
IN
F 3110 -2016

The Algol family and ML

Volker Stolz
stolz@ifi.uio.no

Department of Informatics – University of Oslo

Initially by Gerardo Schneider.
Based on John C. Mitchell’s slides (Stanford U.)

IN
F 3110 -2016

INF3110 – ML 1 2

ML lectures

◆ 16.09: The Algol Family and ML
(Mitchell’s chap. 5)

◆ 23.09: More on ML & Types (chap. 5 and 6)
◆ 21.10: More on Types, Type Inference and

Polymorphism (chap. 6)
◆ 28.10: Control in sequential languages, Exceptions

and Continuations (chap. 8)
◆ Prolog I / Prolog ||

IN
F 3110 -2016

09.09.2015 INF3110 – ML 1 3

Outline

◆Brief overview of Algol-like programming languages
(Mitchell, Chapter 5)
• Algol 60
• Algol 68
• Pascal
• Modula
• C

◆Basic ML (Mitchell’s Chapter 5 + more)

IN
F 3110 -2016

INF3110 – ML 1 4

A (partial) Language Sequence

Algol 60

Algol 68

Pascal

ML Modula

Lisp (McCarthy, MIT)
late 50s

Many other languages in the “family”:
Algol 58, Algol W, Euclid, Ada, Simula 67, BCPL,
Modula-2, Oberon, Modula-3 (DEC), Delphi, …

Simula

IN
F 3110 -2016

INF3110 – ML 1 5

Algol 60
◆ Designed: 1958-1963 (J. Backus, J. McCarthy, A. Perlis,…)
◆ General purpose language. Features:

• Simple imperative language + functions
• Successful syntax, used by many successors

– Statement oriented
– begin … end blocks (like C { … }) (local variables)
– if … then … else

• BNF (Backus Normal Form)
– Became the standard for describing syntax

• ALGOL became a standard language to describe algorithms.
• Recursive functions and stack storage allocation
• Fewer ad hoc restrictions than Fortran

– General array references: A[x + B[3]*y]
– Parameters in procedure calls

• Primitive static type system

IN
F 3110 -2016

INF3110 – ML 1 6

Algol 60 Sample

real procedure average(A,n);
real array A; integer n;
begin

real sum; sum := 0;
for i = 1 step 1 until n do

sum := sum + A[i];
average := sum/n

end;
no “;” here

no array bounds

set procedure return value by assignment

IN
F 3110 -2016

INF3110 – ML 1 7

Some trouble spots in Algol 60

◆ Shortcoming of its type discipline
• Type “array” as a procedure parameter

– no array bounds
• “procedure” can be a parameter type

– no argument or return types for procedure parameter

◆ Parameter passing methods
• Pass-by-name had various anomalies (side effects)
• Pass-by-value expensive for arrays

◆ Some awkward control issues
• goto out of a block requires memory management

IN
F 3110 -2016

INF3110 – ML 1 8

Algol 60 Pass-by-name

◆ Substitute text of actual parameter (copy rule)
• Unpredictable with side effects!

◆ Example
procedure inc2(i, j);

integer i, j;
begin

i := i+1;
j := j+1

end;
inc2 (k, A[k]);

begin
k := k+1;
A[k] := A[k] +1

end;

Is this what you expected?

IN
F 3110 -2016

INF3110 – ML 1 9

Algol 68
◆ Intended to improve Algol 60

• Systematic, regular type system
◆ Parameter passing

• Eliminated pass-by-name (introduced pass-by-reference)
• Pass-by-value and pass-by-reference using pointers

◆ Storage management
• Local storage on stack
• Heap storage, explicit alloc and garbage collection

◆ Considered difficult to understand
• New terminology

– types were called “modes”
– arrays were called “multiple values”

• Elaborate type system (e.g. array of pointers to procedures)
• Complicated type conversions

IN
F 3110 -2016

INF3110 – ML 1 10

◆Designed by N. Wirth (70s)
◆ Evolved from Algol W
◆Revised type system of Algol

• Good data-structuring concepts (based on C.A.R. Hoare’s ideas)
– records, variants (union type), subranges (e.g. [1…10])

• More restrictive than Algol 60/68
– Procedure parameters cannot have procedure parameters

◆ Popular teaching language (over 20 years! Till the 90s)
◆ Simple one-pass compiler

Pascal

IN
F 3110 -2016

INF3110 – ML 1 11

Procedure parameters in Pascal

◆Allowed
procedure Proc1(i,j: integer);

procedure Proc2(procedure P(i:integer); i,j: integer);

◆Not allowed
procedure NotA(procedure Proc3(procedure P(i:integer)));

IN
F 3110 -2016

INF3110 – ML 1 12

Limitations of Pascal

◆Array bounds part of type
procedure p(a : array [1..10] of integer)
procedure p(n: integer, a : array [1..n] of integer)

illegal

• Practical drawbacks:
– Types cannot contain variables
– How to write a generic sort procedure?

• Only for arrays of some fixed length
How could this have happened? Emphasis on teaching

◆Not successful for “industrial-strength” projects

IN
F 3110 -2016

INF3110 – ML 1 13

Modula

◆Designed by N. Wirth (late 70s)
◆Descendent of Pascal
◆Main innovation over Pascal: Module system

• Modules allow certain declarations to be grouped together
– Definition module: interface
– Implementation module: implementation

◆Modules in Modula provides minimal
information hiding

IN
F 3110 -2016

INF3110 – ML 1 14

C Programming Language
◆ Designed for writing Unix by Dennis Ritchie✝2011

◆ Evolved from B, which was based on BCPL
• B was an untyped language; C adds some checking

◆ Relation between arrays and pointers
• An array is treated as a pointer to first element
• E1[E2] is equivalent to pointer dereference *((E1)+(E2))
• Pointer arithmetic is not common in other languages

◆ Popular language
• Memory model close to the underlying hardware
• Many programmers like C flexibility (?!)
• However weak type checking can just as well be seen as a

disadvantage.

IN
F 3110 -2016

INF3110 – ML 1 15

ML

◆ A function-oriented imperative language (or a mostly
functional language with imperative features)

◆ Typed programming language. Clean and expressive type
system.

◆ Sound type system (type checking), but not unpleasantly
restrictive.

◆ Intended for interactive use ... (but not only...)
◆ Combination of Lisp and Algol-like features

• Expression-oriented, Higher-order functions, Garbage collection,
Abstract data types, Module system, Exceptions

◆ General purpose non-C-like, not OO language

IN
F 3110 -2016

INF3110 – ML 1 16

Why study ML ?

◆ Learn to think and solve problems in new ways
◆All programming languages have a functional “part”

- useful to know
◆Verifiable programming: Easier to reason about a

functional language, and to prove properties of
programs

◆More compact (simple?) code
◆Higher order functions
◆Certain aspects are easier to understand and

program (e.g. recursion)

IN
F 3110 -2016

INF3110 – ML 1 17

Why study ML ?

◆ Learn a different PL
◆Discuss general PL issues

• Types and type checking (Mitchell’s chapter 6)
– General issues in static/dynamic typing
– Type inference
– Polymorphism and Generic Programming

• Memory management (Mitchell’s chapter 7)
– Static scope and block structure
– Function activation records, higher-order functions

• Control (Mitchell’s chapter 8)
– Exceptions
– Tail recursion and continuations
– Force and delay

IN
F 3110 -2016

INF3110 – ML 1 18

Origin of ML
◆Designed by R. Milner✝2010 (70s and 80s)
◆ Logic for Computable Functions (LCF project)

• Based on Dana Scott’s ideas (1969)
– Formulate logic to prove properties of typed func. prog.
– Simply typed (polymorphic) lambda calculus.

• Milner's goals
– Project to automate logic
– Notation for programs
– Notation for assertions and proofs
– Write programs that find proofs

• Too much work to construct full formal proof by hand
– Make sure proofs are correct

• Meta-Language of the LCF system

IN
F 3110 -2016

INF3110 – ML 1 19

LCF proof search

◆ Proof tactic: function that tries to find a proof

succeed and return proof
tactic(formula) = search forever

fail

◆ Express tactics in the Meta-Language (ML)
◆Use a type system to distinguish successful from

unsuccessful proofs and to facilitate correctness

IN
F 3110 -2016

INF3110 – ML 1 20

Tactics in ML type system

◆Tactic has a functional type
tactic : formula ® proof

◆What if the formula is not correct and there is no
proof?

Type system must allow “failure”

succeed and return proof
tactic(formula) = search forever

fail and raise exception

◆ First type-safe exception mechanism!

IN
F 3110 -2016

INF3110 – ML 1 21

Function types in ML
f : A ® B means

for every x Î A,

some element y=f(x) Î B
f(x) = run forever

terminate by raising an exception

IN
F 3110 -2016

INF3110 – ML 1 22

Later development of ML
◆ Developed into different dialects

◆ Standard ML 1983, SML 1997

◆ CML: Concurrent ML (USA)

◆ Caml: Concurrent ML (INRIA, France)

◆ OCAML (Objective Caml -INRIA): ML extended with OO
and a module system

• First language that combines full power of OOP with ML-style static
typing and type inference

• Advanced OO programming idioms: type-parametric classes, binary
methods, mytype specialization) in a statically type-safe way
(see http://caml.inria.fr/about/history.en.html)

IN
F 3110 -2016

INF3110 – ML 1 23

SML
◆ http://www.smlnj.org
◆ In the practical part of the course we will use Standard ML

of New Jersey (SML/NJ, v110.67)
• From the prompt: sml
stolz ~ $ sml
Standard ML of New Jersey v110.76 [built: Tue Oct 29 11:16:33 2013]
-

• See Pucella 1.6. ”Getting started”
• Note: to read in a file with sml code

– use ”filename.sml”;

IN
F 3110 -2016

INF3110 – ML 1 24

Core ML

◆Basic Types
• Unit (unit)
• Booleans (bool)
• Integers (int)
• Strings (string)
• Characters (char)
• Reals (real)
• Tuples
• Lists
• Records

◆ Patterns
◆Declarations
◆ Functions
◆Type declarations
◆Reference Cells
◆ Polymorphism
◆Overloading
◆ Exceptions

IN
F 3110 -2016

INF3110 – ML 1 25

Basic Overview of ML

◆ SML has an Interactive compiler: read-eval-print
• Expressions are type checked, compiled and executed
• Compiler infers type before compiling or executing

◆ Examples
- (5+3)-2;
> val it = 6 : int “it” is an id bound to the value of last exp
- if 5>3 then “Big” else “Small”;
> val it = “Big” : string
- val greeting = “Hello”;
> val greeting = "Hello" : string

IN
F 3110 -2016

INF3110 – ML 1 26

Overview by Type
◆ Booleans

• true, false : bool
• if … then … else … types must match; “else” is mandatory

◆ Integers
• 0, 1, 2, … -1, -2, … : int .
• +, -, * , div … : int * int ® int .
• =,<,<=,>,<= : int * int -> bool .
• (op >) turns the infix operator > into a function: 1 < 5 but (op <)(1,5)

◆ Strings
• “Universitetet i Oslo” : string
• “Universitetet” ^ “ i ” ^ “Oslo”

◆ Char
• #”a”

◆ Reals
• 1.0, 2.2, 3.14159, … decimal point used to disambiguate
• No ‘=‘ operator for reals 1.0 = 1.0 à Error
• Cannot combine reals and ints, no coercion. 1.0 + 2 à Error

IN
F 3110 -2016

INF3110 – ML 1 27

Compound Types
◆ Unit

• () : unit similar to void in C
◆ Tuples

– (1 , 2) : int * int ;
– (4, 5, “ha det!”) : int * int * string;
– #3(4, 5, “ha det!”)

> val it = "ha det" : string
◆ Records

– Are tuples with labeled fields:
– {name=“Jones”, age=34}: {name: string, age: int};
– #name({name=“Jones”, age=34}); > val it = “Jones” : string
– Order does not matter:

{name="Jones", age=34} = {age=34, name="Jones"}; à true
(“Jones”,34) = (34,”Jones”) à Error.

◆ Lists
– nil;
– 1 :: nil ;
– 1::(2::(3::(4::nil)))
– 1 :: [2, 3, 4]; infix cons notation

> val it = [1,2,3,4] : int list
– [1,2] @ [3,4] append

> val it = [1,2,3,4] : int list

IN
F 3110 -2016

INF3110 – ML 1 28

Value declarations and patterns
◆ val keyword, type annotations

- val mypi = 3.1415; > val mypi = 3.1415 : real
- val name : string = “Gerardo”; > val name = “Gerardo" : string

◆ Patterns can be used in place of identifiers (more later)
<pat> ::= <id> | <tuple> | <cons> | <record>| <constr>

◆ Value declarations
• General form : val <pat> = <exp>
• Examples:

- val myTuple = (“Carlos”, “Johan”);
- val (x,y) = myTuple;
- val myList = [1, 2, 3, 4];
- val x::rest = myList;

• Local declarations
let val x = 2+3 in x*4 end;
> val it = 20 : int

IN
F 3110 -2016

INF3110 – ML 1 29

Functions and Pattern Matching
◆ Function declaration

• Functions are as other values:
- (5*6) ;
> val it = 30 : int
- fn x => x * 2 ; “anonymous function”, in lambda notation lx . (x * 2)
> val it = fn : int -> int
- val dbl = fn x => x * 2 ; > val dbl = fn : int -> int

• But we have a special syntax for defining functions:
- fun dbl x = x * 2 ; > val dbl = fn : int -> int

◆ Function declaration, general form
• fun f (<pattern>) = <expr>

- fun f (x,y) = x+y; Actual par. must match pattern (x,y)
• fn <pattern> => <expr>

- fn (x,y) => x+y; Anonymous function
◆ Multiple-clause definition

• fun <name> <pat1> = <exp1> | …
| <name> <patn> = <expn>

- fun length (nil) = 0
| length (x::s) = 1 + length(s);

> val length = fn ´a list -> int
- length [“J”, ”o”, “n”] > val it = 3 : int

IN
F 3110 -2016

INF3110 – ML 1 30

Some functions on lists

◆ Insert an element in an ordered list
fun insert (e, nil) = [e]
| insert (e, x::xs) = if e>x then x :: insert(e,xs)

else e::(x::xs);
- insert (3,[1,2,5]) ;
> val it = [1,2,3,5] : int list

◆Append lists
fun append(nil, ys) = ys
| append(x::xs, ys) = x :: append(xs, ys);
- append ([3,4],[1,2]) ;
>val it = [3,4,1,2] : int list

IN
F 3110 -2016

INF3110 – ML 1 31

Data-type declarations
◆ Enumeration types

- datatype color = Red | Yellow | Blue;
– elements are: Red, Yellow, Blue <- Constructors!

◆ Tagged union types
- datatype value = I of int | R of real | S of string;

– elements are: I(9) , R(8.3) , S(“hello”) ...
- datatype keyval = StrVal of string * string | IntVal of string * int ;

– elements are: StrVal(“foo”,”bar”) , IntVal(“foo”,55) ...
- datatype mylist = Nil | Cons of value * mylist

– elements are: Nil , Cons (I(8) ,Nil) , Cons (R(1.0), Cons (I (8), Nil))
◆ General form

datatype <name> = <clause> | … | <clause>
<clause> ::= <constructor> | <constructor> of <type>

IN
F 3110 -2016

INF3110 – ML 1 32

Type abbreviations
◆ We use datatype to define new types

◆ The keyword type can be used to define a type
abbreviation:

- type int_pair = int * int ;

• The type inference will not report types as the defined abbrev.:
- val a = (3,5);
> val a = (3,5) : int * int

• We can force the use of type abbreviation:
- val a : int_pair = (3,5);
> val a = (3,5) : int_pair

IN
F 3110 -2016

INF3110 – ML 1 33

Datatype and pattern matching

◆Recursively defined data structure
- datatype tree = Leaf of int | Node of int*tree*tree;

Node(4, Node(3,Leaf(1), Leaf(2)),
Node(5,Leaf(6), Leaf(7))

)

◆Recursive function (sum)
- fun sum (Leaf n) = n

| sum (Node(n,t1,t2)) = n + sum(t1) + sum(t2);

4

5

76

3

21

IN
F 3110 -2016

INF3110 – ML 1 34

Case expression
◆ Datatype

- datatype exp = Num of int | Var of var | Plus of exp*exp;
◆ Case expression

case e of Num(i) => … |
Var(v) => …. |
Plus(e1,e2) => …

- fun eval(e) = case e of Num(i) => i
| Var(v) => lookUp(v)
| Plus(e1,e2) => eval(e1) + eval(e2)

◆ Case matching is done in order

◆ Use _ to catch all missing
- fun bintoString(i) = case x of 0 => “zero”

| 1 = > “one”
| _ => “illegal value”;

> val bintoString = fn : int -> string

◆ Can also use _ in declarations if we don’t care about the value being matched
- fun hd(x::xs) = x ;
- fun hd(x::_) = x ;

IN
F 3110 -2016

INF3110 – ML 1 35

insert: Three ”different” declarations

1. fun insert (e, ls) =
case ls of nil => [e]

| x::xs => if e>x then x::insert(e, xs) else e::ls ;

2. fun insert (e, nil) = [e]
| insert (e, x::xs) = if e>x then x::insert(e, xs)

else e::(x::xs) ;

3. fun insert (e: int, ls: int list) : int list =
case ls of nil => [e]

| x::xs => if e>x then x::insert(e, xs) else e::ls ;

IN
F 3110 -2016

INF3110 – ML 1 36

ML imperative constructs

◆None of the constructs seen so far have side effects
• An expression has a value, but evaluating it does not

change the value of any other expression
◆Assignment

• Different from other programming languages:

To separate side effects from pure expressions as
much as possible

• Restricted to reference cells

IN
F 3110 -2016

INF3110 – ML 1 37

Variables and assignment

◆General terminology: L-values and R-values
• Assignment (pseudocode, not ML!) y := x+3;

– Identifier on left refers to a memory location, called L-value
– Identifier on right refers to contents, called R-value

◆Variables
• Most languages

– A variable names a storage location
– Contents of location can be read, can be changed

• ML reference cell (L-value)
– A reference cell has a different type than a value
– Explicit operations to read contents or change contents
– Separates naming (declaration of identifiers) from “variables”

IN
F 3110 -2016

INF3110 – ML 1 38

ML reference cells
◆ Different types for location and contents

x : int non-assignable integer value
y : int ref location whose contents must be integer

◆ Operations
ref x expression creating new cell containing value x
!y returns the contents (value) of location y
y := x places value x in reference cell y

◆ Examples
- val x = ref 0 ; create cell x with initial value 0
> val x = ref 0 : int ref
- x := x+3; place value of x+3 in cell x; requires x:int
> val it = () : unit (type is “unit” since it is an expression with side effects)
- x := !x + 3; add 3 to contents of x and store result in location x
> val it = () : unit
- !x; > val it = 6 : int

IN
F 3110 -2016

09.09.2015 INF3110 – ML 1 39

ML examples

◆Create cell and change contents
- val x = ref “Bob”;
- x := “Bill”;

◆Create cell and increment
- val y = ref 0;
- y := !y + 1;
- y := y + 1 Error!

◆ In summary:
- x : int not assignable (like constant in other PL)
- y : int ref assignable reference cell

BobBill
x

10
y

1
y

IN
F 3110 -2016

INF3110 – ML 1 40

Further reading
◆ Extra material on ML.
◆ See links on the course page:” Syllabus/achievement

requirements ”
• Riccardo Pucella: Notes on programming SML/NJ (Pensum/Syllabus

:Secs. 1.1-1.3, 1.6, and sec. 2.)
• In Norwegian: Bjørn Kristoffersen: Funksjonell programmering i

standard ML; kompendium 61, 1995.
• SML/NJ http://www.smlnj.org/
• Functions and types available at the top-level:

http://www.smlnj.org/doc/basis/pages/top-level-chapter.html
◆ L.C. Paulson: ML for the working programmer

IN
F 3110 -2016

INF3110 – ML 1 41

ML lectures

◆ 15.09: The Algol Family and ML
(Mitchell’s chap. 5 + more)

◆ 22.09: More on ML & Types (chap. 5 and 6)
◆ 13.10: More on Types, Type Inference and

Polymorphism (chap. 6)
◆ ??.??: Control in sequential languages, Exceptions

and Continuations (chap. 8)
◆ ??.??: Prolog I
◆ ??.??: Prolog ||

