime environment, e.g.:

def methodMissing(name, args) {
if(name.startsWith(“get”) && App.User.IsAuthorized())

return OtherClass.metaClass.Invoke(name, args);
else

thow new MessageNotUnderstoodException();
}

– Effortlessly create proxies at runtime

– Create and cache new methods from business rules defined by users, e.g. in an internal
DSL

– Etc

§ Classes and objects can be adapted at runtime
– Add or remove methods or fields, swap out classes, etc.
– Used a great deal by e.g. Flickr, Facebook and Gmail [Vitek 2009]

15

IN
F 3110 -2016

Mark Mannasse: “The fundamental problem addressed by a type
theory [aka type system] is to ensure that programs have meaning.

16

The fundamental problem caused by a type theory is that
meaningful programs may not have meanings ascribed to
them.

The quest for richer type systems results from this tension.”
[as quoted by Pierce 2002, p 208]

IN
F 3110 -2016

Words of wisdom?

“Static typing is great because it keeps
you out of trouble.
Dynamic typing is great because it gets
out of your way”

– Zack Grossbart (author, blogger,)

17

IN
F 3110 -2016

Polymorphism – a single interface usable for
instances of different types
§ Ad hoc polymorphism: functions/methods with the same name that

can be applied to different parameter types and arities
– Typically called overloading

§ Parametric polymorphism: "when the type of a value contains one or
more type variables, so that the value may adopt any type that
results from substituting those variables with concrete types”
[https://wiki.haskell.org/Polymorphism].
– In OOP communities, this is typically called generics.
– In FP communities, this is typically called just polymorphism.

§ Subtype polymorphism (subtyping): an instance of a subtype can be
substituted where a supertype is expected
– In OOP communities, this is often simply referred to

as polymorphism.

11/4/16 18

IN
F 3110 -2016

Generics/parametric polymorphism

§ Type constructors, of types of types
– E.g. List<T> can be used to construct List<String>, List<Person>,

etc.

§ Different languages offer different degrees of expressiveness
– What can be said about T?
– Can we constrain what it can be?
– Can we be sure that whatever is in our List<String> is really only

strings?
– What about subtype hierarchies?
– To which extent is the generic type type safe?
– Can the generic type be analyzed on its own, independently of

any use-cases?

11/4/16 19

IN
F 3110 -2016

11/4/16 20

Constraining type parameters

§ C++ polymorphic sort function

template <typename T>

void sort(int count, T* arr[]) {

for (int i=0; i<count-1; i++)

for (int j=i+1; j<count-1; j++)
if (arr[j] < arr[i])

swap(arr[i], arr[j]);

}

§ What parts of the implementation depend on what property of T?
Usage, meaning and implementation of <

<

IN
F 3110 -2016

11/4/16 21

Java lists without and with generics

List myIntList = new LinkedList();
myIntList.add(new Integer(0));
Integer x = (Integer)myIntList.iterator().next()

List<Integer> myIntList = new
LinkedList<Integer>();

myIntList.add(new Integer(0));
Integer x = myIntList.iterator().next()

IN
F 3110 -2016

11/4/16 22

Generics and subtyping
§ String subtype of Object => List<String> subtype of List<Object> ?

§ Integer subtype of Number => List<Integer> subtype of
List<Number> ?

List<String> ls = new ArrayList<String>();
List<Object> lo = ls;
lo.add(new Object());
String s = ls.get(0);

Number

Integer

Double

Object

String

List<Integer> ints = Arrays.asList(1,2);
List<Number> nums = ints;
nums.add(3.14);

compile-time
error

attempts to assign
an Object to a Stringcompile-time

error

IN
F 3110 -2016

But look out!

String[] myStrings = new String [10];
myStrings[0] = "Hello";
myStrings[1] = "World!"

Object[] myObjects = myStrings; // ???
myObjects[3] = new Object(); // !!!

11/4/16 23

Try it out in Java and/or C#!

IN
F 3110 -2016

11/4/16 24

Unbounded polymorhpism - Wildcards - I

void printCollection(Collection c) {
Iterator i = c.iterator();
for (k = 0; k < c.size(); k++)

System.out.println(i.next());
}

void printCollection(Collection<Object> c){
for (Object e : c)

System.out.println(e);
}

void printCollection(Collection<?> c) {
for (Object e : c)

System.out.println(e);
}

Collection<any type>
is not a subtype of
Collection<Object>

Collection<any type>
is a subtype of
Collection<?>

Write code to print the elements of any collection:

IN
F 3110 -2016

11/4/16 25

Bounded polymorhpism - Wildcards - II
public abstract class Shape {
public abstract void draw(Canvas c);

}

public class Circle extends Shape {
private int x, y, radius;
public void draw(Canvas c) { ... }

}

public class Rectangle extends Shape {
private int x, y, width, height;
public void draw(Canvas c) { ... }

}

public class Canvas {
public void draw(Shape s) { s.draw(this);}

}
Write code to draw a list of any kind of shape à

IN
F 3110 -2016

11/4/16 26

Bounded polymorhpism - Wildcards - III

§ List<S> subtype of List<? extends Shape > for every S being
a subtype of the (concrete) type Shape

§ List<S> subtype of List<? extends T > for every S being a
subtype of (the generic parameter) T

// in class Canvas:
public void drawAll(List<Shape> shapes) {
for (Shape s: shapes)

s.draw(this);
}

public void drawAll(List<? extends Shape> shapes) {
for (Shape s: shapes)

s.draw(this);
}

IN
F 3110 -2016

11/4/16 27

Generic methods

static void fromArrayToColl(Object[] a, Collection<?> c) {
for (Object o: a)

c.add(o); // compile time error – why?
}

static <T> void fromArrayToColl(T[] a, Collection<T> c) {
for (T o: a)

c.add(o); // works – why?
}

class Collections {
public static <T> void copy(
List<T> dest, List<? extends T> src) {…}

}
class Collections {
public static <T, S extends T> void copy(
List<T> dest, List<S> src) {…}

}

IN
F 3110 -2016

11/4/16 28

interface Sink<T> {
flush(T t); // flush might for instance write stuff to disk

}

// writeAll writes everything in coll to disk using sink.flush
public static <T> T writeAll(Collection<T> coll, Sink<T> snk){
T last;
for (T t : coll) {
last = t;
snk.flush(last);
}
return last;

}
...
Sink<Object> s = ...; // a sink that can write any object
Collection<String> cs = ... ; // can it write strings…?
String str = writeAll(cs, s); //?

Generic parameters

Illegal call

IN
F 3110 -2016

11/4/16 29

public static <T> T writeAll(
Collection<? extends T>, Sink<T>){
...

}

String str = writeAll(cs, s); //?

Yes: returns T
which is now

String

call ok, but
wrong return

type:
T which is

Object

public static <T> T writeAll(
Collection<T> coll, Sink<? super T> snk){
...

}

String str = writeAll(cs, s); //?

Sink<Object> s;
Collection<String> cs;

IN
F 3110 -2016

11/4/16 30

Subtyping of behaviour specification?

date
customer

Reservation

flight
seat

FlightReservation
train
waggon
seat

TrainReservation

print()
print()

print() Is the behavior of print in the
subclasses a behavioral subtype of that
in the superclass?

IN
F 3110 -2016

11/4/16 31

’Subtyping’ for behaviour – the super style
class Reservation {
date . . . ;
customer . . . ;
void print() {
// print date and Customer
}

}

class FlightReservation extends Reservation {
flight . . .;
seat . . .;
void print {
super.print();
// print Flight and Seat

}
}

We depend on the
developer of
FlightReservation to
do the ”right thing”

IN
F 3110 -2016

Subtyping for behaviour – the inner style
§ Does the inner style give

behavioral compatibility?

§ No, still only
structural compatibility,
but structure in terms of
sequence of statements,
in addition to signature
(number of types of
parameters)!

11/4/16 32

class Reservation {
date . . . ; customer . . . ;
void print() {

// print Date and Customer
inner;

}
}

class FlightReservation
extends Reservation {

flight . . .; seat . . .;
void print extended {

// print flight and seat
inner;

}
}

IN
F 3110 -2016

11/4/16 33

Subtyping
=

subclassing??

insert()
delete()

Queue

push()
pop()

Stack

insert_front()
insert_rear()
delete_front()
delete_rear()

Dequeue

Dequeue d; Stack s; Element e;
void f(Dequeue dp, Element ep) {
dp.insert_front(ep); dp.insert_rear(ep) }

...
f(s, e)

insert_front()
insert_rear()
delete_front()
delete_rear()

Dequeue

insert_front()
delete_rear()

Queue

push():: insert_front
pop():: delete_front

Stack

A double-ended queue
(dequeue, often
abbreviated to deque,
pronounced deck) is an
abstract data type that
generalizes a queue, for
which elements can be
added to or removed
from either the front
(head) or back (tail)

IN
F 3110 -2016

11/4/16 34

The opposite any better?

insert_front():: push
insert_rear()
delete_front():: pop
delete_rear()

Dequeue

insert_front()
delete_rear()

Queue
push()
pop()

Stack

Dequeue can take
the place of both a
Queue and a Stack
(via different
references).

A context where it is
used as a stack
cannot be sure that it
behaves like a stack.

IN
F 3110 -2016

Inheritance and extension

11/4/16 35

Figure
String descr;

Circle
float r;

Rectangle
float width;
float height;

FigurX?
-area
-color

-…
K new Circle().color= …; L

We want to extend
this with new
figures, and new
properties for
figures

Ellipse
float a;
float b;

J

IN
F 3110 -2016

11/4/16 36

Figure
String descr;

Circle
float r;

Rectangle
float width;
float height;

FigureX
-area
-color

-…

CircleX RectangleX

Multiple inheritance
Solves the problem (kind of) but:
- Complex hierarchy for simple

problem
- One or two description variables

from figure?
- Difficult with overrides
- Runtime complexity

IN
F 3110 -2016

11/4/16 37

Figure
String descr;

Circle
float r;

Rectangle
float width;
float height;

FigureX
-area
-color

-…

CircleX RectangleX

Figures

FiguresX

Virtual classes

Solves the problem (kind of)
but:
- Complex hierarchy for

simple problem?
- Runtime complexity
- Not type safe (typically)

IN
F 3110 -2016

11/4/16 38

Multiple inheritance - issues
§ Multiple supertypes or just multiple

implementations?
§ Name conflicts - m(), what to do?

– Take the leftmost (i.e. ’B.m()’)
– Not allowed
– Renaming
– Explicit identification ’B.m()’

§ In definition of class D
§ In every use of m()

§ One or two A’s?
– What if A has variables too?

How many copies will there
be?

§ Overriding
– Which one do you override?

m()
A

m()

B

m()

C

m()
D

IN
F 3110 -2016

11/4/16 39

Composition / Encapsulation?

class Apartment {

Kitchen theKitchen = new Kitchen();

Bathroom theBathroom = new Bathroom();

Bedroom theBedroom = new Bedroom ();

FamilyRoom theFamilyRoom =

new FamilyRoom ();

. . .

Person Owner;

Address theAddress = new Address()

}

...; myApartment.theKitchen.paint(); ...

Where are Kitchen,
Bathroom, Bedroom,
FamiliyRoom defined?

Do they belong to the
apartment?

IN
F 3110 -2016

11/4/16 40

Inner classes - locally defined classes
class Apartment {

Height height;

Kitchen theKitchen = new Kitchen();

// define inner class:
class ApartmentBathroom extends Bathroom {... height ...}

// then use it:
ApartmentBathroom Bathroom_1 = new ApartmentBathroom ();

ApartmentBathroom Bathroom_2 = new ApartmentBathroom ();

Bedroom theBedroom = new Bedroom ();

FamilyRoom theFamilyRoom = new FamilyRoom ();

. . .

Person Owner;

Address theAddress = new Address()

}

IN
F 3110 -2016

11/4/16 41

Virtual classes
(made-up syntax ahead)

class Apartment {

virtual class ApartmentBathroom < Bathroom

...

};

class SpecialApartment extends Apartment {

class ApartmentBathroom:: PinkBathroom

// PinkBathroom defined somewhere else

}

class MoreSpecialApartment extends Apartment {

class ApartmentBathroom:: PinkBathroom {...}

}

IN
F 3110 -2016

11/4/16 42

...
Button btn = new Button();
btn.setText("Say 'Hello World'");
btn.setOnAction(
new EventHandler<ActionEvent>() {
public void handle(ActionEvent event) {

System.out.println("Hello World!");
}

}
);
...

Singular objects (singleton class)
- anonymous classes

Anonymous
class

IN
F 3110 -2016

11/4/16 43

HelloWorld norwegianGreeting = new
HelloWorld() {
String name = "Verden";
public void greet() {

greetSomeone("Verden");
}
public void greetSomeone(String someone) {
name = someone;
System.out.println("Hallo " + name);

}
};

interface HelloWorld {
public void greet();
public void greetSomeone(String someone);

}

Anonymous
class

IN
F 3110 -2016

11/4/16 44

public static void printPersons(
List<Person> roster, CheckPerson tester) {
for (Person p : roster) {

if (tester.test(p)) {
p.printPerson();

}
}

}

interface CheckPerson {
boolean test(Person p);

}

printPersons(
roster,
new CheckPerson() {

public boolean test(Person p) {
return p.getGender() == Person.Sex.MALE

&& p.getAge() >= 18
&& p.getAge() <= 25;

}
}

);

Functional interface

Anonymous
class

IN
F 3110 -2016

11/4/16 45

public static void printPersons(
List<Person> roster, CheckPerson tester) {
for (Person p : roster) {

if (tester.test(p)) {
p.printPerson();

}
}

}

interface CheckPerson {
boolean test(Person p);

}

printPersons(
roster,
(Person p) ->

p.getGender() == Person.Sex.MALE
&& p.getAge() >= 18
&& p.getAge() <= 25

);

Functional interface

Anonymous
function

IN
F 3110 -2016

Coming up!
§ Two lectures on Prolog (Volker)
§ Guest lecture (most likely)
§ Repetition

– Exam from last year is out with the lecture notes from last time

11/4/16 46

