
IN
F 3110 -2016

Polymorphism and
Type Inference

Volker Stolz
stolz@ifi.uio.no

Department of Informatics – University of Oslo

Initially by Gerardo Schneider.
Based on John C. Mitchell’s slides (Stanford U.)

IN
F 3110 -2016

INF3110 – ML 2 2

Compile-time vs. run-time checking
◆ Lisp uses run-time type checking

(car x) check first to make sure x is list
◆ ML uses compile-time type checking

f(x) must have f : A ® B and x : A
◆ Basic tradeoff

• Both prevent type errors
• Run-time checking slows down execution (compiled ML code, up-

to 4 times faster than Lisp code)
• Compile-time checking restricts program flexibility

Lisp list: elements can have different types
ML list: all elements must have same type

◆ Combination of Compile/Run-time eg. Java
• Static type checking to distinguish arrays and integers
• Run-time checking to detect array bounds errors

IN
F 3110 -2016

INF3110 – ML 2 3

Compile-time type checking

◆Sound type checker: no program with error is
considered correct

◆Conservative type checker: some programs
without errors are considered to have errors

◆ Static typing is always conservative
if (possible-infinite-run-expression)

then (expression-with-type-error)
else (expression-with-type-error)

Cannot decide at compile time if run-time error will occur
(from the undecidability of the Turing machine’s halting problem)

IN
F 3110 -2016

21.10.2016 Inf3110 - ML 3 4

Outline

◆Polymorphisms
• parametric polymorphism
• ad hoc polymorphism
• subtype polymorphism

◆ Type inference

◆ Type declaration

IN
F 3110 -2016

21.10.2016 Inf3110 - ML 3 5

Polymorphism: three forms

◆ Parametric polymorphism
• Single function may be given (infinitely) many types
• The type expression involves type variables

Example: in ML the identity function is polymorphic
- fn x => x;

> val it = fn : 'a -> 'a

An instance of the type scheme may give:
int®int, bool®bool, char®char,

int*string*int®int*string*int, (int®real)®(int®real), ...

Type variable may be replaced by any type

This pattern is called type scheme

IN
F 3110 -2016

21.10.2016 Inf3110 - ML 3 6

Polymorphism: three forms

◆ Parametric polymorphism
• Single function may be given (infinitely) many types
• The type expression involves type variables

Example: polymorphic sort
- sort : ('a * 'a -> bool) * 'a list -> 'a list

- sort((op<),[1,7,3]);
> val it = [1,3,7] : int list

IN
F 3110 -2016

21.10.2016 Inf3110 - ML 3 7

Polymorphism: three forms (cont.)

◆Ad-hoc polymorphism (or Overloading)
• A single symbol has two (or more) meanings (it refers

to more than one algorithm)
• Each algorithm may have different type
• Overloading is resolved at compile time
• Choice of algorithm determined by type context

Example: In ML, + has 2 different associated
implementations: it can have types int*int®int
and real*real®real, no others

IN
F 3110 -2016

21.10.2016 Inf3110 - ML 3 8

Polymorphism: three forms (cont.)

◆ Subtype polymorphism
• The subtype relation allows an expression to have

many possible types
• Polymorphism not through type parameters, but

through subtyping:
– If method m accept any argument of type t then m may also

be applied to any argument from any subtype of t

REMARK 1: In OO, the term “polymorphism” is usually used
to denote subtype polymorphism (ex. Java, OCAML, etc)

REMARK 2: ML does not support subtype polymorphism!

IN
F 3110 -2016

21.10.2016 Inf3110 - ML 3 9

Parametric polymorphism

◆ Explicit: The program contains type variables
• Often involves explicit instantiation to indicate how

type variables are replaced with specific types
• Example: C++ templates

◆ Implicit: Programs do not need to contain types
• The type inference algorithm determines when a

function is polymorphic and instantiate the type
variables as needed

• Example: ML polymorphism

IN
F 3110 -2016

21.10.2016 Inf3110 - ML 3 10

Parametric Polymorphism: ML vs. C++

◆C++ function template
• Declaration gives type of funct. arguments and result
• Place declaration inside a template to define type

variables
• Function application: type checker does instantiation

automatically
◆ML polymorphic function

• Declaration has no type information
• Type inference algorithm

– Produce type expression with variables
– Substitute for variables as needed

ML also has module system with explicit type parameters

IN
F 3110 -2016

21.10.2016 Inf3110 - ML 3 11

Example: swap two values

◆C++

◆ Instantiations:
• int i,j; … swap(i,j); //use swap with T replaced with int
• float a,b;… swap(a,b); //use swap with T replaced with float
• string s,t;… swap(s,t); //use swap with T replaced with string

void swap (int& x, int& y){
int tmp=x; x=y; y=tmp;

}

template <typename T>
void swap(T& x, T& y){

T tmp=x; x=y; y=tmp;
}

IN
F 3110 -2016

21.10.2016 Inf3110 - ML 3 12

Example: swap two values
◆ ML

- fun swap(x,y) =
let val z = !x in x := !y; y := z end;

> val swap = fn : 'a ref * 'a ref -> unit

- val a = ref 3 ; val b = ref 7 ;
> val a = ref 3 : int ref
> val b = ref 7 : int ref
- swap(a,b) ;
> val it = () : unit
- !a ;
> val it = 7 : int

Remark: Declarations look similar in ML and C++,
but compile code is very different!

IN
F 3110 -2016

21.10.2016 Inf3110 - ML 3 13

Parametric Polymorphism: Implementation

◆C++
• Templates are instantiated at program link time
• Swap template may be stored in one file and the

program(s) calling swap in another
• Linker duplicates code for each type of use

◆ML
• Swap is compiled into one function (no need for

different copies!)
• Typechecker determines how function can be used

IN
F 3110 -2016

21.10.2016 Inf3110 - ML 3 14

◆ Why the difference?
• C++ arguments passed by reference (pointer), but local

variables (e.g. tmp, of type T) are on stack
– Compiled code for swap depends on the size of type T => Need to

know the size for proper addressing
• ML uses pointers in parameter passing (uniform data

representation)
– It can access all necessary data in the same way, regardless of its

type; Pointers are the same size anyway
◆ Comparison

• C++: more effort at link time and bigger code
• ML: run more slowly, but give smaller code and avoids linking

problems
• Global link time errors can be more difficult to find out than

local compile errors

Parametric Polymorphism: Implementation

IN
F 3110 -2016

21.10.2016 Inf3110 - ML 3 15

ML overloading

◆ Some predefined operators are overloaded
• + has types int*int®int and real*real®real

◆User-defined functions must have unique type
- fun plus(x,y) = x+y; (compiled to int or real function, not both)
In SML/NJ:

- fun plus(x,y) = x+y;
> val plus = fn : int * int -> int

If you want to have plus = fn : real * real -> real you
must provide the type:

- fun plus(x:real,y:real) = x+y;

IN
F 3110 -2016

21.10.2016 Inf3110 - ML 3 16

ML overloading (cont.)

◆Why is a unique type needed?
• Need to compile code implies need to know which +

(different algorithm for distinct types)
• Overloading is resolved at compile time

– The compiler must choose one algorithm among all the
possible ones

– Automatic conversion is possible (not in ML!)
– But in e.g. Java : consider the expression (1 + “foo”) ;

• Efficiency of type inference – overloading complicates
type checking

• Overloading of user-defined functions is not allowed in
ML!

• User-defined overloaded function can be incorporated
in a fully-typed setting using type classes (Haskell)

IN
F 3110 -2016

21.10.2016 Inf3110 - ML 3 17

Parametric polymorphism vs.
overloading

◆ Parametric polymorphism
• One algorithm for arguments of many different types

◆Overloading
• Different algorithms for each type of argument

IN
F 3110 -2016

21.10.2016 Inf3110 - ML 3 18

Outline

◆ Polymorphisms

◆Type inference

◆ Type declaration

IN
F 3110 -2016

21.10.2016 Inf3110 - ML 3 19

Type checking and type inference
◆ Type checking: The process of checking whether the

types declared by the programmer “agrees” with the
language constraints/ requirement

◆ Type inference: The process of determining the type of
an expression based on information given by (some of)
its symbols/sub-expressions
• Provides a flexible form of compile-time/static type checking

◆ Type inference naturally leads to polymorphism, since
the inference uses type variables and some of these
might not be resolved in the end
ML is designed to make type inference tractable

(one of the reason for not having subtypes in ML!)

IN
F 3110 -2016

21.10.2016 Inf3110 - ML 3 20

Type checking and type inference

◆ Standard type checking
int f(int x) { return x+1; };
int g(int y) { return f(y+1)*2;};

• Look at body of each function and use declared types
of identifies to check agreement

◆ Type inference
int f(int x) { return x+1; };
int g(int y) { return f(y+1)*2;};

• Look at code without type information and figure out
what types could have been declared

IN
F 3110 -2016

21.10.2016 Inf3110 - ML 3 21

Type inference algorithm: some history

◆Usually known as Milner-Hindley algorithm
◆1958: Type inference algorithm given by H.B.

Curry and Robert Feys for the typed lambda
calculus

◆1969: Roger Hindley extended the algorithm
and proved that it gives the most general type

◆1978: Robin Milner -independently of Hindley-
provided an equivalent algorithm (for ML)

◆1985: Luis Damas proved its completeness and
extended it with polymorphism

IN
F 3110 -2016

21.10.2016 Inf3110 - ML 3 22

ML Type Inference

◆ Example
- fun f(x) = 2+x;
> val f = fn : int ® int

◆How does this work?
• + has two types: int*int ® int, real*real®real
• 2 : int, has only one type
• This implies + : int*int ® int
• From context, need x: int
• Therefore f(x:int) = 2+x has type int ® int

Overloaded + is unusual - Most ML symbols have unique type
In many cases, unique type may be polymorphic

IN
F 3110 -2016

21.10.2016 Inf3110 - ML 3 23

ML Type Inference

◆ Example
- fun f(g,h) = g(h(0));

◆How does this work?
• h must have the type: int ® ´a, since 0 is of type int
• this implies that g must have the type: ´a ® ´b
• Then f must have the type:

(´a ® ´b) * (int ® ´a) ® ´b

IN
F 3110 -2016

21.10.2016 Inf3110 - ML 3 24

Information from type inference

◆An interesting function on lists
- fun reverse (nil) = nil
| reverse (x::lst) = reverse(lst);

◆Most general type
> reverse : ’a list ® ’b list

◆What does this mean?
Since reversing a list does not change its type,
there must be an error in the definition

x is not used in “reverse(lst)”!

IN
F 3110 -2016

21.10.2016 Inf3110 - ML 3 25

The type inference algorithm

◆ Example
- fun f(x) = 2+x;
(val f = fn x => 2+x ;)

> val f = fn : int ® int

f(x) = 2+x equiv f = lx. (2+x) equiv f = lx. ((plus 2) x)

IN
F 3110 -2016

21.10.2016 Inf3110 - ML 3 26

Detour: the l-calculus
◆ “Entscheidungsproblem”: David Hilbert (1928): Can any

mathematical problem be solved (or decided)
computationally?

◆ Subproblem: Formalize the notion of decidability or
computability

◆ Two formal systems/models:
• Alonzo Church (1936) - l-calculus
• Alan M. Turing (1936/37) – Turing machine

◆ l-calculus ® functional programming languages
◆ Turing-machines ® imperative, sequential programming

languages
◆ The models are equally strong (they define the same

class of computable functions) (Turing 1936)

IN
F 3110 -2016

21.10.2016 Inf3110 - ML 3 27

Detour: the l-calculus

◆ Two ways to construct terms:
• Application: F A (or F(A))
• Abstraction: lx.e

If e is an expression on x, then lx.e is a function
Ex:

e = 3x+4 .
lx.e = lx.(3x+4) (fn x => (3x+4))
compare with “school book” notation:

if f(x) = 3x+4 then f = lx.(3x+4)
◆Rules for computation

lx.(3x+4) ® ly.(3y+4) (a – conversion)
(lx.(3x+4)) 2(lx.(3x+4)) 2 ® (3*2) + 4

(lx.(3x+4)) 2 ® (3*2) + 4 ® 10 (b – reduction)

IN
F 3110 -2016

21.10.2016 Inf3110 - ML 3 28

Application and Abstraction

◆ Application f x
• f must have function type

domain® range
• domain of f must be type

of argument x (b)
• the range of f is the result

type (c)
• thus we know that

a = b® c

◆ Abstraction lx.e (fn x => e)
• The type of lx.e is a function

type domain® range
• the domain is the type of the

variable x (a)
• the range is the type of the

function body e (b)

x
l

e: b: a : a : b

: c (a = b ® c) : a ® b@

f x

f x lx.e
: c

The type inference algorithm
◆ Example

- fun f(x) = 2+x;
- (val f = fn x => 2+x ;)
> val f = fn : int ® int

◆ How does this work?

x

l

@

@

+ 2
2. Generate constraints:
• int®int = u ® s
• r = u ® s

int®int = u ® s

int®int

=u ® s

3. Solve by
unification/substitution

= int®int

Graph for lx. ((+ 2) x)

f(x) = 2+x equiv f = lx. (2+x) equiv f = lx. ((plus 2) x)

1. Assign types to
expressions

:u

int ® int ® int
real ® real®real

:int

:s

:r

IN
F 3110 -2016

21.10.2016 Inf3110 - ML 3 30

Types with type variables

◆ Example
- fun f(g) = g(2);
> val f = fn : (int®’a)®’a

◆How does this work?

2

l

@

g
1. Assign types to leaves

: int: s2. Propagate to internal
nodes and generate
constraints

t (s= int®t)

s®t

3. Solve by substitution

= (int®t)®t

Graph for lg. (g 2)
’a is syntax for “type variable” (t in the graph)

IN
F 3110 -2016

21.10.2016 Inf3110 - ML 3 31

Use of Polymorphic Function

◆ Function
- fun f(g) = g(2);
> val f = fn : (int®’a)®’a

◆ Possible applications

g may be the function:
- fun add(x) = 2+x;
> val add = fn : int ® int
Then:
- f(add);
> val it = 4 : int

g may be the function:
- fun isEven(x) = ...;
> val it = fn : int ® bool
Then:
- f(isEven);
> val it = true : bool

IN
F 3110 -2016

21.10.2016 Inf3110 - ML 3 32

Recognizing type errors

◆ Function
- fun f(g) = g(2);
> val f = fn : (int®’a)®’a

◆ Incorrect use
- fun not(x) = if x then false else true;
> val not = fn : bool ® bool
- f(not);
Why?

Type error: cannot make bool ® bool = int ® ’a

IN
F 3110 -2016

21.10.2016 Inf3110 - ML 3 33

Another type inference example

◆ Function Definition
- fun f(g,x) = g(g(x));

Solve by substitution

= (v®v)*v®v l

@

g

x

@

g

Assign types to leaves

: t

: s

: s

Propagate to internal
nodes and generate
constraints:
s = t®u, s = u®v
t=u,u=v
t=v

v (s = u®v)

s*t®v

u (s = t®u)

Graph for lág,xñ. g(g x)

IN
F 3110 -2016

21.10.2016 Inf3110 - ML 3 34

Multiple clause function
◆ Datatype with type variable

- datatype ’a list = nil | cons of ’a*(’a list);
> nil : ’a list
> cons : ’a*(’a list) ® ’a list

◆ Polymorphic function
- fun append(nil,l) = l

| append (x::xs,l) = x:: append(xs,l);
> val append= fn: ‘a list * ‘a list ® ’a list

◆ Type inference
• Infer separate type for each clause

append: ‘a list * ‘b -> ‘b
append: ‘a list * ‘b -> ‘a list

• Combine by making the two types equal (if necessary) ‘b = ‘a list

IN
F 3110 -2016

21.10.2016 Inf3110 - ML 3 35

Main points about type inference

◆Compute type of expression
• Does not require type declarations for variables
• Find most general type by solving constraints
• Leads to polymorphism

◆ Static type checking without type specifications
◆May lead to better error detection than ordinary

type checking
• Type may indicate a programming error even if there

is no type error (example following slide).

IN
F 3110 -2016

21.10.2016 Inf3110 - ML 3 36

Type inference and recursion

◆ Function definition
- fun sum(x) = x + sum(x-1);
> val sum= fn : ’int®’int

sum = lx .((+ x) (sum((- x) 1)))

IN
F 3110 -2016

21.10.2016 Inf3110 - ML 3 37

Outline

◆ Polymorphisms

◆ Type inference

◆Type declaration

IN
F 3110 -2016

21.10.2016 Inf3110 - ML 3 38

Type declaration

◆ Transparent: alternative name to a type that
can be expressed without this name

◆Opaque: new type introduced into the program,
different to any other

ML has both forms of type declaration

IN
F 3110 -2016

21.10.2016 Inf3110 - ML 3 39

Type declaration: Examples

◆ Transparent (”type” declaration)

• Since Fahrenheit and Celsius are synonyms for real,
the function may be applied to a real:

- type Celsius = real;
- type Fahrenheit = real;

- toCelsius(60.4);
> val it = 15.77904 : Celsius

More information:
- fun toCelsius(x: Fahrenheit) = ((x-32.0)*0.5556): Celsius;
> val toCelsius = fn : Fahrenheit ® Celsius

- fun toCelsius(x) = ((x-32.0)*0.5556);
> val toCelsius = fn : real ® real

IN
F 3110 -2016

21.10.2016 Inf3110 - ML 3 40

Type declaration: Examples

◆Opaque (”datatype” declaration)

• A and B are different types
• Since B declaration follows A decl.: C has type int®B
Hence:
- fun f(x:A) = x: B;
> Error: expression doesn't match constraint [tycon mismatch]
expression: A constraint: B
in expression: x: B

- datatype A = C of int;
- datatype B = C of int;

IN
F 3110 -2016

21.10.2016 Inf3110 - ML 3 41

Equality on Types

Two forms of type equality:

◆Name type equality: Two type names are equal
in type checking only if they are the same name

◆ Structural type equality: Two type names are
equal if the types they name are the same

Example: Celsius and Fahrenheit are structurally
equal although their names are different

IN
F 3110 -2016

21.10.2016 Inf3110 - ML 3 42

Remarks – Further reading

◆More on subtype polymorphism (Java):
Mitchell’s Section 13.3.5

