
IN
F 3110 –

2016

INF3110 – Exam from 2015
Exercise 1, Runtime systems, scoping and

types (40 %)

Eyvind W. Axelsen
eyvinda@ifi.uio.no | @eyvindwa

http://eyvinda.at.ifi.uio.no

12/4/16 1

IN
F 3110 –

2016
Exercise 1a – Consider the following stack implementation

12/4/16 2

public class MyStack<T> {
int maxSize;
Object[] stackArray;
int top = -1;

public MyStack(int maxSize) {
this.maxSize = maxSize;
stackArray = new Object[maxSize];

}

public void push(T element) {
stackArray[++top] = element;
// HERE, see text below

}
public T pop() {

return (T) stackArray[top--];
}
public boolean isEmpty() {

return top < 0
}

}

IN
F 3110 –

2016

12/4/16 3

class Person {
public String name;
public Person(String name) { this.name = name; }
/* some more content here */

}

class Student extends Person {
public Student(String name) { super(name); }
/* some more content here */

}

class Program {
public static void main(String[] args) {

MyStack<Student> s = new MyStack<Student>(10);
s.push(new Student("Volker"));
s.push(new Student("Eyvind"));

}

}

IN
F 3110 –

2016

12/4/16 4

Draw the runtime stack with activation blocks and objects
(including static and dynamic links, using this for static links to
objects, and local variables), at the point when the call to
s.push(new Student("Eyvind")) has just been made, and the
execution is at the point labeled “// HERE” in the code. You may
assume that arrays are implemented as objects with an
appropriate number of slots for their elements.

IN
F 3110 –

2016

12/4/16 5

Lecture Runtime org. 1 - Simplified Reference Model of
a Machine - used to understand memory management

Registers
(not in this class)

Environment
Pointer

Program
Counter

DataCode

Heap

Stack

Our main focus today

IN
F 3110 –

2016

12/4/16 6

Lecture Runtime org. 1 - Activation record for
static scope

§ Control link (dynamic link)
– Link to activation record of

previous (calling) block
§ Access link (static link)

– Link to activation record
corresponding to the closest
enclosing block in program
text

– Why is it called static?
§ Difference

– Control link depends on
dynamic behavior of program

– Access link depends on static
form of program text

Control link

Local variables

Intermediate results

Environment
Pointer

Parameters

Return address

Return result addr

Access link

IN
F 3110 –

2016

12/4/16 7

Lecture Runtime org. 1 - Static scope with
access links (C-like notation)
{
int x = 1;

int function g(z) { return x+z };

int function f(y) {
int x = y+1;
return g(y*x)

};

main() {
f(3);

}
}

x 1

x 4
y 3

z 12

outer block

f(3)

g(12) control link
access link

control link
access link

access link
control link

main

Use access link to find global
variable:
§ Access link is always set to

frame of closest enclosing
lexical block

§ For function body, this is the
block that contains function
declaration

g …
f …

IN
F 3110 –

2016

12/4/16 8

public class MyStack<T> {
int maxSize;
Object[] stackArray;
int top = -1;

public MyStack(int maxSize) {
this.maxSize = maxSize;
stackArray = new Object[maxSize];

}

public void push(T element) {
stackArray[++top] = element;
// HERE, see text below

}
public T pop() {

return (T) stackArray[top--];
}
public boolean isEmpty() {

return top < 0
}

}

class Person {
public String name;
public Person(String name) {

this.name = name; }
/* some more content here */

}

class Student extends Person {
public Student(String name)

{ super(name); }
/* some more content here */

}

class Program {
public static void

main(String[] args) {
MyStack<Student> s = new

MyStack<Student>(10);
s.push(new

Student("Volker"));
s.push(new

Student("Eyvind"));
}

}

IN
F 3110 –

2016

12/4/16 9

control link
this
element

smain

push

maxSize 10
top 1
stackArray

[0]
[1]
[2]
…
[9]

MyStack<Student>

Array

ACTIVATION RECORDS OBJECTS

name Volker
…

Student

name Eyvind
…

Student

Draw the runtime stack with activation blocks and objects (including static and
dynamic links, using this for static links to objects, and local variables), at the point
when the call to s.push(new Student("Eyvind")) has just been made, and the execution
is at the point labeled “// HERE” in the code. You may assume that arrays are
implemented as objects with an appropriate number of slots for their elements.

IN
F 3110 –

2016

12/4/16 10

1b
Consider now the following program fragment, which uses the stack implementation
from 1a:

MyStack<Object> myStack = new MyStack<Object>(10);
myStack.push("Hello INF3110!");
myStack.push(new Object());
myStack.push(123);

Does this program fragment work (i.e., does it compile and run without any errors,
provided it is wrapped in a suitable method and class declaration)? If yes, explain briefly
how and why it works. If not, explain briefly what is wrong with it.

Solution: the stack is generic, but the generic type is Object, which means that you can
put anything that extends Object into it. That works for strings and new Object(). The
int 123 will be boxed into a new Integer, and thus that is OK too.

IN
F 3110 –

2016

12/4/16 11

1c
Suppose now that we replace the first line of the program fragment from 1b with the
following code:

MyStack<Object> myStack = new MyStack<String>(10);

Explain how the fragment now differs from the one in 1b. Will the compiler react differently
to it? If it compiles correctly, will the runtime behavior of the fragment be different?

1b:
MyStack<Object> myStack = new MyStack<Object>(10);
myStack.push("Hello INF3110!");
myStack.push(new Object());
myStack.push(123);

MyStack<Object> myStack = new MyStack<String>(10);
myStack.push("Hello INF3110!");
myStack.push(new Object());
myStack.push(123);

IN
F 3110 –

2016

12/4/16 12

Lecture OO II - Generics and subtyping
§ String subtype of Object => List<String> subtype of List<Object> ?

§ Integer subtype of Number => List<Integer> subtype of
List<Number> ?

List<String> ls = new ArrayList<String>();
List<Object> lo = ls;
lo.add(new Object());
String s = ls.get(0);

Number

Integer

Double

Object

String

List<Integer> ints = Arrays.asList(1,2);
List<Number> nums = ints;
nums.add(3.14);

compile-time
error

attempts to assign
an Object to a Stringcompile-time

error

IN
F 3110 –

2016

12/4/16 13

1c
Suppose now that we replace the first line of the program fragment from 1b with the
following code:

MyStack<Object> myStack = new MyStack<String>(10);

Explain how the fragment now differs from the one in 1b. Will the compiler react differently
to it? If it compiles correctly, will the runtime behavior of the fragment be different?

1b:
MyStack<Object> myStack = new MyStack<Object>(10);
myStack.push("Hello INF3110!");
myStack.push(new Object());
myStack.push(123);

Solution: This is unsafe, and it will not compile.

MyStack<String> is not a subtype of MyStack<Object>, even though String is a
subtype of Object.

MyStack<Object> myStack = new MyStack<String>(10);
myStack.push("Hello INF3110!");
myStack.push(new Object());
myStack.push(123);

IN
F 3110 –

2016

12/4/16 14

1d

Returning now to persons and students, assume that we want to write a method that can
process stacks of persons and stacks of students, e.g. like this:

public static < … > void processPersons(... persons) {
while(!persons.isEmpty()) {

System.out.println(persons.pop().name);
}

}

Replace the ellipses (…) two places in the method signature above with the appropriate
generic declarations to make the following calls to processPersons work:
MyStack<Person> persons = // some initialization code here,
MyStack<Student> students = // you do not need to provide this code

processPersons(persons); // this call and the next should work
processPersons(students);

IN
F 3110 –

2016

12/4/16 15

Lecture OO II - Bounded polymorhpism -
Wildcards - II
public abstract class Shape {
public abstract void draw(Canvas c);

}

public class Circle extends Shape {
private int x, y, radius;
public void draw(Canvas c) { ... }

}

public class Rectangle extends Shape {
private int x, y, width, height;
public void draw(Canvas c) { ... }

}

public class Canvas {
public void draw(Shape s) { s.draw(this);}

}
Write code to draw a list of any kind of shape à

IN
F 3110 –

2016

12/4/16 16

Lecture OO II - Bounded polymorhpism -
Wildcards - III

§ List<S> subtype of List<? extends Shape > for
every S being a subtype of the (concrete) type Shape

§ List<S> subtype of List<? extends T > for every S
being a subtype of (the generic parameter) T

// in class Canvas:
public void drawAll(List<Shape> shapes) {
for (Shape s: shapes)

s.draw(this);
}

public void drawAll(List<? extends Shape> shapes) {
for (Shape s: shapes)

s.draw(this);
}

IN
F 3110 –

2016

12/4/16 17

1d

Returning now to persons and students, assume that we want to write a method that can
process stacks of persons and stacks of students, e.g. like this:

public static < … > void processPersons(... persons) {
while(!persons.isEmpty()) {

System.out.println(persons.pop().name);
}

}

Replace the ellipses (…) two places in the method signature above with the appropriate
generic declarations to make the following calls to processPersons work:
MyStack<Person> persons = // some initialization code here,
MyStack<Student> students = // you do not need to provide this code

processPersons(persons); // this call and the next should work
processPersons(students);

Solution:
public static <T extends Person> void processPersons(MyStack<T> persons)
{

while(!persons.isEmpty()) {
System.out.println(persons.pop().name);

} } }

IN
F 3110 –

2016

12/4/16 18

1e Java 8 allows the usage of anonymous functions (or “lambdas”). For instance, we could
define processPersons to have an argument that is a predicate filtering which person’s name to print:
public static void processPersons(Stack<Person> persons, Predicate<Person>
predicate) {

while(!persons.isEmpty()) {
Person person = persons.pop();
if(predicate.test(person))

System.out.println(person.name); // HERE
}}

Predicate<T>, as used in the method above, is a built-in interface in Java 8 that has a Boolean
method test that can be implemented by an anonymous function. Thus, the processPersons
method could now be called for instance like the following, to only print “Volker”:

public static void main(String[] args) {
MyStack<Person> persons = new MyStack<Person>(10);
persons.push(new Student("Volker"));
persons.push(new Student("Eyvind"));
String filter = "V";

Predicate<Person> predicate = p -> p.name.startsWith(filter);
processPersons(persons, predicate);

}

Draw the call stack as it is in the call to processPersons when the execution has reached the
point marked “// HERE” in the code above.

IN
F 3110 –

2016

12/4/16 19

Lecture OO II - Closures

§ Function value is pair closure = áenv, code ñ
§ When a function represented by a closure is called

– Allocate activation record for call (as always)
– Set the access link in the activation record using the

environment pointer from the closure

IN
F 3110 –

2016

12/4/16 20

{ int x = 4;
{ int f(int y){return x*y;}

{ int g(int®int h) {
int x=7;
return h(3)+x;

}
g(f);

}
}

}

Lecture OO II - Function Argument and
Closures

x 4

access link set
from closure

for each
function call

Code
for f

f
access

Run-time stack with access links

Code
for g

h(3)
y 3

access

g(f)
h

access

x 7

g
access

IN
F 3110 –

2016

12/4/16 21

public static void processPersons(Stack<Person> persons,
Predicate<Person> predicate) {

while(!persons.isEmpty()) {
Person person = persons.pop();
if(predicate.test(person))

System.out.println(person.name); // Draw stack here
}}

public static void main(String[] args) {
MyStack<Person> persons = new MyStack<Person>(10);
persons.push(new Student("Volker"));
persons.push(new Student("Eyvind"));
String filter = "V";

Predicate<Person> predicate = p-> p.name.startsWith(filter);
processPersons(persons, predicate);

}

IN
F 3110 –

2016

12/4/16 22

IN
F 3110 –

2016
Summing up

12/4/16 23

§ The upcoming exam:
– December 12, 14:30 (4 hours).
– All written and printed material allowed

§ Some main topics of today’s (2015) exam task
– Runtime stacks and activation records
– Generics, variance
– Functions/methods as parameters

§ Remember: there are more topics in this course!
– Syntax/semantics
– Types and scopes
– Object orientation
– And of course SML, Prolog and all the rest of Volker’s lectures
– More exams (with solutions) on the course page:

http://www.uio.no/studier/emner/matnat/ifi/INF3110/h16/undervisningsma
teriale/

§ Thank you, and GOOD LUCK!

