ML lectures

4 The Algol Family and ML
(Mitchell’s chap. 5)
4 More on ML & Types (chap. 5 and 6) E
& More on Types, Type Inference and :
Polymorphism (chap. 6) >
4 Control in sequential languages,

Exceptions and Continuations (chap. 8)
¢ Prolog I/ Prolog ||

INF3110 — ML 1 1

Functions and Pattern Matching

& Function declaration
e Functions are as other values:

- (5%6);

>valit=30:int

- fnx=>x*2; “anonymous function”, in lambda notation Ax . (x * 2)
> val it =fn :int-> int

- valdbl=fnx=>x*2; > val dbl = fn : int -> int

e But we have a special syntax for defining functions:
- fundblx=x*2; >valdbl=fn:int->int
4 Function declaration, general form
e fun f (<pattern>) = <expr>
- fun f (x,y) = x+y; Actual par. must match pattern (x,y)
e fn <pattern> => <expr>
-fn (X,y) => x+y; Anonymous function
¢ Multiple-clause definition

e fun <name> <pat;> = <exp;> | ...

910C - OIT€ ANI

| <name> <pat,> = <exp,>
- funlength (nil) =0
| length (x::s) = 1 + length(s);
> val length = fn “a list -> int
- length [*J”, "0”,"n"] >valit=3:int

INF3110 — ML 2 2

Some functions on lists

¢ Insert an element in an ordered list
funinsert (e, nil) = [e]
| insert (e, x::xs) = if e>x then x :: insert(e,xs)
else e::(x::xs);
- insert (3,[1,2,5]) ;
> val it = [1,2,3,5] : int list
@ Append lists
fun append(nil, ys) = ys
| append(x::xs, ys) = X :: append(Xxs, YS);
B append ([314]1[112]) /
>val it = [3,4,1,2] : int list

INF3110 — ML 2

!
Z
> y|
W
[y
[
(=)
1
[\°)
(=]
ek
N

Data-type declarations

€ Enumeration types

- datatype color = Red | Yellow | Blue;
— elements are: Red, Yellow, Blue <- Constructors!

4 Tagged union types
- datatype value = T of int | R of real | S of string;
— elements are: 1(9) , R(8.3) , S("hello”) ...
- datatype keyval = StrVal of string * string | IntVal of string * int ;
— elements are: StrVal(“foo”,"bar”) , IntVal(“foo”,55) ...
- datatype mylist = Nil | Cons of value * mylist
— elements are: Nil , Cons (I(8) ,Nil) , Cons (R(1.0), Cons (I (8), Nil))
¢ General form
datatype <name> = <clause> | ... | <clause>
<clause> ::= <constructor> | <constructor> of <type>

910C - OIT€ ANI

INF3110 — ML 2 4

Type abbreviations

& We use datatype to define new types

¢ The keyword type can be used to define a type

abbreviation: Z
- type int_pair = int * int ; :
e The type inference will not report types as the defined

abbrev.:
-val a = (3,5);

>vala= (3,5 :int*int

e We can force the use of type abbreviation:
- val a : int_pair = (3,5);
> val a = (3,5) : int_pair

INF3110 — ML 2 5

Datatype and pattern matching

® Recursively defined data structure
- datatype tree = Leaf of int | Node of int*tree*tree;

Node(4, Node(3,Leaf(1), Leaf(2)),
Node(5,Leaf(6), Leaf(7))

)
& Recursive function (sum)

- fun sum (Leaf n) = n i ‘ ‘

| sum (Node(n,t1,t2)) = n + sum(tl) + sum(t2);

!
Z
> y|
W
[y
[
(=)
1
N
(=
ek
N

INF3110 — ML 2 6

Case expression

¢ Datatype
- datatype exp = Num of int | Var of var | Plus of exp*exp;
€ (Case expression
case e of Num(i) > ... |
Var(v) > |
Plus(el,e2) => ...
- fun eval(e) = case e of Num(i) => i
| Var(v) => lookUp(v)
| Plus(el,e2) => eval(el) + eval(e2)
4 Case matching is done in order

910C - OIT€ ANI

¢ Use _ to catch all missing
- fun bintoString(i) = case x of 0 => “zero”
| 1=>"one"
| _ =>"illegal value”;
> val bintoString = fn : int -> string

4 Can also use _ in declarations if we don't care about the value being matched
- fun hd(x::xs) = X ;
- fun hd(x::_) = x ;

INF3110 — ML 2 7

insert: Three "different” declarations

1. funinsert (g, Is) =
case Is of nil => [e]
| X::xs => if e>x then x::insert(e, xs) else
e::ls;

!
Z
> y|
W
[y
[
(=)
1
N
(=
ek
N

2. funinsert (e, nil)
| insert (e, X::Xs)

[e]
if e>x then x::insert(e, xs)
else e::(x::xs) ;

3. funinsert (e: int, Is: int list) : int list =
case Is of nil => [e]
| X::xs => if e>x then x::insert(e, xs) else

e:ls;

INF3110 — ML 2 8

Further reading

& Extra material on ML.

¢ See links on the course page:” Syllabus/achievement
requirements ”

e Riccardo Pucella: Notes on programming SML/NJ
(Pensumy/Syllabus :Secs. 1.1-1.3, 1.6, and sec. 2.)

e In Norwegian: Bjarn Kristoffersen: Funksjonell programmering i
standard ML; kompendium 61, 1995.

e SML/NJ http://www.sminj.org/

e Functions and types available at the top-level:
http://www.smlnj.org/doc/basis/pages/top-level-chapter.html

¢ L.C. Paulson: ML for the working programmer

910C - OIT€ ANI

INF3110 — ML 2 9

¢ % UNIVERSITETET
W= 1 0SLO

More on ML & Types

OO PN i G S ST e W P P O G ST B R W T P P i G T B e M T R P i G ST B R W RV PR D N G SN A

Volker Stolz

stolz@ifi.uio.no

910C - OIT€ ANI

Department of Informatics — University of Oslo

Initially by Gerardo Schneider.
Based on John C. Mitchell’s slides (Stanford U.)

Outline

&-MLimperative-constructs
4 More recursive examples

¢ Higher-order functions

4 Something about equality

4 Something on the ML module system
¢ Types In programming

¢ Type safety

!
Z
> y|
W
[y
k.
(=)
1
[\°)
(=]
k.
(=)

INF3110 — ML 2 11

ML imperative constructs

& None of the constructs seen so far have side
effects

e An expression has a value, but evaluating it does not
change the value of any other expression

¢ Assignment
e Different from other programming languages:

!
Z
> y|
W
[y
[
(=)
1
N
(=
ek
N

To separate side effects from pure expressions as
much as possible

e Restricted to reference cells

INF3110 — ML 2 12

Variables and assignment

® General terminology: L-values and R-values

e Assignment (pseudocode, not ML!) Y := X+3;
— Identifier on left refers to a memory location, called L-value
— Identifier on right refers to contents, called R-value

& Variables

e Most languages
— A variable names a storage location
— Contents of location can be read, can be changed

o ML reference cell (L-value)
— A reference cell has a different type than a value

— Explicit operations to read contents or change contents
— Separates naming (declaration of identifiers) from “variables”

910C - OIT€ ANI

INF3110 — ML 2 13

ML reference cells

¢ Different types for location and contents

X :int non-assignable integer value
y :intref location whose contents must be integer

4 Operations

e

Z

ref x expression creating new cell containing value x -
. ek

ly returns the contents (value) of location y =
y:i=X places value x in reference cell y P~
[am—Y

(=)

¢ Examples

- val X = ref 0 ; create cell x with initial value 0
> val x =ref 0 : int ref

- X = X+3; place value of x+3 in cell x; requires x:int

> val it = () : unit (type is “unit” since it is an expression with side
effects)

- X = IX + 3; add 3 to contents of x and store result in location x

>val it = () : unit

- Ix; >valit=6:int 14

ML examples

¢ Create cell and change contents

X

- val x = ref "Bob”;

. . Bill
- x 1= "Bill";
¢ Create cell and increment y
-valy = ref O; ~ 1
-y i=ly+1,—
-yi=y+1 Error!
€ In summary:
- X ¢ int not assignable (like constant in other PL)

-y : int ref assignable reference cell

INF3110 — ML 2

15

910C - OTT€ ANI

Imperative programming in ML

val i = ref O;

while li < 5 do
(i:="1i+1;
print("i is :"AInt.toString(!i)~"\n")
)i

& References

4 In ML you evaluate a series of expressions

e By evaluating (e; e5; . .. ;e,), the expressions e, to e, are
evaluated from left to right

e The result is the value of e,. The other values are discarded

¢ While command : while el do e2
o while el do e2 = if el then (e2; while el do e2) else () ;

@ print : string -> unit
e print returns it : () but has a side effect.

INF3110 — ML 2

16

910C - OIT€ ANI

Outline

€ More examples on recursion

¢ Higher-order functions

4 Something about equality

4 Something on the ML module system
¢ Types In programming

¢ Type safety

!
Z
> y|
W
[
(-
(=]
1
N
(=]
[t
(=)

INF3110 — ML 2 17

More on list functions

¢ Writing a recursive function is not difficult, but what
about efficiency?

4 Example: Reverse a list
(remember [1,2] @ [3,4] = [1,2,3,4])

!
Z
> y|
W
[
(-
(=]
1
N
(=]
[t
(=)

fun rev[] =]
| rev (X::xs) = (rev xs) @ [Xx] ;

€ Questions

e How efficient is reverse?
e Can you do this with only one pass through list?

INF3110 — ML 2 18

More efficient reverse function

fun revAppend ([],ys) = vys
| revAppend (Xx::xs,ys) = revAppend(xs,(X::ys)) ;

fun rev xs = revAppend(xs,[]);

!
Z
> y|
W
[
(-
(=]
1
N
(=]
s
(=)

Talil recursive function!

1 3
2 m | 2 = 2 = 2
3 3|1 31 1
] I I I

INF3110 — ML 2 19

Two factorial functions

& Standard recursion
- fun fact n =
if n =0 then 1 else n * fact(n-1) ;

¢ Tail recursive (iteritative)
- fun facti(n,p) =
if n = 0 then p else facti(n-1,n*p) ;
- fun fact n = facti(n,1) ;

€ More examples in Pucella sec. 2.7

INF3110 — ML 2

20

!
Z
> y|
W
[y
k.
(=)
1
[\°)
(=]
ek
(=)

Outline

4 More examples on recursion

¢ Higher-order functions

4 Something about equality

4 Something on the ML module system
¢ Types In programming

¢ Type safety

!
Z
> y|
W
[
(-
(=]
1
N
(=]
[t
(=)

INF3110 — ML 2 21

Monomorphism vs. Polymorphism

& Monomorphic means “having only one form”, as
opposed to Polymorphic

@ A type system is monomorphic if each constant,
variable, etc. has unique type

¢ Variables, expressions, functions, etc. are polymorphic if
they “allow” more than one type

!
Z
> y|
W
.
(-
(=]
1
N
(=]
[t
(=)

Example. In ML, the identity function fn x => x is
polymorphic:

-fnx => X
>valit=fn:'a->"a

Warning! The term "polymorphism” is used with different
specific technical meanings (more on this in ML-lecture 3)

INF3110 — ML 2 22

Higher-order functions (functionals)

4 In ML functions are computational values

(“first-class objects”)

e can be constructed during execution
stored in data structures
passed as arguments to other functions
returned as values

A functional is a function that operates on

other functions
€ Programs are more concise and clear when using functionals
¢ Functionals on lists have been very popular in Lisp

€ The use of functionals is a powerful tool for modularisation which is
what gives FPLs one of its conceptual advantages (Hughes 1984)

910C - OTT€ ANI

INF3110 — ML 2 23

Higher-order functions (functionals)

¢ Map: apply a function to every element in a list
- fun map (f, nil) = nil
| map (f, x::xs) = f(x) :: map (f,xs);
>valmap =fn: ('fa->"'b) * 'alist -> 'b list

- fun incr x = x+1 ;
> val incr = fn : int -> int

!
Z
> y|
W
[y
[
(=)
1
[\°)
(=]
ek
N

- map (incr, [1,2,3]); =y [2,3,4]

-map (fn x => x*x, [1,2,3]);, == [1,49]

INF3110 — ML 2 24

Higher-order functions (functionals)

¢ Map: apply a function to every element in a list
- fun map (f, nil) = nil
| map (f, x::xs) = f(x) :: map (f,xs);
>valmap =fn: ('fa->"'b) * 'alist -> 'b list

- fun bintoString(i) =
case x of 0 => “zero”
| 1 =>"one”
| _ =>"illegal value™;

!
Z
> y|
W
[y
[
(=)
1
[\°)
(=]
ek
N

> val bintoString = fn : int -> string

- map (bintoString , [1,0,2,0]);
> val it = ["one","zero","illegal value","zero"] : string list

INF3110 — ML 2 25

Higher-order functions (functionals)

¢ filter: apply a predicate to every element of list
- fun filter (p, nil) = nil
| filter (p, (x::xs)) = if p(x) then x :: (filter (p,xs))
else filter (p,xs) ;

- val odd = fn : int -> bool
- val mylist = [1,2,3,4,5,6,7,8];
- filter (odd, mylist); > val it = [1,3,5,7] : int list

!
Z
> y|
W
[y
[
(=)
1
[\°)
(=]
ek
N

- map (fn x => x*x, (filter(odd, mylist)));
> val it =[1,9,25,49] : int list
- val pairs = [(1,2),(4,3),(8,9),(0,9),(0,0),(5,1)] ;

filter ((op <), pairs);

> val it = [(1,2),(8,9),(0,9)] : (int * int) list

INF3110 — ML 2 26

Curried functions

¢ A function can have only one argument
o tuples are used for more than one argument

¢ Multiple arguments may be realized by giving a function
as a result
e Currying -> after the logician Haskell B. Curry

¢ A function over pairs has type
a*'b->"c
while a curried function has type
a->(b->"c)
¢ A curried function allows : applied to
its 1st argument (of type ‘a), it results in a function of
type 'b -> 'c

910C - OTT€ ANI

INF3110 — ML 2 27

Curried functions

¢ Example: function to add two numbers
- fun pluss (x,y) =x+vy;
> val pluss = fn : int * int -> int
- pluss (2,3) ;
»valit=>5:int

¢ Curried version of the same function
-fun cPlussxy =x+vy;
> val cPluss = fn : int -> int -> int
- CPluss 2 3 ;
>valit=5:int
- val addTwo = cPluss 2 ;
> val addTwo = fn : int -> int
- addTwo 5 ;
>valit=7:int

910C - OIT€ ANI

INF3110 — ML 2 28

Curried functions

¢ Curry and uncurry

-fun curry fxy =f (X,y) ;
>valcurry =fn:(la*'b->'c)->"a->'b->'c

!
Z
> y|
W
[y
[
(=)
1
[\°)
(=]
ek
N

- fun uncurry f (x,y) = fxy ;
>valuncurry =fn: ('la->'b->'c)->'a*'b->'c

INF3110 — ML 2 29

Example: the map function

4 Recall that map can be defined as
fun map (f, nil) = nil
| map (f, x::xs) = f(x) :: map (f,xs);
>valmap =fn: ('a->"'b) * 'alist -> 'b list

- map (fn x => x+1, [1,2,3]);
> val it = [2,3,4] : int list

4 By currying it, we can define map as
fun map f nil = nil
| map f (x::xs) = (f x) :: map f xs;
>valmap =fn: (a->'b)->'alist -> 'b list

- map (fn x => x+1) [1,2,3];
> val it = [2,3,4] : int list

INF3110 — ML 2

30

910C - OIT€ ANI

More on the map function

4 We can have a function having as argument a function
which has another function as an argument

¢ Thanks to currying, we can combine functionals to work
on lists of lists

Example:
- map (map (fn x => x+1)) [[1], [1,2], [1,2,3]1];
- [map (fn x => x+1) [1], map (fn x => x+1)[1,2], map (fn x => x+1)[1,2,3]]
~> [[2], [2,3], [2,3,4]]
What does it give as a result?
> val it = [[2],[2,3], [2,3,4]] : int list list

910C - OTT€ ANI

INF3110 — ML 2 31

Outline

® More recursive examples

¢ Higher-order functions

4 Something about equality

4 Something on the ML module system
¢ Types In programming

¢ Type safety

!
Z
> y|
W
[
(-
(=]
1
N
(=]
[t
(=)

INF3110 — ML 2 32

Equality

¢ Equality in (S)ML is defined for many types but
not all — E.qg., it is defined for:
e Integers
e Booleans
e Strings
e Characters

!
Z
> y|
W
.
(-
(=]
1
N
(=]
[t
(=)

4 What about floating points (reals), compund
types (tuples, records, lists), functions, abstract
data types, etc?

INF3110 — ML 2 33

Equality

¢ When are two expressions equal?

o The so-called Leibniz’s Principle of the Identity of
Indiscernables:

"e1 and e2 are equal iff they cannot be distinguished by any operation
in the language”

910C - OIT€ ANI

"e1 and e2 are distinct iff there is some way to tell them apart”

¢ What is difficult about Leibniz’s Principle?

INF3110 — ML 2 34

Problems with Equality

¢ Equality, as defined by Leibniz’s principle, is undecidable

In general, there is no program which determines
whether two expressions are equal in Leibniz’s sense.

Also:

4 Problems with reference cells (aliasing)
-vals=refl;valt=refl;

910C - OIT€ ANI

-s=t; > false
-ls =1t > true
-vals=t;

-s=1t; > true

¢ Polymorphic equality complicates the compiler

INF3110 — ML 2 35

Equality Types

¢ An equality type is a type admiting equality test
¢ Types admiting equality in (S)ML
e int, bool, char, string
e tuples and records, if all their components admit
equality
e datatypes, if every constructor’'s parameter
admits equality

e /ists admit equality if the underlying element type

admits equality

— Two lists are equal if they have the same length and the
same elements in corresponding positions

!
Z
> y|
W
[y
[
(=)
1
N
(=
ek
N

INF3110 — ML 2 36

Equality Types (cont.)

¢ Do not admit equality in (S)ML
e reals
e functions

o tuples, records and datatypes not mentioned in the
previous slide

e agbstract data types
¢ Equality type variable: "a

- fun equals (x,y) = if x = y then true else false ;
> stdIn:7.25 Warning: calling polyEqual
val equals = fn : "a * "a -> bool

910C - OIT€ ANI

INF3110 — ML 2 37

Equality: Examples

¢ Equality tests on functions is not computable since
f=g iff forallx, f(x)=g(x)
¢ No “standard” notion of equality for an abstract type

o What is supposed to be the equality on frees? Is it defined
structurally? Is it over the list of their elements? By DFS or BFS?

¢ EX:

fun find x nil = false
| find X (y ::ys) = x =y orelse find x ys ;

910C - OIT€ ANI

> = stdIn:30.31 Warning: calling polyEqual
val find = fn : "a -> "a list -> bool

(dont worry, only a performance issue)

INF3110 — ML 2 38

Outline

€ ML imperative constructs
4 More recursive examples

¢ Higher-order functions

4 Something about equality

4 Something on the ML module system
¢ Types Iin programming

¢ Type safety

!
Z
> y|
W
[
(-
(=]
1
N
(=]
[t
(=)

INF3110 — ML 2 39

Modularity: Basic Concepts

4 Component

e Meaningful program unit
— Function, data structure, module, ...

& Interface

e Types and operations defined within a component
that are visible outside the component

® Specification

e Intended behavior of component, expressed as
property observable through interface

4 Implementation
e Data structures and functions inside component

INF3110 — ML 2

40

!
Z
> y|
W
[y
[
(=)
1
N
(=]
ek
N

Example: Function Component

4 Component
e Function to compute square root

¢ Interface
o function sqrt (float x) returns float

® Specification
o If x>1, then sqrt(x)*sqgrt(x) ~ x.

4 Implementation

float sgroot (float x){
float y = x/2; float step=x/4; int i;
for (i=0; i<20; i++){if ((y*y)<x) y=y+step; else y=y-step; step = step/2;}
returny;

}

910C - OIT€ ANI

INF3110 — ML 2 41

Something on ML Modules

® Signatures and structures are part of the
standard ML module system

@ An ML structure is @ module, which is a
collection of:
e Types
o Values
e Structure declarations
¢ Signatures are module interfaces
e Kind of "type” for a structure

INF3110 — ML 2

42

!
Z
> y|
W
[y
[
(=)
1
[\°)
(=]
ek
N

Example: Point

¢ Signature definition (Interface)

signature POINT =

Z
- e>!
sig =
type point S
val mk_point : real * real -> point (*constructor*) B
val x_coord : point -> real (*selector*)
val y_coord : point -> real (*selector*)
val move_p : point * real * real -> point

end;

INF3110 — ML 2 43

Example: Point (cont.)

Structure definition (Implementation)
structure pt : POINT =
struct
type point = real * real
fun mk_point(x,y) = (X,y)
fun x_coord(x,y) = X
fun y_coord(x,y) = vy
fun move_p((x,y):point,dx,dy) = (x+dx, y+dy)
end;
¢ To be able to use the implementation:
- open pt;

!
Z
> y|
W
[y
k.
(=)
1
[\°)
(=]
ek
(=)

INF3110 — ML 2 44

Example: Point (cont.)

Open the structure by writing open <structhame>
- open pt;

After that you may use the struct operations
- val p1 = mk_point(4.3, 6.56);
> val p1 = (4.3,6.56) : point
- y_coord (p1);
> val it = 6.56 : real
- move_p (p1, 3.0, ~1.0);
> val it = (7.3,5.56) : point
You may use the struct without opening it by prefixing a function with the struct name.
- pt.mk_point(1.0,1.0);
> val it = (1.0,1.0) : point
E.g. we would like to use the min function to get the smallest of two ints.
- min(1,2);
> stdIn:1.1-1.4 Error: unbound variable or constructor: min
The function is defined in the Int struct so we must use Int as a prefix
- Int.min(1,2);
>valit=1:int

910C - OTT€ ANI

See: http://www.smlinj.org/doc/basis/pages/sml-std-basis.html for an overview of the structures and
signatures in The Standard ML Basis Library. Follow the link: Top-level Environment to see
whié;h functions are available in the top level environment, i.e. which you can use without
prefixes.

INF3110 — ML 2 45

Outline

® More recursive examples

¢ Higher-order functions

4 Something about equality

4 Something on the ML module system
¢ Types in programming

¢ Type safety

!
Z
> y|
W
[
(-
(=]
1
N
(=]
[t
(=)

INF3110 — ML 2 46

Type

A type is a collection of computational entities
sharing some common property

z
& Examples ¢ “Non-examples” ¥
e Integers o {3, true, 5.0} ;
e [1..100] e Even integers >
e Strings e {fiint > int | if x>3
e int — bool then f(x) > x*(x+1)}

e (int — int) — bool

Distinction between types and non-types is language
dependent

INF3110 — ML 2 47

Uses for types

4 Program organization and documentation

o Separate types for separate concepts
— E.g., customer and accounts (banking program)

e Types can be checked, unlike program comments

¢ Identify and prevent errors

e Compile-time or run-time checking can prevent
meaningless computations such as 3 + true - "Bill”

¢ Support optimization
e Short integers require fewer bits
e Access record component by known offset

INF3110 — ML 2

48

910C - OIT€ ANI

Type errors

¢ Hardware error

e Function call x() (where x is not a function) may
cause jump to instruction that does not contain a
legal op code

— If x = 512, executing x() will jump to location 512 and begin
execute “instructions” there

910C - OIT€ ANI

& Unintended semantics

e int_add(3, 4.5): Not a hardware error, since bit
pattern of float 4.5 can be interpreted as an integer

INF3110 — ML 2 49

General definition of type error

® A [ype error occurs when execution of program
is not faithful to the intended semantics

¢ Type errors depend on the concepts defined in
the language; not on how the program is
executed on the underlying software

¢ All values are stored as sequences of bits

e Store 4.5 in memory as a floating-point number
— Location contains a particular bit pattern

e To interpret bit pattern, we need to know the type

o If we pass bit pattern to integer addition function,
the pattern will be interpreted as an integer pattern

— Type error if the pattern was intended to represent 4.5

INF3110 — ML 2

50

!
Z
> y|
W
[y
k.
(=)
1
[\°)
(=]
ek
(=)

Subtyping

¢ Subtyping is a relation on types allowing values of one
type to be used in place of values of another

o Substitutivity: If A is a subtype of B (A<:B), then
any expression of type A may be used without type
error in any context where B may be used

¢ In general, if f: A -> B, then f may be applied to x if x: A
o Type checker: If f: A->Band x: C,thenC =A

¢ In languages with subtyping
e Type checker: If f: A-> B and x: C, then C <: A

!
Z
> y|
W
[y
[
(=)
1
[\°)
(=]
ek
N

Remark: No subtypes in ML!

INF3110 — ML 2 51

Outline

® More recursive examples

¢ Higher-order functions

4 Something about equality

4 Something on the ML module system
¢ Types In programming

¢ Type safety

!
Z
> y|
W
.
(-
(=]
1
N
(=]
[t
(=)

INF3110 — ML 2 52

Type safety

¢ A Prog. Lang. is type safe if no program can violate its
type distinction

e E.g. use an integer as a function
e Access memory not allocated to the program.

¢ Examples of not type safe language features:

e Type casts (a value of one type used as another type)

— Use integers as functions (jump to a non-instruction or access
memory not allocated to the program) (C)

e Pointer arithmetic
- *(p) has type A if p has type A*
- X = *(p+i) what is the type of x?

e Explicit deallocation and dangling pointers

— Allocate a pointer p to an integer, deallocate the memory
referenced by p, then later use the value pointed to by p

910C - OIT€ ANI

INF3110 — ML 2 53

Relative type-safety of languages

¢ ot safe: BCPL family, including C and C++
e Casts; pointer arithmetic

¢ Almost safe: Algol family, Pascal, Ada.

o Explicit deallocation; dangling pointers

— No language with explicit deallocation of memory is fully
type-safe

¢ Safe: Lisp, ML, Smalltalk, Java, Haskell

o Lisp, Smalltalk: dynamically typed
o ML, Haskell, Java: statically typed

INF3110 — ML 2

94

!
Z
> y|
W
[y
[
(=)
1
[\°)
(=]
ek
N

Compile-time vs. run-time checking

¢ Lisp uses run-time type checking
(car Xx) check first to make sure x is list

4 ML uses compile-time type checking
f(x) must havef: A—>Band x: A

¢ Basic tradeoff
e Both prevent type errors

e Run-time checking slows down execution (compiled ML code, up-
to 4 times faster than Lisp code)

e Compile-time checking restricts program flexibility
Lisp list: elements can have different types
ML list: all elements must have same type
4 Combination of Compile/Run-time eg. Java
e Static type checking to distinguish arrays and integers
e Run-time checking to detect array bounds errors

910C - OIT€ ANI

INF3110 — ML 2 55

Compile-time type checking

& Sound type checker: no program with error is
considered correct

& Conservative type checker: some programs
without errors are considered to have errors

 Static typing is always conservative
if (possible-infinite-run-expression)

then (expression-with-type-error)

else (expression-with-type-error)

Cannot decide at compile time if run-time error will occur
(from the undecidability of the Turing machine’s halting problem)

!
Z
> y|
W
[y
[
(=)
1
N
(=]
ek
N

INF3110 — ML 2 56

Remarks — Further reading

¢ Mitchell doesn’t cover the material presented on
Equality — See section 2.9 of Pucella’s notes

® signatures and structures are part of ML Module
system. See section 9.3.2 of Mitchell’s book

!
Z
> y|
W
.
(-
(—]
1
N
(=]
[t
(=)

¢ Types: Mitchell’s section 6.1, 6.2

¢ Imperative programming in ML: See chapter 8
of Paulson’s book

INF3110 — ML 2 57

