
IN
F 3110 -2016

INF3110 – ML 1 1

ML lectures

◆ 16.09: The Algol Family and ML
(Mitchell’s chap. 5)

◆ 23.09: More on ML & Types (chap. 5 and 6)
◆ 21.10: More on Types, Type Inference and

Polymorphism (chap. 6)
◆ 28.10: Control in sequential languages,

Exceptions and Continuations (chap. 8)
◆ Prolog I / Prolog ||

IN
F 3110 -2016

INF3110 – ML 2 2

Functions and Pattern Matching
◆ Function declaration

• Functions are as other values:
- (5*6) ;
> val it = 30 : int
- fn x => x * 2 ; “anonymous function”, in lambda notation lx . (x * 2)
> val it = fn : int -> int
- val dbl = fn x => x * 2 ; > val dbl = fn : int -> int

• But we have a special syntax for defining functions:
- fun dbl x = x * 2 ; > val dbl = fn : int -> int

◆ Function declaration, general form
• fun f (<pattern>) = <expr>

- fun f (x,y) = x+y; Actual par. must match pattern (x,y)
• fn <pattern> => <expr>

- fn (x,y) => x+y; Anonymous function
◆ Multiple-clause definition

• fun <name> <pat1> = <exp1> | …
| <name> <patn> = <expn>

- fun length (nil) = 0
| length (x::s) = 1 + length(s);

> val length = fn ´a list -> int
- length [“J”, ”o”, “n”] > val it = 3 : int

IN
F 3110 -2016

INF3110 – ML 2 3

Some functions on lists

◆ Insert an element in an ordered list
fun insert (e, nil) = [e]
| insert (e, x::xs) = if e>x then x :: insert(e,xs)

else e::(x::xs);
- insert (3,[1,2,5]) ;
> val it = [1,2,3,5] : int list

◆Append lists
fun append(nil, ys) = ys
| append(x::xs, ys) = x :: append(xs, ys);
- append ([3,4],[1,2]) ;
>val it = [3,4,1,2] : int list

IN
F 3110 -2016

INF3110 – ML 2 4

Data-type declarations
◆ Enumeration types

- datatype color = Red | Yellow | Blue;
– elements are: Red, Yellow, Blue <- Constructors!

◆ Tagged union types
- datatype value = I of int | R of real | S of string;

– elements are: I(9) , R(8.3) , S(“hello”) ...
- datatype keyval = StrVal of string * string | IntVal of string * int ;

– elements are: StrVal(“foo”,”bar”) , IntVal(“foo”,55) ...
- datatype mylist = Nil | Cons of value * mylist

– elements are: Nil , Cons (I(8) ,Nil) , Cons (R(1.0), Cons (I (8), Nil))
◆ General form

datatype <name> = <clause> | … | <clause>
<clause> ::= <constructor> | <constructor> of <type>

IN
F 3110 -2016

INF3110 – ML 2 5

Type abbreviations
◆ We use datatype to define new types

◆ The keyword type can be used to define a type
abbreviation:

- type int_pair = int * int ;

• The type inference will not report types as the defined
abbrev.:

- val a = (3,5);
> val a = (3,5) : int * int

• We can force the use of type abbreviation:
- val a : int_pair = (3,5);
> val a = (3,5) : int_pair

IN
F 3110 -2016

INF3110 – ML 2 6

Datatype and pattern matching

◆Recursively defined data structure
- datatype tree = Leaf of int | Node of int*tree*tree;

Node(4, Node(3,Leaf(1), Leaf(2)),
Node(5,Leaf(6), Leaf(7))

)

◆Recursive function (sum)
- fun sum (Leaf n) = n

| sum (Node(n,t1,t2)) = n + sum(t1) + sum(t2);

4

5

76

3

21

IN
F 3110 -2016

INF3110 – ML 2 7

Case expression
◆ Datatype

- datatype exp = Num of int | Var of var | Plus of exp*exp;
◆ Case expression

case e of Num(i) => … |
Var(v) => …. |
Plus(e1,e2) => …

- fun eval(e) = case e of Num(i) => i
| Var(v) => lookUp(v)
| Plus(e1,e2) => eval(e1) + eval(e2)

◆ Case matching is done in order

◆ Use _ to catch all missing
- fun bintoString(i) = case x of 0 => “zero”

| 1 = > “one”
| _ => “illegal value”;

> val bintoString = fn : int -> string

◆ Can also use _ in declarations if we don’t care about the value being matched
- fun hd(x::xs) = x ;
- fun hd(x::_) = x ;

IN
F 3110 -2016

INF3110 – ML 2 8

insert: Three ”different” declarations

1. fun insert (e, ls) =
case ls of nil => [e]

| x::xs => if e>x then x::insert(e, xs) else
e::ls ;

2. fun insert (e, nil) = [e]
| insert (e, x::xs) = if e>x then x::insert(e, xs)

else e::(x::xs) ;

3. fun insert (e: int, ls: int list) : int list =
case ls of nil => [e]

| x::xs => if e>x then x::insert(e, xs) else
e::ls ;

IN
F 3110 -2016

INF3110 – ML 2 9

Further reading
◆ Extra material on ML.
◆ See links on the course page:” Syllabus/achievement

requirements ”
• Riccardo Pucella: Notes on programming SML/NJ

(Pensum/Syllabus :Secs. 1.1-1.3, 1.6, and sec. 2.)
• In Norwegian: Bjørn Kristoffersen: Funksjonell programmering i

standard ML; kompendium 61, 1995.
• SML/NJ http://www.smlnj.org/
• Functions and types available at the top-level:

http://www.smlnj.org/doc/basis/pages/top-level-chapter.html
◆ L.C. Paulson: ML for the working programmer

IN
F 3110 -2016

More on ML & Types

Volker Stolz
stolz@ifi.uio.no

Department of Informatics – University of Oslo

Initially by Gerardo Schneider.
Based on John C. Mitchell’s slides (Stanford U.)

IN
F 3110 -2016

INF3110 – ML 2 11

Outline

◆ML imperative constructs
◆More recursive examples
◆Higher-order functions
◆ Something about equality
◆ Something on the ML module system
◆ Types in programming
◆ Type safety

IN
F 3110 -2016

INF3110 – ML 2 12

ML imperative constructs

◆None of the constructs seen so far have side
effects
• An expression has a value, but evaluating it does not

change the value of any other expression
◆Assignment

• Different from other programming languages:

To separate side effects from pure expressions as
much as possible

• Restricted to reference cells

IN
F 3110 -2016

INF3110 – ML 2 13

Variables and assignment

◆General terminology: L-values and R-values
• Assignment (pseudocode, not ML!) y := x+3;

– Identifier on left refers to a memory location, called L-value
– Identifier on right refers to contents, called R-value

◆Variables
• Most languages

– A variable names a storage location
– Contents of location can be read, can be changed

• ML reference cell (L-value)
– A reference cell has a different type than a value
– Explicit operations to read contents or change contents
– Separates naming (declaration of identifiers) from “variables”

IN
F 3110 -2016

INF3110 – ML 2 14

ML reference cells
◆ Different types for location and contents

x : int non-assignable integer value
y : int ref location whose contents must be integer

◆ Operations
ref x expression creating new cell containing value x
!y returns the contents (value) of location y
y := x places value x in reference cell y

◆ Examples
- val x = ref 0 ; create cell x with initial value 0
> val x = ref 0 : int ref
- x := x+3; place value of x+3 in cell x; requires x:int
> val it = () : unit (type is “unit” since it is an expression with side

effects)
- x := !x + 3; add 3 to contents of x and store result in location x
> val it = () : unit
- !x; > val it = 6 : int

IN
F 3110 -2016

INF3110 – ML 2 15

ML examples

◆Create cell and change contents
- val x = ref “Bob”;
- x := “Bill”;

◆Create cell and increment
- val y = ref 0;
- y := !y + 1;
- y := y + 1 Error!

◆ In summary:
- x : int not assignable (like constant in other PL)
- y : int ref assignable reference cell

BobBill
x

10
y

1
y

IN
F 3110 -2016

INF3110 – ML 2 16

Imperative programming in ML
val i = ref 0;
while !i < 5 do

(i := !i +1 ;
print("i is :"^Int.toString(!i)^"\n")
);

◆ References
◆ In ML you evaluate a series of expressions

• By evaluating (e1; e2; . . . ;en), the expressions e1 to en are
evaluated from left to right

• The result is the value of en. The other values are discarded
◆ While command : while e1 do e2

• while e1 do e2 º if e1 then (e2; while e1 do e2) else () ;
◆ print : string -> unit

• print returns it : () but has a side effect.

IN
F 3110 -2016

INF3110 – ML 2 17

Outline

◆More examples on recursion
◆Higher-order functions
◆ Something about equality
◆ Something on the ML module system
◆ Types in programming
◆ Type safety

IN
F 3110 -2016

INF3110 – ML 2 18

More on list functions
◆ Writing a recursive function is not difficult, but what

about efficiency?

◆ Example: Reverse a list
(remember [1,2] @ [3,4] = [1,2,3,4])

fun rev [] = []
| rev (x::xs) = (rev xs) @ [x] ;

◆ Questions
• How efficient is reverse?
• Can you do this with only one pass through list?

IN
F 3110 -2016

INF3110 – ML 2 19

More efficient reverse function

fun revAppend ([],ys) = ys
| revAppend (x::xs,ys) = revAppend(xs,(x::ys)) ;

fun rev xs = revAppend(xs,[]);

1
2
3 1

2
3 1

2
3 1

2
3

Tail recursive function!

IN
F 3110 -2016

INF3110 – ML 2 20

Two factorial functions

◆ Standard recursion
- fun fact n =

if n = 0 then 1 else n * fact(n-1) ;

◆ Tail recursive (iteritative)
- fun facti(n,p) =

if n = 0 then p else facti(n-1,n*p) ;
- fun fact n = facti(n,1) ;

◆ More examples in Pucella sec. 2.7

IN
F 3110 -2016

INF3110 – ML 2 21

Outline

◆More examples on recursion
◆Higher-order functions
◆ Something about equality
◆ Something on the ML module system
◆ Types in programming
◆ Type safety

IN
F 3110 -2016

INF3110 – ML 2 22

Monomorphism vs. Polymorphism
◆ Monomorphic means ”having only one form”, as

opposed to Polymorphic
◆ A type system is monomorphic if each constant,

variable, etc. has unique type
◆ Variables, expressions, functions, etc. are polymorphic if

they ”allow” more than one type

Example. In ML, the identity function fn x => x is
polymorphic: it has infinitely many types!

- fn x => x
> val it = fn : 'a -> 'a

Warning! The term ”polymorphism” is used with different
specific technical meanings (more on this in ML-lecture 3)

IN
F 3110 -2016

INF3110 – ML 2 23

Higher-order functions (functionals)
◆ In ML functions are computational values

(”first-class objects”)
• can be constructed during execution
• stored in data structures
• passed as arguments to other functions
• returned as values

◆ Programs are more concise and clear when using functionals
◆ Functionals on lists have been very popular in Lisp
◆ The use of functionals is a powerful tool for modularisation which is

what gives FPLs one of its conceptual advantages (Hughes 1984)

A functional is a function that operates on
other functions

IN
F 3110 -2016

INF3110 – ML 2 24

◆Map: apply a function to every element in a list
- fun map (f, nil) = nil
| map (f, x::xs) = f(x) :: map (f,xs);

> val map = fn : ('a -> 'b) * 'a list -> 'b list

- map (incr, [1,2,3]); [2,3,4]

- fun incr x = x+1 ;
> val incr = fn : int -> int

- map (fn x => x*x, [1,2,3]); [1,4,9]

Higher-order functions (functionals)

IN
F 3110 -2016

INF3110 – ML 2 25

◆Map: apply a function to every element in a list
- fun map (f, nil) = nil
| map (f, x::xs) = f(x) :: map (f,xs);

> val map = fn : ('a -> 'b) * 'a list -> 'b list

- map (bintoString , [1,0,2,0]);
> val it = ["one","zero","illegal value","zero"] : string list

Higher-order functions (functionals)

- fun bintoString(i) =
case x of 0 => “zero”

| 1 => “one”
| _ => “illegal value”;

> val bintoString = fn : int -> string

IN
F 3110 -2016

INF3110 – ML 2 26

◆ filter: apply a predicate to every element of list
- fun filter (p, nil) = nil

| filter (p, (x::xs)) = if p(x) then x :: (filter (p,xs))
else filter (p,xs) ;

- val mylist = [1,2,3,4,5,6,7,8];
- filter (odd, mylist);

- val odd = fn : int -> bool

- map (fn x => x*x, (filter(odd,mylist)));

> val it = [1,9,25,49] : int list

- val pairs = [(1,2),(4,3),(8,9),(0,9),(0,0),(5,1)] ;

- filter ((op <) , pairs);

> val it = [(1,2),(8,9),(0,9)] : (int * int) list

Higher-order functions (functionals)

> val it = [1,3,5,7] : int list

IN
F 3110 -2016

INF3110 – ML 2 27

Curried functions
◆ A function can have only one argument

• tuples are used for more than one argument
◆ Multiple arguments may be realized by giving a function

as a result
• Currying -> after the logician Haskell B. Curry

◆ A function over pairs has type
’a * ’b -> ’c

while a curried function has type
’a -> (’b -> ’c)

◆ A curried function allows partial application: applied to
its 1st argument (of type ’a), it results in a function of
type ’b -> ’c

IN
F 3110 -2016

INF3110 – ML 2 28

Curried functions
◆ Example: function to add two numbers

- fun pluss (x,y) = x + y ;
> val pluss = fn : int * int -> int
- pluss (2,3) ;
Ø val it = 5 : int

◆ Curried version of the same function
- fun cPluss x y = x + y ;
> val cPluss = fn : int -> int -> int
- cPluss 2 3 ;
> val it = 5 : int
- val addTwo = cPluss 2 ;
> val addTwo = fn : int -> int
- addTwo 5 ;
> val it = 7 : int

IN
F 3110 -2016

INF3110 – ML 2 29

Curried functions

◆Curry and uncurry

- fun curry f x y = f (x,y) ;
> val curry = fn : ('a * 'b -> 'c) -> 'a -> 'b -> 'c

- fun uncurry f (x,y) = f x y ;
> val uncurry = fn : ('a -> 'b -> 'c) -> 'a * 'b -> 'c

IN
F 3110 -2016

INF3110 – ML 2 30

Example: the map function
◆ Recall that map can be defined as

fun map (f, nil) = nil
| map (f, x::xs) = f(x) :: map (f,xs);
> val map = fn : ('a -> 'b) * 'a list -> 'b list

- map (fn x => x+1, [1,2,3]);
> val it = [2,3,4] : int list

◆ By currying it, we can define map as
fun map f nil = nil

| map f (x::xs) = (f x) :: map f xs;
> val map = fn : ('a -> 'b) -> 'a list -> 'b list

- map (fn x => x+1) [1,2,3];
> val it = [2,3,4] : int list

IN
F 3110 -2016

INF3110 – ML 2 31

More on the map function

◆ We can have a function having as argument a function
which has another function as an argument

◆ Thanks to currying, we can combine functionals to work
on lists of lists
Example:
- map (map (fn x => x+1)) [[1], [1,2], [1,2,3]];
à [map (fn x => x+1) [1], map (fn x => x+1)[1,2], map (fn x => x+1)[1,2,3]]
à [[2], [2,3], [2,3,4]]

What does it give as a result?
> val it = [[2],[2,3], [2,3,4]] : int list list

IN
F 3110 -2016

INF3110 – ML 2 32

Outline

◆More recursive examples
◆Higher-order functions
◆ Something about equality
◆ Something on the ML module system
◆ Types in programming
◆ Type safety

IN
F 3110 -2016

INF3110 – ML 2 33

Equality

◆ Equality in (S)ML is defined for many types but
not all – E.g., it is defined for:
• Integers
• Booleans
• Strings
• Characters

◆What about floating points (reals), compund
types (tuples, records, lists), functions, abstract
data types, etc?

IN
F 3110 -2016

INF3110 – ML 2 34

Equality

◆When are two expressions equal?
• The so-called Leibniz’s Principle of the Identity of

Indiscernables:

◆What is difficult about Leibniz’s Principle?

”e1 and e2 are equal iff they cannot be distinguished by any operation
in the language”

”e1 and e2 are distinct iff there is some way to tell them apart”

IN
F 3110 -2016

INF3110 – ML 2 35

Problems with Equality
◆ Equality, as defined by Leibniz’s principle, is undecidable

Also:
◆ Problems with reference cells (aliasing)

- val s = ref 1 ; val t = ref 1 ;
- s = t ; > false
- !s = !t > true
- val s = t ;
- s = t ; > true

◆ Polymorphic equality complicates the compiler

In general, there is no program which determines
whether two expressions are equal in Leibniz’s sense.

IN
F 3110 -2016

INF3110 – ML 2 36

Equality Types

◆An equality type is a type admiting equality test
◆ Types admiting equality in (S)ML

• int, bool, char, string
• tuples and records, if all their components admit

equality
• datatypes, if every constructor’s parameter

admits equality
• lists admit equality if the underlying element type

admits equality
– Two lists are equal if they have the same length and the

same elements in corresponding positions

IN
F 3110 -2016

INF3110 – ML 2 37

Equality Types (cont.)

◆Do not admit equality in (S)ML
• reals
• functions
• tuples, records and datatypes not mentioned in the

previous slide
• abstract data types

◆ Equality type variable: ’’a
- fun equals (x,y) = if x = y then true else false ;
> stdIn:7.25 Warning: calling polyEqual
val equals = fn : ''a * ''a -> bool

IN
F 3110 -2016

INF3110 – ML 2 38

Equality: Examples
◆ Equality tests on functions is not computable since

f = g iff for all x, f(x) = g(x)
◆ No ”standard” notion of equality for an abstract type

• What is supposed to be the equality on trees? Is it defined
structurally? Is it over the list of their elements? By DFS or BFS?

◆ Ex:
fun find x nil = false

| find x (y :: ys) = x = y orelse find x ys ;

> = stdIn:30.31 Warning: calling polyEqual
val find = fn : ''a -> ''a list -> bool

(don’t worry, only a performance issue)

IN
F 3110 -2016

INF3110 – ML 2 39

Outline

◆ML imperative constructs
◆More recursive examples
◆Higher-order functions
◆ Something about equality
◆ Something on the ML module system
◆ Types in programming
◆ Type safety

IN
F 3110 -2016

INF3110 – ML 2 40

Modularity: Basic Concepts

◆Component
• Meaningful program unit

– Function, data structure, module, …

◆ Interface
• Types and operations defined within a component

that are visible outside the component
◆ Specification

• Intended behavior of component, expressed as
property observable through interface

◆ Implementation
• Data structures and functions inside component

IN
F 3110 -2016

INF3110 – ML 2 41

Example: Function Component

◆Component
• Function to compute square root

◆ Interface
• function sqrt (float x) returns float

◆ Specification
• If x>1, then sqrt(x)*sqrt(x) » x.

◆ Implementation
float sqroot (float x){

float y = x/2; float step=x/4; int i;
for (i=0; i<20; i++){if ((y*y)<x) y=y+step; else y=y-step; step = step/2;}
return y;

}

IN
F 3110 -2016

INF3110 – ML 2 42

Something on ML Modules

◆ Signatures and structures are part of the
standard ML module system

◆An ML structure is a module, which is a
collection of:
• Types
• Values
• Structure declarations

◆ Signatures are module interfaces
• Kind of ”type” for a structure

IN
F 3110 -2016

INF3110 – ML 2 43

Example: Point

◆ Signature definition (Interface)

signature POINT =
sig
type point
val mk_point : real * real -> point (*constructor*)
val x_coord : point -> real (*selector*)
val y_coord : point -> real (*selector*)
val move_p : point * real * real -> point

end;

IN
F 3110 -2016

INF3110 – ML 2 44

Example: Point (cont.)

◆ Structure definition (Implementation)
structure pt : POINT =
struct
type point = real * real
fun mk_point(x,y) = (x,y)
fun x_coord(x,y) = x
fun y_coord(x,y) = y
fun move_p((x,y):point,dx,dy) = (x+dx, y+dy)

end;
◆ To be able to use the implementation:

- open pt;

IN
F 3110 -2016

INF3110 – ML 2 45

Example: Point (cont.)
Open the structure by writing open <structname>

- open pt;
...

After that you may use the struct operations
- val p1 = mk_point(4.3, 6.56);
> val p1 = (4.3,6.56) : point
- y_coord (p1);
> val it = 6.56 : real
- move_p (p1, 3.0, ~1.0);
> val it = (7.3,5.56) : point

You may use the struct without opening it by prefixing a function with the struct name.
- pt.mk_point(1.0,1.0);
> val it = (1.0,1.0) : point

E.g. we would like to use the min function to get the smallest of two ints.
- min(1,2);
> stdIn:1.1-1.4 Error: unbound variable or constructor: min

The function is defined in the Int struct so we must use Int as a prefix
- Int.min(1,2);
> val it = 1 : int

See: http://www.smlnj.org/doc/basis/pages/sml-std-basis.html for an overview of the structures and
signatures in The Standard ML Basis Library. Follow the link: Top-level Environment to see
which functions are available in the top level environment, i.e. which you can use without
prefixes.

IN
F 3110 -2016

INF3110 – ML 2 46

Outline

◆More recursive examples
◆Higher-order functions
◆ Something about equality
◆ Something on the ML module system
◆ Types in programming
◆ Type safety

IN
F 3110 -2016

INF3110 – ML 2 47

Type

A type is a collection of computational entities
sharing some common property

◆ Examples
• Integers
• [1 .. 100]
• Strings
• int ® bool
• (int ® int) ® bool

◆ “Non-examples”
• {3, true, 5.0}
• Even integers
• {f:int ® int | if x>3

then f(x) > x*(x+1)}

Distinction between types and non-types is language
dependent

IN
F 3110 -2016

INF3110 – ML 2 48

Uses for types

◆ Program organization and documentation
• Separate types for separate concepts

– E.g., customer and accounts (banking program)
• Types can be checked, unlike program comments

◆ Identify and prevent errors
• Compile-time or run-time checking can prevent

meaningless computations such as 3 + true - “Bill”
◆ Support optimization

• Short integers require fewer bits
• Access record component by known offset

IN
F 3110 -2016

INF3110 – ML 2 49

Type errors

◆Hardware error
• Function call x() (where x is not a function) may

cause jump to instruction that does not contain a
legal op code

– If x = 512, executing x() will jump to location 512 and begin
execute “instructions” there

◆Unintended semantics
• int_add(3, 4.5): Not a hardware error, since bit

pattern of float 4.5 can be interpreted as an integer

IN
F 3110 -2016

INF3110 – ML 2 50

General definition of type error

◆A type error occurs when execution of program
is not faithful to the intended semantics

◆ Type errors depend on the concepts defined in
the language; not on how the program is
executed on the underlying software

◆All values are stored as sequences of bits
• Store 4.5 in memory as a floating-point number

– Location contains a particular bit pattern
• To interpret bit pattern, we need to know the type
• If we pass bit pattern to integer addition function,

the pattern will be interpreted as an integer pattern
– Type error if the pattern was intended to represent 4.5

IN
F 3110 -2016

INF3110 – ML 2 51

Subtyping
◆ Subtyping is a relation on types allowing values of one

type to be used in place of values of another
• Substitutivity: If A is a subtype of B (A<:B), then

any expression of type A may be used without type
error in any context where B may be used

◆ In general, if f: A -> B, then f may be applied to x if x: A
• Type checker: If f: A -> B and x: C, then C = A

◆ In languages with subtyping
• Type checker: If f: A -> B and x: C, then C <: A

Remark: No subtypes in ML!

IN
F 3110 -2016

INF3110 – ML 2 52

Outline

◆More recursive examples
◆Higher-order functions
◆ Something about equality
◆ Something on the ML module system
◆ Types in programming
◆ Type safety

IN
F 3110 -2016

INF3110 – ML 2 53

Type safety
◆ A Prog. Lang. is type safe if no program can violate its

type distinction
• E.g. use an integer as a function
• Access memory not allocated to the program.

◆ Examples of not type safe language features:
• Type casts (a value of one type used as another type)

– Use integers as functions (jump to a non-instruction or access
memory not allocated to the program) (C)

• Pointer arithmetic
– *(p) has type A if p has type A*
– x = *(p+i) what is the type of x?

• Explicit deallocation and dangling pointers
– Allocate a pointer p to an integer, deallocate the memory

referenced by p, then later use the value pointed to by p

IN
F 3110 -2016

INF3110 – ML 2 54

Relative type-safety of languages

◆Not safe: BCPL family, including C and C++
• Casts; pointer arithmetic

◆Almost safe: Algol family, Pascal, Ada.
• Explicit deallocation; dangling pointers

– No language with explicit deallocation of memory is fully
type-safe

◆ Safe: Lisp, ML, Smalltalk, Java, Haskell
• Lisp, Smalltalk: dynamically typed
• ML, Haskell, Java: statically typed

IN
F 3110 -2016

INF3110 – ML 2 55

Compile-time vs. run-time checking
◆ Lisp uses run-time type checking

(car x) check first to make sure x is list
◆ ML uses compile-time type checking

f(x) must have f : A ® B and x : A
◆ Basic tradeoff

• Both prevent type errors
• Run-time checking slows down execution (compiled ML code, up-

to 4 times faster than Lisp code)
• Compile-time checking restricts program flexibility

Lisp list: elements can have different types
ML list: all elements must have same type

◆ Combination of Compile/Run-time eg. Java
• Static type checking to distinguish arrays and integers
• Run-time checking to detect array bounds errors

IN
F 3110 -2016

INF3110 – ML 2 56

Compile-time type checking

◆Sound type checker: no program with error is
considered correct

◆Conservative type checker: some programs
without errors are considered to have errors

◆ Static typing is always conservative
if (possible-infinite-run-expression)

then (expression-with-type-error)
else (expression-with-type-error)

Cannot decide at compile time if run-time error will occur
(from the undecidability of the Turing machine’s halting problem)

IN
F 3110 -2016

Remarks – Further reading
◆Mitchell doesn’t cover the material presented on

Equality – See section 2.9 of Pucella’s notes

◆ signatures and structures are part of ML Module
system. See section 9.3.2 of Mitchell’s book

◆ Types: Mitchell’s section 6.1, 6.2

◆ Imperative programming in ML: See chapter 8
of Paulson’s book

INF3110 – ML 2 57

