
Excercise 1 (6.1 in Mitchell’s book)

A)

fun a(x,y) = x+2*y;

What is the type of the following function and why?

The + and * operators either take in only reals or only integers

Since 2 is an integer, and it’s used with both x and y, the answer must be int * int -> int

Excercise 1 (6.1 in Mitchell’s book)

B)

fun b(x,y) = x+y/2.0;

What is the type of the following function and why?

The + and * operators either take in only reals or only integers

Since 2.0 is a real, and it’s used with both x and y, the answer must be real * real -> real

Excercise 1 (6.1 in Mitchell’s book)

C)

fun c(f) = fn y => f(y);

What is the type of the following function and why?

y is an argument of some type, let’s call it ‘a

Since f takes y as an argument, it’s type must be ‘a -> ‘b (both types unknown)

c takes f as an argument and, which is applied to y. C’s type is therefore
(‘a -> ‘b) -> ‘a

The complete type is therefore (‘a -> ‘b) -> ‘a -> ‘b

Excercise 1 (6.1 in Mitchell’s book)

D)

fun d(f,x) = f(f(x));

What is the type of the following function and why?

x is an argument of some type ‘a

f is applied to x, and it’s also applied to the return value of itself, so ‘a -> ‘a

d takes a pair consisting of f and x, argument type is therefore (‘a -> ‘a) * ‘a

The complete type is therefore (‘a -> ‘a) * ‘a -> ‘a

Excercise 1 (6.1 in Mitchell’s book)

E)

fun e(x,y,b) = if b(y) then x else y;

What is the type of the following function and why?

x and y has to be of the same type, since they can both be returned, so ‘a

b is a function that takes the type of y as an argument, so ‘a as argument

It is used in the if clause, and such must return a boolean

The complete type is therefore ‘a * ‘a * (‘a -> bool) -> ‘a

Excercise 2 (6.4 in Mitchell’s book)

A)

Y is a function that takes a function as its first parameter, which applied to an argument
of type ‘a gives something of type ‘b

Example of use: factorial(5); [it = 120]

Excercise 2 (6.4 in Mitchell’s book)

No, F is not a recursive function and as such
cannot be the factorial function (it calls f, not F)

F (fn x => x) n gives us n*(n-1)

Excercise 3 (6.5 in Mitchell’s book)

1. tg = th -> t

2. int -> (int -> int) = t -> u

3. u = int -> v

4. r = (tg * th) -> v

5. From 2 we know t = int and u = int -> int

6. From 3 and 5, we know v = int

7. From 1, 4, 5 and 6, we know r = (th->int) * th -> int

8. Substitute th with an unknown type variable ‘a

9. Ending up with r = (‘a -> int) * ‘a -> int

Excercise 4 (6.6 in Mitchell’s book)

1 tg = tg -> t

2. int -> (int -> int) = t -> u

3. u = int -> v

4. r = tg -> v

5. From 2 we know t = int and u = int -> int

6. From 3 and 5, we know v = int

7. From 4 and 6, we know that r = tg -> int

8. Looking at 1, we need to know tg to get to know tg

9. Type inference algorithm cannot give appropriate type, error

Excercise 5 (6.7 in Mitchell’s book)

The first argument has to be a list of some type because of nil and x::l

The second argument the compiler knows nothing about, no operations,
or anything else to indicate its type. So it’s given the type ‘b

The return type of append has to be of type ‘b, and by this we can see
that it will not guarantee a list to be returned

Calling append with a list and some value of type ‘b, it will just return the value

Excercise 6

Answer:
Context-independent

Because:
All combinations of char
and string are defined

A)

Excercise 6
B)

c1 ++ c2; => ah
s1 ++ c2; => bcdh
c1 ++ s1; => abcd
s1 ++ s2; => bcdefg

Excercise 7
A)

Would overloading for procedures be context-dependent or context-independent?

Remember that procedures are a set of operations without results

Context-independent, because as stated above, they do not return results

Excercise 7

write(5/9)

Excercise 8

A)

It needs to allocate space for the variables on the activation record
Different types can have different space requirements

Excercise 8

Pointers take up the same amount of space regardless of the class
they are pointing to

