1a

public class MyStack<T> ({ class Person ({
int maxSize: public String name;

Object[] stackArray; public Person(String name) { this.name = name; }
int top = -1; /* some more content here */

}

public MyStack(int maxSize) {
this.maxSize = maxSize; class Student extends Person ({

stackArray = new Object[maxSize]; public Student (String name) { super (name); }
} /* some more content here */

}

public void push (T element) { . . .
stackArray[++top] = element; Suppose now that the stack is used like this:

// HERE, see text below class Program ({

public static void main(String[] args) {
MyStack<Student> s = new MyStack<Student>(10);
s.push (new Student ("Volker")):;

} .
™ u 11 || w | ll(i [] LA n ;
public boolean 1sEmpty () { \ s.push (new 3 ent ("Eyvind"))

return top < 0)

}
public T pop() ({
return (T) stackArray[top—--];

}
}

Draw the runtime stack with activation blocks and objects (including static and dynamic links,
using this for static links to objects, and local variables), at the point when the call to s.push (new

Student ("Eyvind")) has just been made, and the execution is at the point labeled “// HERE” 1n the

code. You may assume that arrays are implemented as objects with an appropriate number of slots
for their elements.

1 public class MyStack<T> {
d int maxSize;
Object[] stackArray;
int top = -1;

public MyStack(int maxSize)
this.maxSize = maxSize;
stackArray = new Object[maxSize];

}

public vold push (T element) ({
stackArray[++top] = element;
// HERE, see text below

}

public T pop() ({
return (T) stackArray[top——];

}

public boolean 1sEmpty () {
return top < 0

}
}

Suppose now that the stack 1s used like this:

class Program {

public static void main(String[] args) {
MyStack<Student> s = new MyStack<Student>(10);

s.push (new Student ("Volker"));
s.push (new Student ("Eyvind"));

class Person {
public String name;
public Person(String name) { this.name = name; }
/* some more content here */

}

class Student extends Person ({
public Student (String name) { super (name); }
/* some more content here */

activation blocks objects
to runtime to ste}tic_ "
main wrapRer - Prograthoblect My Stack<Student>
control link | maxsize
access link -f/' stackArray ™
S — top
*
Object|(]
push - —
control link
. <Student \
ACLESS N name Volker\
element —_
\StUdent. 1
name | Eyvind

(viser ikke arv)

10

Consider now the following program fragment, which uses the stack implementation from 1a:

MyStack<Object> myStack = new MyStack<Object>(10);
myStack.push ("Hello INF3110!'"™);

myStack.push (new Object());

myStack.push (123);

Does this program fragment work (1.e., does 1t compile and run without any errors, provided it 1s
wrapped 1n a suitable method and class declaration)? If yes, explain briefly how and why 1t works.
If not, explain briefly what 1s wrong with it.

Ja, det virker. myStack.push tar imot objekter som er Object
(eller arver fra Object).

- ... er String, som arver fra Object
- new Object() er Object
- 123 er int, som autoboxes til Integer, som arver fra Object

1C

Suppose now that we replace the first line of the program fragment from 1b with the following
code:

MyStack<Object> myStack = new MyStack<String>(10);

Explain how the fragment now differs from the one in 1b. Will the compiler react differently to it?
If 1t compiles correctly, will the runtime behavior of the fragment be different?

MyStack<Object> og MyStack<String> er ikke kompatible
typer, selv om Object er en superklasse av String. Koden vil ikke

lenger kompillere.

1d Returning now to persons and students, assume that we want to write a method that can process
stacks of persons and stacks of students, e.g. like this:
public static < .. > vold processPersons(... persons) {

while (!persons.isEmpty()) {
System.out.println (persons.pop () .name) ;

}
}

Replace the ellipses (...) two places in the method signature above with the appropriate generic
declarations to make the following calls to processPersons work:

MyStack<Person> persons = // some initialization code here,
MyStack<Student> students = // you do not need to provide this code

processPersons (persons); // this call and the next should work
processPersons (students) ;

public static <T extends Person> void processPersons(MyStack<T> persons) {

1e

Java 8 allows the usage of anonymous functions (or “lambdas”). For instance, we could define
processPersons to have an argument that 1s a predicate filtering which person’s name to print:

public static void processPersons (Stack<Person> persons,

Predicate<Person> predicate) {
while (!persons.isEmpty()) {

Person person = persons.pop():
if (predicate.test (person))
System.out.println (person.name); // HERE

Predicate<T>, as used in the method above, 1s a built-in interface in Java 8 that has a Boolean
method test that can be implemented by an anonymous function. Thus, the processPersons
method could now be called for instance like the following, to only print “volker™:

public static void main(String[] args) {
MyStack<Person> persons new MyStack<Person> (10);

persons.push (new Student ("Volker"));
persons.push (new Student ("Eyvind"));
String filter = "V";

Predicate<Person> predicate = p -> p.name.startsWith(filter);
processPersons (person, predicate);

Draw the call stack as it 1s 1n the call to processPersons when the execution has reached the point
marked “// HERE” 1n the code above.

1e

activation blocks

to runtime o
main Wrap%er to static "object
control link | / closures
access link —
persons ape
filter 0 cade
predicate —
r
proceSSPersons to static "object’
control link /
access link ~ —
DErsons)
poredicate —
person

—

objects

MyStack<Student>

maxSize

stackArray ™

top
Object|]

Student \

name Volker\

Student. l

name | Eyvind

(viser ikke arv)

2a

Evaluate the following ML expressions:
5 P [3, 3, 4, 1]
a) (fn (x,y) => (x+1)::(y@[1])) (2,[3,4]);

b) List.filter (fn x => x > 3) (map (fn x => x+2) [4,1,5,2]);
where List.filter = fn : ('a -> bool) -> 'a list -> 'a list preserves only
list elements that satisfy the predicate.

(6, 7, 4]

20

Assume the standard definition of fo1d1:

fun foldl (f: 'a*'b->'b) (acc: 'b) (1l: 'a list): 'b
case 1 of
[] => acc

| X::xs => foldl £ (f(x,acc)) xs
With the help of fo1d1, define the function

val last = fn : 'a list -> 'a option

which returns NONE for the empty list, or the last element of the list wrapped in soME.

fun last 1ls = foldl (fn (x, y) => SOME x) NONE 1s;

Det jeg selv skrev | fjor (funker ikke 1 SML):
val last = foldl (fn (x, _) => SOME x) NONE;

2C

In ML, we can define a lookup table as a function from keys to values, using ML’s option
datatype. NONE indicates that no element with that key could be found, and soMe will be used in the
case of reporting an existing entry in the table:

type ('k , 'v) table = 'k -> 'v option;

1) Define the constant value for the empty table, that is, the table, which will return NONE for
any key!

val emptyT : (‘'k,’v) table =

val emptyT : ('k, 'v) table = (fn _ => NONE);

2C In ML, we can define a lookup table as a function from keys to values, using ML’s option
datatype. NONE indicates that no element with that key could be found, and soMe will be used in the
case of reporting an existing entry in the table:

2) Define the function

val addT = fn : ((‘'k, 'v) table) -> ('k * 'v) -> ((‘'k,’"v) table)

which takes as first argument a table t, as second argument a key/value pair (k,v), and
returns a new table modeled as a function that, when asked for the key k that was just
added, returns the value v, or looks for the key in table t otherwise!

[Note that for technical reasons related to polymorphic use of the equality-test, which you
should use to compare keys, 1f you were to try this out in the interpreter, it is not possible to

manually annotate the above type on the function. Type inference will still find the correct

type, though of course not use the type synonym declared above:
val addT = fn : ('a -> 'b option) -> ('a * 'b) -> 'a -> 'b option

However, this does not affect your solution.]

fun addT t (k,v) = fun addT t (k, v) =
fn key => 1f k = key
then SOME v
else t key;

20

We define our own datatype to represent directed graphs as a sequence of vertices (edges) between
nodes with the following declaration:

datatype 'a graph = Empty

| Vertex of

For example, the expression

Vertex ("a",
Vertex
Vertex ("b", "d4d",

represents the following graph:

\

N a
> B

v, .
) 4 y
- D

/ o

"b"
’

("a", "C",

('a * '"a * 'a graph);

Vertex ("d", "c", Empty))))

Write the function
val path =

fn :

'a -=> 'a -> 'a graph -> bool

which returns true given two nodes x, y and a graph g, if x = vy, or if there exists a path from x to y
in g. You may assume that all graphs are acyclic (that is, they do not contain cycles).

fun path x y g =

1f X =y
then true

else case g of Empty => false

| Vertex (f, t, rest) =>

(x = f andalso y = t)
orelse (path x y rest)

orelse (x

f andalso (path t y rest));

o= Calculate the type for the following expression according to the ML type inference algorithm:
fn x => split ([] :: X).

Assume val split = fn : 'a list -> 'a * 'a list as given, and the annotated types in the
parse graph. Use the provided type variables. Derive the corresponding equations for the parse
graph, and solve the resulting equation system to obtain the type of the root node R.

R=X— A
QB vlist = (v, ylist) =B = A
C=X—-B

e @ a—alist—=>alist=BIlist = C
— C=alist = alist
Cus o> (@) 5 _ st

B =alist =y list
(o

A = (y, Vv list) = (a, alist)
R =alist = (q, alist)

a = p st
C' D @ R =B list list = (B list, B list list)

R=a'listlist = (a'list * a' list list)

3a

Give PROLOG’s answer (that 1s, the substitutions for all variables in a query, if the terms can be
unified) for each of the queries below, or simply write “no” 1f no solution exists.

1. [(XI[a,b]] = [Y¥,a,B]. >B(- E
= X = g(0)
2. £(g(0),X) = £(X,g(Y)). Y = 0
3. z(k(0),X) = z(k(X),s(0)). nO
4. c(X,Y) =c(z,z2). Y =X

30

Given the following persons that each have a name, a mother, a father and a birthday,
person (a,b, c,d) denotes a person with name a, mother b, father ¢, and year of birth 4.

For example:

person (anne, sofia, martin, 1960).

(
person (john, sofia, george, 1965).
person (paul, sofia, martin, 1962).
person (maria, anne, mike, 1989).

1. Define a predicate parents (x, y), that 1s true 1f x and y have a child together.
2. Define a predicate itscomplicated (x), that is true if x has children with more than one

partner.

parents(X, Y) :— person(_, X, Y, _).
parents(X ,Y) :— person(_, Y, X, _).

itscomplicated(X) :- parents(X, Y),
parents(X, Z),
Y /== /.

3C We define a data structure for trees that store values in their nodes in the following way:

empty denotes the empty tree. node (L, V,R) denotes a tree with value v in the node, and left and
right sub-trees L, R.

1. Define a predicate depth (T, N) that 1s true if the tree T has depth n. The empty tree has
depth 0, and a node has depth 1+mM, where M 1s the maximum of the depths of the two

subtrees.

max(A, B, A)
max(A, B, B)

depth(empty, 0).

depth(node(L, ,R), N) :- depth(L, X),
depth(R, Y),
max(X, Y, M),
N 1s M + 1.

3C We define a data structure for trees that store values in their nodes in the following way:

empty denotes the empty tree. node (L, V,R) denotes a tree with value v in the node, and left and
right sub-trees L, R.

2. Define a predicate heap (H, N), that 1s true if the tree # has the shape of a heap with depth n:
e The empty tree 1s a heap with depth 0.
e A node node(L,V,R) 1s a heap, if
e 1 and R are heaps, and
e 1f . and/or R are not empty, then the values at their top are less than or equal to v,
and
e If 1 has depthp,thenrhasdepthporp - 1
e The depth v is defined as the maximum depth of the two branches + 1.

Note that through adequate use of the second argument of heap you do not actually have to use the
predicate defined in part 1)!

We define a data structure for trees that store values in their nodes in the following way:

3C empty denotes the empty tree. node (L, V,R) denotes a tree with value v in the node, and left and
right sub-trees L, R. 2. Define a predicate heap (H, N), that is true if the tree 5 has the shape of a heap with depth n:
e The empty tree 1s a heap with depth 0.
e A node node(L,V,R) is a heap, if
e 1 and R are heaps, and
e 1f . and/or r are not empty, then the values at their top are less than or equal to v,
and
e If 1 has depth D, thenr hasdepthporp - 1
hea D (em p-t Y, 0). e The depth v is defined as the maximum depth of the two branches + 1.

heap(node(empty, _, empty), 1).
heap(node(node(LL,LV,LR), V, empty), 2) :-
heap(node(LL,LV,LR), 1),
LV =< V.
heap(node(node(LL, LV, LR), V, node(RL,RV,RR)), N) :-
heap(node(LL, LV, LR), LD),
heap(node(RL, RV, RR), RD),

LV =<V,

RV =<V,

DD is LD - RD,

(DD =:= 0 ; DD =:= 1),
N 1s LD + 1.

