
Go language highlights

Martin Steffen

Nov 25, 2016

1 / 112

Outline

1. Introduction

2. OO structuring & type system

3. Control

4. Concurrency

5. Memory model

6. Conclusion

2 / 112

Introduction

4 / 112

5 / 112

Go sales pitch

“language for the 21st century”
relatively new language (with some not so new features?)
a lot of fanfare & backed by Google no less
existing show-case applications

docker
dropbox . . .

6 / 112

http://www.google.com
https://www.docker.com/
https://www.dropbox.com/

Go’s stated design principles

appealing to C programmers
KISS: “keep it simple, stupid”
built-in concurrency
“strongly typed”
efficient
fast compilation, appealing for scripting

7 / 112

History of Go

first plans around 2007
“IPO”: end of 2009
Precursor languages, resp. inspired by:

C
CSP / Occam
At Bell Labs

Squeak, Newsqueak
Limbo
Alef

Erlang, Concurrent ML

8 / 112

https://en.wikipedia.org/wiki/Communicating_sequential_processes
http://ordiecole.com/squeak/cardelli_squeak1985.pdf
https://www.youtube.com/watch?v=hB05UFqOtFA
http://doc.cat-v.org/inferno/4th_edition/limbo_language/limbo
http://doc.cat-v.org/plan_9/2nd_edition/papers/alef/ref
http://www.erlang.org/
http://cml.cs.uchicago.edu/

Go’s non-revolutionary feature mix

imperative
object-oriented (?)
compiled
concurrent (goroutines)
“strongishly” typed
garbage collected
portable
higher-order functions and closures

9 / 112

OO structuring & type system

(Sub)-typing, OO, polymorphism, and all that

“In object-oriented programming, the is-a relationship is
totally based on inheritance”
– from some random Java tutorial

“overriding is dynamic polymorphism”
– from the blogosphere (stack exchange)

“Subclasses of a class can define their own unique
behaviors and yet share some of the same functionality of
the parent class.
– Oracle’s Java tutorial, section on polymorphism

11 / 112

http://www.w3resource.com/java-tutorial/inheritance-composition-relationship.php
https://docs.oracle.com/javase/tutorial/java/IandI/polymorphism.html

“Orthodox” view

class = type (among other things)
inheritance = subtyping
polymorphism = subtype polymorphism (= subtyping =
inheritance)

“Orthodox”
accepted as true or correct by most people:
supporting or believing what most people think is
true
accepting and closely following the traditional beliefs
and customs of a religion

12 / 112

c l a s s Po in t {
pub l i c i n t x ;
pub l i c Po in t (i n t x) { t h i s . x = x ; }

}

pub l i c c l a s s C l a s s r o l e s {
pub l i c s t a t i c vo id main (S t r i n g [] a rg) {

Po in t x ; // d e c l a r a t i o n o f x
x = new Po in t (5) ; // s e t t i n g x

}
}

13 / 112

Perhaps OO it is, but not as you know it

Go’s heterodox take on OO
no classes
not even objects, officially
no (class) inheritance
interfaces as typesa

code reuse encouraged by
embedding
aggregation (ok, that one is old hat)

name of an interface type 6= interface type itself
aWe concentrate here on the “OO” part of Go’s type system, i.e., the

interfaces. There are other types too, obviously.

14 / 112

Ducks

15 / 112

No ducks in Java (as in most mainstream OO)

i n t e r f a c e I 1 { i n t m (i n t x) ; }
i n t e r f a c e I 2 { i n t m (i n t x) ; }
c l a s s C1 implements I 1 {

pub l i c i n t m(i n t y) { re tu rn y++; }
}
c l a s s C2 implements I 2 {

pub l i c i n t m(i n t y) { re tu rn y++; }
}

pub l i c c l a s s Noduck1 {
pub l i c s t a t i c vo id main (S t r i n g [] a rg) {

I 1 x1 = new C1 () ; // I 2 not p o s s i b l e
I 2 x2 = new C2 () ;
x1 = x2 ;

}
}

16 / 112

I kind of knew that, but what about this?

i n t e r f a c e I 1 { i n t m (i n t x) ; }
i n t e r f a c e I 2 { i n t m (i n t x) ; }
c l a s s C1 implements I 1 {

pub l i c i n t m(i n t y) { re tu rn y++; }
}
c l a s s C2 implements I 2 {

pub l i c i n t m(i n t y) { re tu rn y++; }
}

pub l i c c l a s s Noduck2 {
pub l i c s t a t i c vo id f (I 2 x) { re tu rn ; }

pub l i c s t a t i c vo id main (S t r i n g [] a rg) {
I 1 x1 = new C1 () ; // I 2 not p o s s i b l e
I 2 x2 = new C2 () ;
x1 = (I 1) x2 ; // <−−− I ’ l l t each you ! ! !
x1 .m(1) ; // both v a r s suppo r t m, r i g h t ?

}
}

17 / 112

Duck typing

“When I see a bird that walks like a duck and swims like a
duck and quacks like a duck, I call that bird a duck.”

be careful with Wikipedia’s wisdom (or the internet in general)
Old controversy:

nominal (or nominative) vs. structual (sub-)typing
Go: “*static* duck typing”

18 / 112

What’s a type?

Well, depends on whom you ask:
compiler & run-time system?

a hint for the compiler of memory usage & representation
layout?
piece of meta-data about a chunk of memory

semanticist?
what’s the meaning of a type?

programmer?
types make my programs more safe, it’s a partial specification
type systems stand in the way of my expert mastering of code

orthodoxion oo’er?
a type is more or less a class (at least the more interesting
ones/custom types)

19 / 112

Union types in C

union { i n t a ; f l o a t b ; }

“Unions provides a way to manipulate different kinds
of data in a single area of memory. . . ”

20 / 112

More grown-up view on types and type systems

types are abstractions of “values” (data items)
types are “sets”?
of course: “ memory layout ” view

still relevant (for the compiler)
only: hidden from the programmer (abstraction!)

cf. abstract data types

What is a datum?
N = {0, 1, 2 . . .}
N = {I , II , III , IV ,V . . .}
Int = 000000000,
00000001,

How can I use a datum?
How do I get me (new)
values?
How do I (safely) compute
with them?
E.g. +,−, . . . on N

21 / 112

Type systems

important part of the “static analysis phase” of a compiler
static vs. dynamic
decidable typing (when statically typed)
“Strong” typing

Milner’s dictum
“ well-typed programs cannot go wrong ”.a

aThat phrase corresponds to “safe” typing or type safety, not “strong” typing.

balancing flexibility, safety, notational overhead, etc
polymorphism

22 / 112

How to implement an interface with an object?

interfaces contain methods (but not fields)

At the end of the day: What’s an “object” anyhow?
data + control + identity

And how to get one, implementing an interface?

Java . . .
1 Interface: given
2 name a class which

implements I
3 “fill” in data (fields)
4 fill in code (methods)
5 instantiate the class

Go
1 Interface: given
2 —
3 choose data (state)
4 bind methods
5 get yourself a data value

23 / 112

What are methods?

procedures – functions – methods
the most fundamental (control) abstraction in virtually all
prog. languages
Go: methods are “specific” functions

method ∼ function with special first argument
f (o, v) vs. o.f (v)

elsewhere often: special keyword for first argument: this (or
self)

24 / 112

Methods & functions

type Number s t r u c t { n i n t }

func add1 (x Number , y Number) i n t { re tu rn x . n + y . n}

25 / 112

Methods & functions

func (x Number) add2 (y i n t) i n t { re tu rn x . n + y}

26 / 112

Methods & functions

func (s e l f Number) add3 (y i n t) i n t { re tu rn s e l f . n + y}

27 / 112

Methods & functions

func add4 (x i n t) (func (i n t) i n t) {
re tu rn func (y i n t) (i n t) { re tu rn y+x }

}

28 / 112

Methods & functions

func main () {
x1 := 42
x2 := 1729
n1 := Number{42}
n2 := Number{n :1729}

fmt . P r i n t f (" f u n c t i o n : ␣%v\n" , add1 (n1 , n2))
fmt . P r i n t f ("method1 : ␣␣%v\n" , n1 . add2 (x2))
fmt . P r i n t f ("method2 : ␣␣%v\n" , n1 . add3 (x2))
fmt . P r i n t f ("method2 : ␣␣%v\n" , add4 (x1) (x2))
fmt . P r i n t f (" ??? ␣␣␣␣ : ␣␣%v\n" , add4 (x1))

}

29 / 112

Binding methods to a type (from bufio)

type Wr i t e r s t r u c t {
// c o n t a i n s f i l t e r e d or unexpo r t ed f i e l d s

}
type Reader s t r u c t {

// c o n t a i n s f i l t e r e d or unexpo r t ed f i e l d s
}

func (b ∗Wr i t e r) Wr i te (p [] byte) (i n t , e r r o r) { re tu rn 1 ,1 }

30 / 112

Code reuse and inheritance

different flavors
prototype-based inheritance
class inheritance

single
multiple

inheritance 6= subtyping (even if classes were types)
other forms of “reuse” or structuring code (in the OO world)

traits
mixins

often: inheritance vs. composition (aggregation)
class inheritance persistently criticised but persistent orthodox
gold-standard of code reuse
inheritance anomaly

Design patterns
“elements of reusable oo software”, or
99 sly ways to exploit inheritance and interfaces to arrange
code in fancy ways not really supported by plain inheritance

31 / 112

Embedding and aggregation (in a struct)

type Co l o r edPo i n t s t r u c t {
c o l o r . Co l o r // anonymous f i e l d (embedding)

// Co lo r : i n t e r f a c e
x , y i n t // named f i e l d (a gg r e g a t i o n)

AKA delegation elsewhere (but be careful of terminology)
anonymous field

32 / 112

Embedding (in an interface)

type I 1 i n t e r f a c e {
y i ng ()

}
type I 2 i n t e r f a c e {

yang ()
}
type I 12 i n t e r f a c e {

I 1
I 2

}
type I i n t e r f a c e {

y i ng ()
I 2 // embedd I 2

}
func f (o I) { // same f o r I 12

o . y i ng ()
o . yang ()

33 / 112

Embedding (in an interface) & duck typing

func f 12 (o I12) { // same f o r I
o . y i ng ()
o . yang ()

}

func f 1 (o I 1) { o . y i ng ()}
type O s t r u c t {} // ‘ ‘ so f a r ’ ’ empty
func (o O) y i ng () {}
func (o O) yang () {}

func main () {
o := O {} // l i t e r a l s t r u c t
o . y i ng ()
f (o) // o o f type I
f 1 (o) // I < I 1
f 12 (o) // o o f type I 12

}

34 / 112

Overloading vs. overriding, late-binding vs. dynamic
dispatch

explanation often “Java-centric”
static vs. dynamic resolution?
late-binding and dynamic dispatch: In Java etc, basically
synonymous
most OO languages (Java . . . , Go): single-dispatch
multiple-dispatch “OO” language: CLOS
dynamic dispatch vs. overloading:

partly a matter of perspective (esp. for methods):

Late binding . . .
objects “host” or
“contain” methods,
method is invoked “on an
object”
o’s run-time type (class)
“ o.m(v) ”

Overloading
method special kind of
function
method = function with
special first argument
“m(o, v) ”

35 / 112

No method overloading?

type I i n t e r f a c e {
y i ng (boo l)
y i ng (i n t) // nope

}

36 / 112

Two “functions” with the same name X (overloading)?

type c a r t e s i a nP o i n t s t r u c t {
x , y f l o a t64

}
type po l a rPo i n t s t r u c t {

r , t h e t a f l o a t64
}

func (p c a r t e s i a nP o i n t) X() f l o a t64 { re tu rn p . x }
func (p c a r t e s i a nP o i n t) Y() f l o a t64 { re tu rn p . y }
func (p p o l a rPo i n t) X() f l o a t64 {

re tu rn p . r ∗math . Cos (p . t h e t a)
}
func (p p o l a rPo i n t) Y() f l o a t64 {

re tu rn p . r ∗math . S in (p . t h e t a)
}

type Po in t i n t e r f a c e {
P r i n t e r
X() f l o a t64
Y() f l o a t64

}

37 / 112

Function with hand-made dynamic dispatch

type I P o i n t i n t e r f a c e {}
type po l a rPo i n t s t r u c t { r , t h e t a f l o a t64 }
type c a r t e s i a nP o i n t s t r u c t { x , y f l o a t64 }

func X (p IPo i n t) f l o a t64 {
switch t := p . (type) {// s p e c i a l t ype a s s e r t i o n + sw i t ch
case c a r t e s i a nP o i n t : re tu rn t . x
case po l a rPo i n t : re tu rn t . r ∗math . Cos (t . t h e t a)
de f au l t : re tu rn 1
}

38 / 112

Embedding and duck typing, what’s the big deal?

So far
embedding in interfaces: “short hand notation”
embedding in structs: “anonymous fields”

Go’s take on code reuse
Composition/aggregation + combination of the mentioned
concepts:

interface type embedding
struct type embedding (anon. fields)
dynamically dispatched methods

39 / 112

Interfaces from package io

type Reader i n t e r f a c e {
Read (p [] byte) (n i n t , e r r e r r o r)

}

type Wr i t e r i n t e r f a c e {
Wri te (p [] byte) (n i n t , e r r e r r o r)

}

type ReadWrite r i n t e r f a c e {
Reader
Wr i t e r

}

cf. earlier: structs Reader and Writer from bufio

40 / 112

ReadWriter struct with explicit fields

type Wr i t e r s t r u c t {
// c o n t a i n s f i l t e r e d or unexpo r t ed f i e l d s

}
type Reader s t r u c t {

// c o n t a i n s f i l t e r e d or unexpo r t ed f i e l d s
}

func (b ∗Wr i t e r) Wr i te (p [] byte) (i n t , e r r o r) { re tu rn 1 ,1 }
func (b ∗Reader) Read (p [] byte) (i n t , e r r o r) { re tu rn 1 ,1 }

type ReadWrite r s t r u c t {
r e a d e r ∗Reader
w r i t e r ∗Wr i t e r

}

41 / 112

How to call Read on a ReadWriter

subtype polymorphism and subsumption
In principle:

static duck typing
a record of type Writer implements interface io.Writer

= “supports” method Write

analogous for Reader, interface io.Reader and method Read

record of type ReadWriter supports both methods indirectly

42 / 112

“Solution” (?): boilerplate wrapper code

}

func (rw ∗ReadWrite r) Read (p [] byte) (n i n t , e r r e r r o r) {
re tu rn rw . r e a d e r . Read (p)

}

func (rw ∗ReadWrite r) Wr i te (p [] byte) (n i n t , e r r e r r o r) {
re tu rn rw . w r i t e r . Wr i te (p)

}

Hurrah, ReadWriter-structs implement io.ReadWriter

43 / 112

ReadWriter

io

Interface
ReadWriter

Interface
Reader {Read}

Interface
Writer {Write}

embedembed

44 / 112

ReadWriter

bufio

Record type
+ method
ReadWriter

Record type
+ method
Reader + Read

Record type
+ method

Writer + Write

embedembed

45 / 112

ReadWriter

io

bufio

Interface
ReadWriter

Interface
Reader {Read}

Interface
Writer {Write}

embedembed

Record type
+ method
ReadWriter

Record type
+ method
Reader + Read

Record type
+ method

Writer + Write

embedembed

impl.impl.

46 / 112

ReadWriter

io

bufio

Interface
ReadWriter

Interface
Reader {Read}

Interface
Writer {Write}

embedembed

Record type
+ method
ReadWriter

Record type
+ method
Reader + Read

Record type
+ method

Writer + Write

embedembed

impl.impl.

impl.

47 / 112

Embedding

type Wr i t e r s t r u c t {
// c o n t a i n s f i l t e r e d or unexpo r t ed f i e l d s

}
type Reader s t r u c t {

// c o n t a i n s f i l t e r e d or unexpo r t ed f i e l d s
}

// ReadWri te r s t o r e s p o i n t e r s to a Reader and a Wr i t e r .
// I t implements i o . ReadWri te r .
type ReadWrite r s t r u c t {

∗Reader // ∗ bu f i o . Reader
∗Wr i t e r // ∗ bu f i o . Wr i t e r

}

func (b ∗Wr i t e r) Wr i te (p [] byte) (i n t , e r r o r) { re tu rn 1 ,1 }
func (b ∗Reader) Read (p [] byte) (i n t , e r r o r) { re tu rn 1 ,1 }

48 / 112

Control

Stack-allocated local variables

Memory layout for a program

code segment
data

static
dynamic

stack
heap

recursive procedures/functions => stack allocated, or?

50 / 112

Higher-order functions

known from functional languages
non-higher-order functions:

function takes data and returns data
what’s data? everything but not functions

languages with higher-order functions
functions as “first-class” data ⇒
functions as

arguments and
return values and
locally definable

f unc add4 (x i n t) (func (i n t) i n t) {
r e t u r n func (y i n t) (i n t) { r e t u r n y+x }

}

add4 : int→ (int→ int) = λx :int.λy :int. x + y

51 / 112

Lifetime of variables

function-local variables: “live” (traditionally) in a stack-frame
call = allocate / “push” a stack frame
return = deallocate / “pop” a stack frame

⇒ lifetime of local vars = lifetime of “function body
incarnation” (= stack frame)

52 / 112

var f = func () (func (i n t) i n t) {// i n t −> i n t
var x = 42 // l o c a l v a r i a b l e
var g = func (y i n t) i n t { // ne s t ed f u n c t i o n

re tu rn x + 1 // ‘ ‘ non− l o c a l ’ ’
}
re tu rn g // f u n c t i o n as r e t u r n v a l u e

}

53 / 112

Closure

“construct” of the run-time environment (just like
stack-frames)
heap-allocated!
needed for languages with both

full higher-order functions
static binding (lexical binding)

“classic” Lisp (and Emacs Lisp): dynamic binding, Scheme:
static (= correct) binding
all modern ho languages have closures

Closure
function + bindings for “non-local” variables

54 / 112

Imperative closures

var f = func () (func (i n t) i n t) { // un i t −> (i n t −> i n t)
var x = 40 // l o c a l v a r i a b l e
var g = func (y i n t) i n t { // ne s t ed f u n c t i o n

re tu rn x + 1
}
x = x+1 // update x
re tu rn g // f u n c t i o n as r e t u r n v a l u e

}

func main () {
var x = 0
var h = f ()
fmt . P r i n t l n (x)
var r = h (1)
fmt . P r i n t f ("␣ r ␣=␣%v" , r)

}

55 / 112

Why not simply pass the “hidden” argument officially?

λ -lifting a closure

var f = func () (func (i n t) i n t) {
var x = 40
var g = (func (x i n t) (func (i n t) i n t) {

var f r = func (y i n t) i n t {
re tu rn x + 1

}
re tu rn f r

}) (x) // o f f i c a l l y f e e d i n g i n x
x = x+1
re tu rn g

}

func main () {
var x = 0
var h = f ()
fmt . P r i n t l n (x)
var r = h (1)
fmt . P r i n t f ("␣ r ␣=␣%v" , r)

}

56 / 112

But how actually to pass it?

var f = func () (func (i n t) i n t) {
var x = 40 //
var g = (func (x ∗ i n t) (func (i n t) i n t) { // c a l l by r e f e r e n c e

re tu rn (func (y i n t) i n t {
re tu rn ∗x + 1

})
}) (&x) // f e e d i n g i n add r e s s o f x
x = x+1
re tu rn g

}

func main () {
var x = 0
var h = f ()
fmt . P r i n t l n (x)
var r = h (1)
fmt . P r i n t f ("␣ r ␣=␣%v" , r)

}

57 / 112

Call-by-reference and call-by-value

for immutable data: no difference

By-value

func (x i n t) boo l { }

By-reference

func (x ∗ i n t) boo l { }

Closures in Go
non-local variables are passed by reference

58 / 112

Non-local control flow

different constructs, like
goto
break and continue

Go frowns up using “exceptions” as programming pattern

“ exceptional ” control flow
1 defer
2 panic
3 recover

59 / 112

Deferred functions

each function/method can be called:
1 conventionally
2 deferred
3 asynchronosuly (see later)

Also in Apple’s Swift language

60 / 112

Deferred call

func main () {
de fe r fmt . P r i n t l n ("␣␣1")
fmt . P r i n t l n ("2")

}

Deferred call
A deferred call is (guaranteed to be) executed when the
surrounding function body returns
eval’d for side-effect only, returned value irrelevant
deferred calls can be nested, too

61 / 112

And if there’s more than one?

func main () {
de fe r fmt . P r i n t l n ("␣␣1")
de fe r fmt . P r i n t l n ("␣␣2")
fmt . P r i n t l n ("3")
fmt . P r i n t l n ("4")
de fe r fmt . P r i n t l n ("␣␣5")
fmt . P r i n t l n ("6")

}

Deferred calls
Deferred calls are stacked

62 / 112

Also here: closures needed

deferred call: variable can outlive surrounding scope

func main () {
var x = 0
{ var x = 7 // l o c a l , n e s t ed scope

de fe r func () {
fmt . P r i n t l n (x) // = 8

} ()
x = x+1

}
x++

}

63 / 112

Deferred functions: what’s the point?

Guaranteed1 to be executed when returning
even if the function body panics

good for clean up jobs if something unexpected throws the
planned control flow off the track = “panics”

out-of-memory
nil-pointer derefence
out-of-bound access to slices/arrays
deadlocks
. . .

clean-up jobs
close open files
close channels
. . .
if clean-up means: “fiddling with the return value”, use return
parameter in the signature

more flexible than finally-clauses
1no 100% guarantee (divergence) Also: wait for goroutines

64 / 112

Panic

cf. exceptions
“jumps out” of the normal control flow
right to the end of procedure
panics “propagate” from callee too caller

but not before deferred functions are done as well

unravel the call-stack
deferred code: can raise panic as well

65 / 112

Panic & recover

cf. thow (or raise) and catch for exceptions
recover: useful (and with any effect) in deferred code, only

panic (1337) // pas s a v a l u e to pan i c
. . . .

var x = recover . . . // r e t r i e v e v a l u e i n ca se o f pan i c

66 / 112

Concurrency

Shared var’s considered harmful

Go’s concurrency mantra
“Don’t communicate by sharing memory, share memory by
communicating!”

68 / 112

Concurrency in Go

concurrency vs. parallelism

Go concurrency
goroutines + channels

claimed to be “easy”
first-class, typed channels

69 / 112

http://golang.org/s/concurrency-is-not-parallelism

Coroutines

control-structure
“cooperating” procedures, collaborative
a sub-routine/procedure with “multiple entry points”
control passed back and forth between procedures
yield vs. return
as such: no real parallellism.
kind of oldish concept, superseded by threads, actors,
continuations . . .
multiple stacks
often implemented with continuations

70 / 112

Generator (here Python)

>>> def l e t t e r s_ g e n e r a t o r () :
c u r r e n t = ’ a ’
whi le c u r r e n t <= ’d ’ :

y i e l d c u r r e n t
c u r r e n t = chr (ord (c u r r e n t)+1)

>>> f o r l e t t e r i n l e t t e r s_ g e n e r a t o r () :
p r i n t (l e t t e r)

71 / 112

Goroutines

Go’s name for its unit of concurrency
executing function calls asynchronously

goroutine vs. threads
“green threads”
“lightweight” threads
“threads minus monitor communication”
goroutine dies when parent dies

function call

f (v)

async. function call

go f (v)

72 / 112

Channels

“named pipes”
FIFO, bounded, non-lossy communication
crucial data type with synchronization power (see later)
taking a back-seat:

locks
mutexes
monitors
semaphores. . .

channels: first-class data
channels can send (reference to) channels
can be passed around by functions
inspired by CSP (and CCS, and, actually π)

directed channels

73 / 112

Channel operations

create channels (with capacity)
close a channel2

send and receive
choice over channel communication
different from switch

synchonization statement (select {})!
no first match

typical use: select over input

s e l e c t {
case i 1 = <−c1 :

. . .
case i 2 = <−c2 :

. . .
}

“mixed” choice: possible
2don’t forget, otherwise deadlocking!

74 / 112

Channel

package main
import " fmt"

func main () {
messages := make(chan s t r i ng , 0) // d e c l a r e + i n i t i a l i z e

go func () { messages <− " p ing " }() // send
msg := <−messages // r e c e i v e
fmt . P r i n t l n (msg)

}

75 / 112

Channels for synchronizing

Semaphores by channels:

type dummy i n t e r f a c e {} // dummy type ,
type Semaphore chan dummy // type d e f i n i t i o n

func (s Semaphore) Vn (n i n t) {
f o r i :=0; i<n ; i++ {

s <− t rue // send someth ing
}

}
func (s Semaphore) Pn (n i n t) {

f o r i :=0; i<n ; i++ {
<− s // r e c e i v e

}
}

func (s Semaphore) V () {
s . Vn (1)

}
func (s Semaphore) P () {

s . Pn (1)
}

76 / 112

“Generator” with channels

package main
import (" fmt")

func l e t t e r s_g e n e r a t o r (c chan rune) {
f o r x := ’ a ’ ; x < ’ e ’ ; x++ {

c <− x // send
}
c l o s e (c) // don ’ t f o r g e t

}

func main () {
c := make (chan rune) // synch r . channe l
go l e t t e r s_g e n e r a t o r (c) // go r o u t i n e
f o r r := range c { // i t e r a t e r e c e p t i o n

fmt . P r i n t f ("%c\n" , r)
}

}

77 / 112

Select

import " fmt"

func main () {
c1 := make(chan s t r i n g)
c2 := make(chan s t r i n g)
go func () {

t ime . S l e ep (t ime . Second ∗ 1)
c1 <− "one"

}()
go func () {

t ime . S l e ep (t ime . Second ∗ 2)
c2 <− "two"

}()
f o r i := 0 ; i < 2 ; i++ {

s e l e c t {
case msg1 := <−c1 :

fmt . P r i n t l n (" r e c e i v e d " , msg1)
case msg2 := <−c2 :

fmt . P r i n t l n (" r e c e i v e d " , msg2)
}

}
}

78 / 112

Memory model

Concurrency

“Concurrency is a property of systems in which several
computations are executing simultaneously, and
potentially interacting with each other”
– (Wikipedia)

performance increase, better latency
many forms of concurrency/parallelism: multi-core,
multi-threading, multi-processors, distributed systems

80 / 112

Shared memory: a simplistic picture

shared memory

thread0 thread1

one way of “interacting” (i.e.,
communicating and
synchronizing): via shared
memory
a number of
threads/processes/goroutines. . . :
access common memory/address
space
interacting by sequence of
read/write (or load/stores etc)

however: considerably harder to get correct and efficient programs

81 / 112

Perhaps disquieting trivial example

thread_0 | thread_1
−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−

x := 1 | y := 1
p r i n t y | p r i n t x

Results?
Is the result x,y = 0,0 observable?

82 / 112

Shared memory concurrency in the real world

shared memory

thread0 thread1

simplistic memory architecture does not reflect reality
out-of-order executions:

modern systems: complex memory hierarchies, caches, buffers
. . .
compiler optimizations,

83 / 112

SMP, multi-core architecture, and NUMA

shared memory

L2

L1

CPU0

L2

L1

CPU1

L2

L1

CPU2

L2

L1

CPU3

shared memory

L2

L1

CPU0

L1

CPU1

L2

L1

CPU2

L1

CPU3

CPU0 CPU1

CPU2CPU3

Mem. Mem.

Mem.Mem.

84 / 112

Hardware optimization: Write buffers

shared memory

thread0 thread1

85 / 112

Dekker’s solution to mutex

As known, shared memory programming requires
synchronization: mutual exclusion

Dekker
simple and first known mutex algo
here (rather) simplified

i n i t i a l l y f lag_0 = f lag_1 = 0
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f l ag_0 := 1 ; | f lag_1 := 1
i f (f lag_1 = 0) | i f (f lag_0 = 0)
then | then

CRITICAL | CRITICAL

86 / 112

Compiler optimizations

many optimizations with different forms:
elimination of reads, writes, sometimes synchronization
statements
re-ordering of independent non-conflicting memory accesses
introductions of reads

examples
constant propagation
common sub-expression elimination
dead-code elimination
loop-optimizations
call-inlining
. . . and many more

87 / 112

Compilers vs. programmers

What are valid (semantics-preserving) compiler-optimations?
What is a good memory model as compromise between
programmer’s needs and chances for optimization

Programmer
want’s to
understand the
code
⇒ profits from
strong memory
models

Compiler/HW
want to optimize
code/execution
(re-ordering memory
accesses)
⇒ take advantage of
weak memory models

88 / 112

Sad facts and consequences

error-prone concurrent code, “unexpected” behavior
Dekker (and other well-know mutex algo’s) is incorrect on
modern architectures

unclear/obstruse/informal hardware specifications, compiler
optimizations may not be transparent
understanding of the memory architecture: crucial for
performance!

Need for unambiguous description of the behavior of a chosen
platform/language under shared memory concurrency =⇒ memory
models

89 / 112

Memory (consistency) model

What’s a memory model?
“A formal specification of how the memory system will appear to
the programmer, eliminating the gap between the behavior expected
by the programmer and the actual behavior supported by a system.”
– Adve, Gharachorloo

MM specifies:
How threads interact through memory.
What value a read can return.
When does a value update become visible to other threads.
What assumptions are allowed to make about memory when
writing a program or applying some program optimization.

90 / 112

The bottom line

naive programmer: unspoken assumptions/simplistic hardware
Program order: statements executed in the order
written/issued (Dekker).
atomicity: memory update is visible to everyone at the same
time

Sequential consistency (Lamport 1979)
". . . the results of any execution is the same as if the operations of
all the processors were executed in some sequential order, and the
operations of each individual processor appear in this sequence in
the order specified by its program."

91 / 112

Go’s memory model

quite conventional weak memory model
similarly defined for

Java (Java 5 JSR-133)
C/C++11/

“data-race free model”
based on the notion of “ Happens-before ”

92 / 112

There’s hope, though

Data race free model
data race free programs/executions are sequentially consistent!

Data race
A data race is the “simultaneous” access by two threads to the
same shared memory location, with at least one access a write.
a program is race free, if no execution reaches a race.

a program is race free, if no sequentially consistent execution
reaches a race.

Especially
Sequential programs behave as one would expect (phew . . .)

93 / 112

There’s hope, though

Data race free model
data race free programs/executions are sequentially consistent!

Data race
A data race is the “simultaneous” access by two threads to the
same shared memory location, with at least one access a write.

a program is race free, if no execution reaches a race.

a program is race free, if no sequentially consistent execution
reaches a race.

Especially
Sequential programs behave as one would expect (phew . . .)

94 / 112

Better synchronize properly

the weak mm is
well-defined, but
complex

make programs properly synchronized (serialized)

“If you must read the rest of this document [about Go’s
mm] to understand the behavior of your program, you are
being too clever. Don’t be clever.
– from Go’s memory model description

in other words: if there’s a race, game over.
how to synchronize properly: use “ synchronization ”

The art of concurrent programming = the art of synchronization
(and communication)

95 / 112

Shared var’s considered harmful

Go’s concurrency mantra
“Don’t communicate by sharing memory, share memory by
communicating!”

96 / 112

Order relations

synchronizing actions: channel communication, lock access (,
access to volatile variables in Java) . . .

synchronization order <sync : total order on all synchronizing
actions (in an execution)
an s-action synchronizes-with all <sync subsequent s-actions by
any thread
happens-before (<hb): transitive closure of program order and
synchronizes-with order

97 / 112

Is it clear what it means that something happens-before?

“To specify the requirements of reads and writes, we
define happens before, a partial order on the execution of
memory operations in a Go program. If event e1 happens
before event e2, then we say that e2 happens after e1.
Also, if e1 does not happen before e2 and does not
happen after e2, then we say that e1 and e2 happen
concurrently.”

“Within a single goroutine, the happens-before order is
the order expressed by the program.”

98 / 112

Let’s have another look

program order:

“Within a single goroutine, the happens-before order is
the order expressed by the program.”

x = 5
y = 2

in a run: the x-assignment “is happening” before y-assignment?

NO!!! not guaranteed!
x-assignment “ happens-before ” y-assignment (<hb)
<hb determines what may be observed

99 / 112

Let’s have another look

program order:

“Within a single goroutine, the happens-before order is
the order expressed by the program.”

x = 5
y = 2

in a run: the x-assignment “is happening” before y-assignment?
NO!!! not guaranteed!
x-assignment “ happens-before ” y-assignment (<hb)
<hb determines what may be observed

100 / 112

The spec again

Observability
A read r of a variable v observes a write w to v if both of
the following hold:

r does not happen before w.
There is no other write w’ to v that happens after w
but before r.

Observability: the real deal
A read r of a variable v is allowed to observe a write w to
v if both of the following hold:

r does not happen before w.
There is no other write w’ to v that happens after w
but before r.

101 / 112

The spec again

Observability
A read r of a variable v observes a write w to v if both of
the following hold:

r does not happen before w.
There is no other write w’ to v that happens after w
but before r.

Observability: the real deal
A read r of a variable v is allowed to observe a write w to
v if both of the following hold:

r does not happen before w.
There is no other write w’ to v that happens after w
but before r.

102 / 112

Happens before for send and receive

x := 1 | y := 2
c ! () | c ? ()
p r i n t y | p r i n t x

which read is guaranteed / may happen?

103 / 112

Message passing and happens-before

Send before receive
“A send on a channel happens before the corresponding receive
from that channel completes.”

Receives before send
“The kth receive on a channel with capacity C happens before the
k + C th send from that channel completes.”

Receives before send, unbuffered
A receive from an unbuffered channel happens before the send on
that

104 / 112

Message passing and happens-before

Send before receive
“A send on a channel happens before the corresponding receive
from that channel completes.”

Receives before send
“The kth receive on a channel with capacity C happens before the
k + C th send from that channel completes.”

Receives before send, unbuffered
A receive from an unbuffered channel happens before the send on
that

105 / 112

Happens-before for send and receive

x := 1 | y :=2
c ! () | c ? ()
p r i n t (y) | p r i n t x

sender receiver

hb
hb

106 / 112

Go memory model

catch-fire / out-of-thin-air (6= Java)
standard: DRF programs are SC
Concrete implementations:

more specific
platform dependent
difficult to “test”

[m s t e f f e n@ r i j k a a r d wmm] go run r e o r d e r . go
1 r e o r d e r s d e t e c t e d a f t e r 329 i n t e r a t i o n s
2 r e o r d e r s d e t e c t e d a f t e r 694 i n t e r a t i o n s
3 r e o r d e r s d e t e c t e d a f t e r 911 i n t e r a t i o n s
4 r e o r d e r s d e t e c t e d a f t e r 9333 i n t e r a t i o n s
5 r e o r d e r s d e t e c t e d a f t e r 9788 i n t e r a t i o n s
6 r e o r d e r s d e t e c t e d a f t e r 9951 i n t e r a t i o n s

107 / 112

Synchonizing in Go specifically

1 firing off a goroutine
go f a <hb f a starts executing

2 Channel communication
channel send <hb corresponding channel receive
closing a channel <hb receiving the info that it’s closed
unbuffered/sync. channel: receive <hb send completes
a corresponding generalizatiom for of a k-sized channel

3 further conditions for other constructs with synchronizing
power

locks,
once

108 / 112

Conclusion

Things I left out

packaging
range of mundane data structures
overview over the library
go “tools”

110 / 112

Go criticism

underwhelming type system
kindergarden type inference
overloading, inflexibility
exceptions, nil
no generics!
pattern matching
oo-bias
trivial (and “implicit”) way of regulating visibility & export on
package level

111 / 112

Should I stay or should I Go?

112 / 112

	Introduction
	OO structuring & type system
	Control
	Concurrency
	Memory model
	Conclusion

