Problem 1

10.1 Expression Objects

We can represent expressions given by the grammar
¢ = num|e+e

by using objects from a class called expression. We begin with an “abstract class™
called expression. Although this class has no instances, it lists the operations ¢com-
mon to all kinds of expressions. These are a predicate telling whether thoere are
subexpressions, the lefl and right subexpressions (il the expression is not atownic),
and a method computing the value of the expression:

class expression() =
private fields:
(* none appear in the _inlerface. *)
public methods:
atomic?() (* returns true if no subexpressions *)
Lsub() (* returns “left" subexpression if not atomic *)
sub() (* returns “right” subexpression if not atomic *)
value() (* compute value of expression *)
end

Because the prammur gives two cascs, we have two subclasses of expression, ouc for
numbers and one for sums:

class number(n) = extend expression(} with
private fields:

Problem 1

class number(n) = extend expression() with
private fields:
wal T = 0
public metitods:
aromic?() = true
lsub () = mene (* ot alleved to call this,)
esub () = none (* because atomic?() retumns Tue 3
value () =num
end
class sumfel, ¢2) = extend expression() with
privete fields:
val left = el
val richt ~ ¢2
public methods:
atomic?() < fase
'sub () = £ft
wsub () = dght
value {3 = { leftvalue()) + (rignL. yalue())
end

Problem 1 a)

* Extend the class hierarchy to include a class
for product expressionse :=... | e * e

class prod(el,e2)=extend expression()
with
private fields:
val left = el
val right = e2
public methods:
atomic?() = false
Isub()= left
rsub()=right
value()=(left.value()*right.value())
end

Problem 1b)

Merhad Cells: Suppose we constiuct 4 compound expression by

val a = numbez(3);

val b = number(9):

val ¢ = munber(7).

val d = sum(ab);

val & = prod{o.c);
and send the message value to e. Explain the scquence ot ca!ls that sre Liged 10
iennuce the value of this expression: 2 value(), What value is ceturned?

e.value() =
e.left.value() * e.right.value() =

(d.left.value + d.right.value) * 7 =
(3+5)*7=56

Problem 1 c)

{(¢) Unary Expressivns: Lxiend this class hicrarchy by wiiting a squave class to
repIesent SYUATIng CxXpressions ol the form
e,

g =

What changes will he required in the expressicn mtcrffwe':' Whu.l ghapg:s mll be
required in subclasses ol vapression” What changes will be _rcqu?ted n [““_"UOFQ
thar use expressions?* What. changes will be required o funcuions thul L“? il
use expreseions? (Try 1o muke as fow changes as possible L the program.)

A minimal extension of the expression abstract class
uses the Isub() to represent the unary operand:
class square(e)= extend expression() with

class expression()= private fields:
private fields: (* none *) val sub = e

public methods:
atomic?() (* returns true if an atomic expression *)
unary?() (* returns true if a unary expression *)
Isub() (* returns the left subexpression if not atomic,

public methods:
atomic?() = false
unary?() = true

or the operand of a unary expression *) Isub()= sub
rsub() (* returns the left subexpression if not atomic, rsub()= none
but none in case of a unary expression *) vaIue()=(sub.value()*sub.value())
value() end

end

Problem 1c, alternative solution

Alternatively a separate field sub is introduced to keep
this operand:

class expression()=
private fields:
(* none *)
public methods:
atomic?() (* returns true if a atomic expression *)
unary?() (* returns true if a unary expression *)
sub() (* returns the operand of a unary expression *)
Isub() (* returns the left subexpression if not atomic,
and not unary *)
rsub() (* returns the right subexpression if not atomic,
and not unary *)
value()
end

class square(e)=extend expression() with
private fields:
valsub=e
public methods:
atomic?() = false
unary?() = true
sub()= sub
Isub()= none
rsub()= none
value()=(sub.value()*sub.value())
end

Problem 2 a)

class Rect {

Point ul; // upper left corner
Point 1r; // lower right corner
vold setUL(Point newUL){ this.ul = newUL;}:

b7

class ColorRect extends Rect | We now have two variables
ColorPoint ul; with name ul, and two with
ColorPoint 1r; named Ir

What if Java instead would allow the original ul to be redefined to have type
ColorPoint in ColoreRect, and correspondingly for Ir. What type errors could occur?

The variables could be assigned values of the superclass Point, even though
they were typed with ColorPoint = type error

Problem 2 b)

b) How would this be done if Java had virtual classes?
* Avirtual class is an inner class that can be redefined in a subclass, much like a virtual
method

class Point {
int x, y;
virtual class ThePointClass <: Point; Syntax
made-up!

bool equal(ThePointClass p) {
return x == p.x && y == p.y;
}
}

class ColorPoint extends Point {
Color c;
ThePointClass := ColorPoint;

bool equal(ThisPointClass p) {
return super.equal(p) && c == p.c;

1}

Problem 2 c)

Virtual classes are not part of Java. Would a cast help, like in this redefinition of setUL
in ColorRect:

class ColorRect extends Rect {

void setUL(Point newUL){
this.ul = (ColorPoint)newUL;

}
}

No, this would not help much. Casting would make a runtime type check explicit,
but would not guarantee type safety. Variables ul and Ir would still be typed as
Point and not ColorPoint.

Problem 3 a)

Is there an alternative to multiple inheritance if we want to reuse only
implementation, and do not care about subtyping? Use the Stack and Queue, and try

to implement Dequeue.

Queue

insert()
delete()

Stack

push()
pop()

Dequeue

insert_front()
insert_rear()

delete front()
delete rear()

class Dequeue {
Stack s = new Stack();

Queue g = new Queue(); Shared

Object[] r; « between
. . Queue and

Dequeue() {s.r=r;q.r=r; } Stack

void insert_front(Object o) { s.push(o); }
void insert_rear(Object o) { g.insert(o); }
void delete_front() { s.pop(); }

void delete_rear() { g.delete(); }

Problem 3 a2)

Define Stack and Queue by means of an implementation by a Dequeue object d, and
use this in the implementation of methods.

class Stack {
Dequeue d = new Dequeue();
void push(Object o){ d.insert_front(o); }
void pop(){ d.delete_front(); }

}

class Queue {
Dequeue d = new Dequeue();
void insert_rear(){ d.insert_rear(o); }
void delete front(){ d.delete_front(); }

}

Problem 3 b)

What if we want to have a subtyping relationship, so that objects typed as Stack and
Queue can hold objects of type Dequeue?

interface Stack { interface Queue {
void push(Object 0); void insert_rear();
void pop(); void delete_front();
} }

<<implements>> <<implements>>

class Dequeue implements Stack, Queue {
Stack s = new Stackimpl();
Queue g = new Queuelmpl();
Object][] r;
Dequeue(){s.r=r; q.r=r;}

void insert_front(Object o){s.push(o);};

void insert_rear(Object o){q.insert_rear(o)};
void delete_front(){s.pop()};

void delete_rear(){q.delete_rear()};

Problem 4

With this program, describe what happens on lines marked 1, 2 and 3

class TypeTest {
Cv=new C();
void arrayProb(C[] anArray) {
if (anArray.length >0)
anArray[0] = v; // (2) Runtime type error

}

static void main(string[] args) {
TypeTest tt = new TypeTest();
CSub[] paramArray = new CSub[10];

tt.arrayProb(paramArray); // (1) Ok!
paramArray[0].methodOfCSubOnly(); // (3) will never be
} reached!

}

Problem 5

Suppose that we have class Reservation with
subclasses FlightReservation and
TrainReservation as described in the foil set.

It is desirable to have specific collections of
reservations that cater for subclasses for new
kinds of reservations (e.g. for space travels).
How would you make a print method that
prints all elements of such a collection, using
the generics mechanisms of Java?

Reservation

date
customer

print()

M

A
A\ %u

FlightReservation

flight
seat

print()

TrainReservation

train
waggon
seat

print()

void print(Collection<? extends Reservation > reservations) { ... }

Problem 6

Consider the following Java sketch:

interface cowboy {void draw(); ...}
interface shape {void draw(); ...}
class LuckyLuke implements cowboy, shape {...}

Is this an example of structural (sub)typing, given the fact that Java
may very well get the same method from different interfaces, but still
only provide one implementation?

No, this is not an example of structural subtyping. Type checking is still done
using the names cowboy and shape.

Problem 7

The FlightReservation class we have seen a couple of times has a Flight attribute. We
assume that this is a reference to an object of class Flight. The Flight object represents
the actual flight reserved. In the flight table of SAS we have entries for e.g. SK451 (Oslo
to Copenhagen). Suppose that we would like to represent such an entry by means of a
FlightType object. Class FlightType would therefore have attributes that are common to
all SK451 Flights, like source, destination, scheduled departure time (8.20), scheduled
flying time (1.10), scheduled arrival time, etc.

SK451 takes place every day (or almost), so a reservation system would need to have
one Flight object for each actual flight. These Flight objects will have a representation
of seats (free, occupied), and for other reasons one may imagine that they will also

have actual departure time, actual flight time and delay (departure and arrival delay).

It is perfectly possible to do this without inner classes, but if you should exploit inner
classes, how would this be done. Of special interest are of course the functions
computing the departure and arrival delays.

Feel free to be inspired by the slide on inner classes exemplified by class Apartment,
specially the fact the attribute height of Apartment is visible in the inner classes.
Attributes like scheduled departureTime and arrivalTime should be attributes of the
outer class FlightType.

Problem 7 —slide from lecture

class Apartment {
Height height;
Kitchen theKitchen = new Kitchen();
class ApartmentBathroom extends Bathroom {... height ...}
ApartmentBathroom Bathroom 1 = new ApartmentBathroom ();
ApartmentBathroom Bathroom 2 = new ApartmentBathroom ();
Bedroom theBedroom = new Bedroom ();
FamilyRoom theFamilyRoom = new FamilyRoom ();
Person Owner;
Address theAddress = new Address()

class FlightType {
City source, destination; P b I m 7
TimeOfDay departureTime, arrivalTime; ro e
Duration flyingTime;

class Flight {
Seat([] seats;
TimeOfDay actualDepartureTime, actualArrivalTime;
Duration ActualFlyingTime;

Duration departureDelay(){

return actualDepartureTime — departureTime;
2
Duration arrivalDelay(){

return actualArrivalTime — arrivalTime;

Lok

class TimeTable {
FlightType SK451 = new FlightType(Oslo, Copenhagen, 8.20); // provided a corresponding constructor
Iy

TimeTableWithReservations ttwr = new TimeTable {
SK451.Flight[365] SK451flights; // note: an array of an inner class Flight in an object SK451 of class
FlightType

INF3110 Group 2

Exam 2013 solutions and hints

But first, an example of compile-time and run-time type checking

Static type-checking is the process of verifying the type safety of a program based on
analysis of a program's source code.

Dynamic type-checking is the process of verifying the type safety of a program at runtime

So, static is compile-time and dynamic is run-time. In this example (Java)
will try to figure out the types of all «xelements», in an effort to prevent bad
things from happening.

Imagine we have the following code.
What would be returned by «new B().me()»?
An A object? A B object?

class 2 {
Ame() {
return this;

public veoid dok() {
System.out.println{("Do A");

class B extends 2 |
public void doB(} {
System.out.println("Do B");

The compiler only «sees» an A object being returned,
but the object is actually a B object.

Are there any potential problems with this?

Since the compiler thinks it’s an A object,
and B extends A, inheriting methods, this
line is legal: new B().me().doA();

But it’s actually a B object, so:
new B().me().doB(); should be legal too?

But it’s not. The compiler can’t figure
out that this should be legal. So we have
to cast the object to a B object:

((B) new B().me().doB();

The compiler then «trusts» the programmer
and lets it pass without it being able to verify
that is actually is ok.

Full example can be found at http://www.programcreek.com/2011/12/an-example-of-java-static-type-checking/

1a ’ .
The code below is a program in this language. It is not intended to be complete, and it includes only SO We re to draW the ru n_tl me StaCk
while executing reduction(address())

things that are required in order to answer this question.

{ int taxReductionl (String address) {...}
int taxReduction2 (String address) {...} . . .

et e Yes, we did this exact exercise a couple of weeks ago
Et;inq a;c;re;s (): i
vold printLabel();

interface Taxables |
int income ()}
vold payTax(int reduction(String)): SO, hOW dO We Start?
class Person implements Addressable, Taxable {
String name;
String address;
String name ()} {return nams;}
String address() {return address;}

void printlLabel(){...} activation records objects closures

e

-

vold payTax(int reduction(String)){
int tax, finalTax;

... // computs tax taxReductionl — -\\ ‘\\
program — b
finalTax = tax — reduction(address()); Y — \ — £ , =—p | codefor taxReductionl |
// pay finalTax AxRecuCto 1(— .,,H_\
public void Person(String pnams) {nams=pname;} main — contral link ‘ l
{ —
access link i il |" ——* < , —»—p | codefor taxReductionl |
void main() { p | I

Person p = new Person("Birger"):;

// setting the address and income of p /

p.printLabel():] | link J S

control lin
s . » name
p.payTax (taxReductionl); payTax — this dd
address
N reduction1 —

} tax)
Draw the run-time stack and the per==-n object as they are while executing the call finalTax Jf
reduction{address ())in payTax. Include all links between the activation records, the variables /
and parameters in the activation records, and illustrate/explain how both the formal and actual reduction] — control link
parameter to payTax are handled. You may assume that the static link for a method activation access link

record is the object that has the method.

1b

In this part of Question 1 we change the printLarel to have a parameter quality, and we add two SO, we want to ﬁgu re out
variables to the outermost program block. Labels may be printed in two qualities (1 or 2), and there
1s a maximum number of prints with quality 1. In main we now going to have a list of parson
objects.

if quality should be called
with value or by reference

Given the program sketch below (just including the changes), does the quality par er has to be
a ‘by reference’ parameter (the » would then be e.g. r=£), or will it do with a value’ parameter
(the » would then be e.g. va1). Explain shortly why and then how you would represent the
parameter in an activation record for a call of printravel.

// as above
int noCfPrints=0;
int maxQualityl;
class Person implementsg

ddressakle, Taxakble {. // as above

void printLabkel (? int quality){

if (guality==1l}){...} el=s=s {... print label
noQfPrints=no0fPrints+1;

if (noCfPrintsrmaxQualityly{quality=21;

vold main() {
List<Ferson
int printQuality=1;

=rsons;

// £1ll the persons list with Person ckjects
// set maxQualityl

for (Person p: persons){ p.printlabel (printCQuality):}

1b

In this part of Question 1 we change the printLarel to have a parameter quality, and we add two
variables to the outermost program block. Labels may be printed in two qualities (1 or 2), and there
1s a maximum number of prints with quality 1. In main we now going to have a list of parson
objects.

Given the program sketch below (just including the changes), does the qual:ity parameter has to be
a ‘by reference’ parameter (the » would then be e.g. r=£), or will it do with a ‘by value’ parameter
(the » would then be e.g. va1). Explain shortly why and then how you would represent the
parameter in an activation record for a call of printravel.
{
. // as above

int noCfPrints=0;

int maxQualityl;

class Person implements Addressable, Taxakle {... // as above

void printLabel (? int quality){

if (guality==1){...} else {...}; // print label
noQfPrints=no0fPrints+1;
if (noCfPrintsrmaxQualityl) {guality=21;

vold main() {
List<Person> persons;
int printQuality=1;

// £1ll the persons list with Person ckjects
// set maxQualityl

for (Person p: persons){ p.printlabel (printCQuality):}

So, we want to figure out
if quality should be called
with value or by reference

What would the different effects be?

So in conclusion?

By reference so the printLabel
method has access to change
the value in printQuality

1c

In this part we add two methods to class rerscn, and define visitingPerson as a subclass of
person in the same scope as rerson. In this language methods are by default virtual, and
redefinitions must have the same signature (no variance) as the virtual method in the superclass.
The method zamezddres= is thus redefined in visitingperson:

class Person implements Addressabls, Taxakle |

// as above
boolean samsRddress (Person p) {
return ({address({) = p.address{));

A person does not define a «visitingAddress» method

boolean samePerson(Person p) |
return (name = p.name ()& address () = p.address());

class VisitingPerson sxtends Person |
String visitingAddress;
String visitingAddress () {return visitingAddress;

boolean sameRddress(Person p) {
return (({address() = p.address())
| (visiting&ddress() = p.visitingiddress())):

1. What kind of compile-time type error will this code give, and where?

2. How would you change the program to avoid this type error? Can avoid the type error by casting p to VisitingPerson

But is this actually safe? Why or why not?

1d

In this part we try to turn the interfaces into classes in order to be able to specify the behaviour of SO, we want to pr| nt the name

printLabsl. Class rerson is now defined to have variables with types addrsssable and Taxable
instead of implementing the corresponding interfaces. We just consider the details of 2ddressarie,

as well when calling upon printLabel.

and for this part of Question 1 we drop the parameter to printLakb=1. We assume that the addr At the same time we wish to preserve
variable of per=on is visible, so that the main method can now directly call printrabs1 ofa . . .
Person p by the call ‘p.addr.printLabel (). The address of a person hal will smnlarly be the Ca”' SO It ShOUId Stl” be p'addr'prlntl‘abel()l

accessible by’ p.addr.address ().

// as above

class ARddressable {
String address;
String address () {return address;}
wvold printLabel () {System.out.println(address()):}

class Taxable {
void payTax(int reduction(String)){...}

class Person {
String name;
String address;
String name () {return name;}
String address () {return address;}

public Addressable addr = new Addressablel();
public Taxable tax = new Taxakle():

public void Person(String pname, paddress) {
name=pname; addr.address=paddress;

void main(} {
Person p = new Parson("Birgsr", "Reahagan 33a");
p.addr.printLabsl();

p.tax.payTax (taxReductionl);
}

The problem with this solution is that printrabel will only print the address of a person, while
we would like it to print both name and address of a per=on. It is not possible to define
printLabel within class addressarle so that it prints the name, as name is not visible from class
Addressable.

Sketch a solution, given that printrabel still has to be defined in 2ddressable (as above), and

that main has the call p.addr.printzanel (). The solution must print the name. You may assume
that a method m that is redefined in a subclass may call the m of the superclass by super.m (), and
that the language supports anonymous classes.

The given hints here are what you may assume.
So we have calls to superclasses using super.x()
and we have support for anonymous classes.

The solution given is this, but someone more awake
than me pointed me to a problem with this solution

class Person |
String name;
String name () {return name;}

Addressable addr = new Addressable () {
System.out.println (name());super.printlLabel () ;

So this would probably make more sense

class Person {
String name;

string name() { return name; } If you get something similar and
addressable addr - new addressanle(y { YOU are completly stuck, work
" Gysten-ouprimtn(aane()); around the problem. It’s better
e printebetl; to solve the problem is a «bad»
} way than do nothing. Any ideas

on how to work around this problem?

