
Problem 1

Problem 1

Problem 1 a)

• Extend the class hierarchy to include a class
for product expressions e := … | e * e

class prod(e1,e2)=extend expression()
with
private fields:
val left = e1
val right = e2

public methods:
atomic?() = false
lsub()= left
rsub()= right
value()=(left.value()*right.value())

end

Problem 1b)

e.value() =
e.left.value() * e.right.value() =
(d.left.value + d.right.value) * 7 =
(3 + 5) * 7 = 56

Problem 1 c)

A minimal extension of the expression abstract class
uses the lsub() to represent the unary operand:

class expression()=
private fields: (* none *)
public methods:

atomic?() (* returns true if an atomic expression *)
unary?() (* returns true if a unary expression *)
lsub() (* returns the left subexpression if not atomic,

or the operand of a unary expression *)

rsub() (* returns the left subexpression if not atomic,

but none in case of a unary expression *)
value()

end

class square(e)= extend expression() with
private fields:

val sub = e
public methods:

atomic?() = false
unary?() = true
lsub()= sub
rsub()= none
value()=(sub.value()*sub.value())

end

Problem 1c, alternative solution
Alternatively a separate field sub is introduced to keep
this operand:

class expression()=
private fields:

(* none *)
public methods:

atomic?() (* returns true if a atomic expression *)
unary?() (* returns true if a unary expression *)
sub() (* returns the operand of a unary expression *)
lsub() (* returns the left subexpression if not atomic,

and not unary *)
rsub() (* returns the right subexpression if not atomic,

and not unary *)
value()

end

class square(e)=extend expression() with
private fields:

val sub = e
public methods:

atomic?() = false
unary?() = true
sub()= sub
lsub()= none
rsub()= none
value()=(sub.value()*sub.value())

end

Problem 2 a)

We now have two variables
with name ul, and two with
named lr

What if Java instead would allow the original ul to be redefined to have type
ColorPoint in ColoreRect, and correspondingly for lr. What type errors could occur?

The variables could be assigned values of the superclass Point, even though
they were typed with ColorPoint type error

Problem 2 b)
b) How would this be done if Java had virtual classes?
• A virtual class is an inner class that can be redefined in a subclass, much like a virtual

method
class Point {

int x, y;
virtual class ThePointClass <: Point;

bool equal(ThePointClass p) {
return x == p.x && y == p.y;

}
}

class ColorPoint extends Point {
Color c;
ThePointClass := ColorPoint;

bool equal(ThisPointClass p) {
return super.equal(p) && c == p.c;

} }

Syntax
made-up!

Problem 2 c)

Virtual classes are not part of Java. Would a cast help, like in this redefinition of setUL
in ColorRect:

class ColorRect extends Rect {

void setUL(Point newUL){
this.ul = (ColorPoint)newUL;

}
}

No, this would not help much. Casting would make a runtime type check explicit,
but would not guarantee type safety. Variables ul and lr would still be typed as
Point and not ColorPoint.

Problem 3 a)
Is there an alternative to multiple inheritance if we want to reuse only
implementation, and do not care about subtyping? Use the Stack and Queue, and try
to implement Dequeue.

class Dequeue {
Stack s = new Stack();
Queue q = new Queue();
Object[] r;
Dequeue() { s.r = r; q.r = r; }

void insert_front(Object o) { s.push(o); }
void insert_rear(Object o) { q.insert(o); }
void delete_front() { s.pop(); }
void delete_rear() { q.delete(); }

}

Shared
between
Queue and
Stack

Problem 3 a2)
Define Stack and Queue by means of an implementation by a Dequeue object d, and
use this in the implementation of methods.

class Stack {
Dequeue d = new Dequeue();
void push(Object o){ d.insert_front(o); }
void pop(){ d.delete_front(); }

}

class Queue {
Dequeue d = new Dequeue();
void insert_rear(){ d.insert_rear(o); }
void delete_front(){ d.delete_front(); }

}

Problem 3 b)
What if we want to have a subtyping relationship, so that objects typed as Stack and
Queue can hold objects of type Dequeue?

interface Stack {
void push(Object o);
void pop();

}

interface Queue {
void insert_rear();
void delete_front();

}

class Dequeue implements Stack, Queue {
Stack s = new StackImpl();
Queue q = new QueueImpl();
Object[] r;
Dequeue(){s.r = r; q.r = r;}

void insert_front(Object o){s.push(o);};
void insert_rear(Object o){q.insert_rear(o)};
void delete_front(){s.pop()};
void delete_rear(){q.delete_rear()};

}

<<implements>> <<implements>>

Problem 4

class TypeTest {
C v = new C();
void arrayProb(C[] anArray) {

if (anArray.length >0)
anArray[0] = v; // (2)

}

static void main(string[] args) {
TypeTest tt = new TypeTest();
CSub[] paramArray = new CSub[10];
tt.arrayProb(paramArray); // (1)
paramArray[0].methodOfCSubOnly(); // (3)

}
}

With this program, describe what happens on lines marked 1, 2 and 3

Ok!

Runtime type error

Will never be
reached!

Problem 5

Suppose that we have class Reservation with
subclasses FlightReservation and
TrainReservation as described in the foil set.

It is desirable to have specific collections of
reservations that cater for subclasses for new
kinds of reservations (e.g. for space travels).
How would you make a print method that
prints all elements of such a collection, using
the generics mechanisms of Java?

void print(Collection<? extends Reservation > reservations) { ... }

Problem 6

Consider the following Java sketch:

interface cowboy {void draw(); ...}
interface shape {void draw(); ...}
class LuckyLuke implements cowboy, shape {...}

Is this an example of structural (sub)typing, given the fact that Java
may very well get the same method from different interfaces, but still
only provide one implementation?

No, this is not an example of structural subtyping. Type checking is still done
using the names cowboy and shape.

Problem 7
The FlightReservation class we have seen a couple of times has a Flight attribute. We
assume that this is a reference to an object of class Flight. The Flight object represents
the actual flight reserved. In the flight table of SAS we have entries for e.g. SK451 (Oslo
to Copenhagen). Suppose that we would like to represent such an entry by means of a
FlightType object. Class FlightType would therefore have attributes that are common to
all SK451 Flights, like source, destination, scheduled departure time (8.20), scheduled
flying time (1.10), scheduled arrival time, etc.

SK451 takes place every day (or almost), so a reservation system would need to have
one Flight object for each actual flight. These Flight objects will have a representation
of seats (free, occupied), and for other reasons one may imagine that they will also
have actual departure time, actual flight time and delay (departure and arrival delay).

It is perfectly possible to do this without inner classes, but if you should exploit inner
classes, how would this be done. Of special interest are of course the functions
computing the departure and arrival delays.

Feel free to be inspired by the slide on inner classes exemplified by class Apartment,
specially the fact the attribute height of Apartment is visible in the inner classes.
Attributes like scheduled departureTime and arrivalTime should be attributes of the
outer class FlightType.

Problem 7 – slide from lecture

Problem 7
class FlightType {
City source, destination;
TimeOfDay departureTime, arrivalTime;
Duration flyingTime;

class Flight {
Seat[] seats;
TimeOfDay actualDepartureTime, actualArrivalTime;
Duration ActualFlyingTime;

Duration departureDelay(){
return actualDepartureTime – departureTime;

};
Duration arrivalDelay(){
return actualArrivalTime – arrivalTime;

}; } };

class TimeTable {
FlightType SK451 = new FlightType(Oslo, Copenhagen, 8.20); // provided a corresponding constructor

};

TimeTableWithReservations ttwr = new TimeTable {
SK451.Flight[365] SK451flights; // note: an array of an inner class Flight in an object SK451 of class

FlightType
...
}

INF3110 Group 2

Exam 2013 solutions and hints

But first, an example of compile-time and run-time type checking

Imagine we have the following code.
What would be returned by «new B().me()»?
An A object? A B object?

So, static is compile-time and dynamic is run-time. In this example (Java)
will try to figure out the types of all «elements», in an effort to prevent bad
things from happening.

The compiler only «sees» an A object being returned,
but the object is actually a B object.

Are there any potential problems with this?

Since the compiler thinks it’s an A object,
and B extends A, inheriting methods, this
line is legal: new B().me().doA();

But it’s actually a B object, so:
new B().me().doB(); should be legal too?

But it’s not. The compiler can’t figure
out that this should be legal. So we have
to cast the object to a B object:
((B) new B().me().doB();

The compiler then «trusts» the programmer
and lets it pass without it being able to verify
that is actually is ok.

Full example can be found at http://www.programcreek.com/2011/12/an-example-of-java-static-type-checking/

So we’re to draw the run-time stack
while executing reduction(address())

Yes, we did this exact exercise a couple of weeks ago

So, how do we start?

So, we want to figure out
if quality should be called
with value or by reference

So, we want to figure out
if quality should be called
with value or by reference

What would the different effects be?

So in conclusion?

By reference so the printLabel
method has access to change
the value in printQuality

A person does not define a «visitingAddress» method

Can avoid the type error by casting p to VisitingPerson

But is this actually safe? Why or why not?

So, we want to print the name
as well when calling upon printLabel.
At the same time we wish to preserve
the call, so it should still be p.addr.printLabel();

The given hints here are what you may assume.
So we have calls to superclasses using super.x()
and we have support for anonymous classes.

The solution given is this, but someone more awake
than me pointed me to a problem with this solution

So this would probably make more sense

If you get something similar and
you are completly stuck, work
around the problem. It’s better
to solve the problem is a «bad»
way than do nothing. Any ideas
on how to work around this problem?

