
Mandatory 1
• Any questions?

• Some hints:
– No need to scan or parse. Can initiate with creation of

objects. Eg. Something like:
xxx.interpret([new Statement(new Expression), ….] ….);

– It is OK to assume that programs are written in a relatively
reasonable manner; you don’t have to take every potential
error into consideration

• Please include the example programs in your delivery
– It is better to deliver a solution that almost works, than

nothing at all

Problem 1

Which of these four statements are correct under
a) name compatibility?
b) structural compatibility?

Problem 1

Which of these four statements are correct under
a) name compatibility?
b) structural compatibility?

a = b; is incorrect

x = a; is correct

c = f(b); is incorrect

d = f(a); is incorrect

Name compatibility
Different type

Ret diff type

Ret diff type

Problem 1

Which of these four statements are correct under
a) name compatibility?
b) structural compatibility?

a = b; is correct

x = a; is correct

c = f(b); is correct

d = f(a); is incorrect

Structural compatibility

Struct vs int

Problem 2

class Food { … }
class Cheese extends Food { … }

int f (Cheese c) { … }

int f’ (Food f) { .. } // in this language, f’ is just an ordinary name

Problem 2
The answer is of course that f expects a more specific type than Food, namely Cheese.
Cheese might have properties that Food does not.

For instance, imagine this definition of Cheese:

class Cheese extends Food { void melt() { … } }

and this definition of f:

int f (Cheese c) { … c.melt(); … }

Clearly, a call to f(someFood) would not work here.

Problem 3 – Exercise 10.2 in Mitchell

a) Rewrite this so that each class
has a Rotate method, and no tag
field
(in other words, make an OO

solution)

Switch on
type tag

Type
cast

Problem 3 - 10.2 a)
class Point {

int x, y;
void move(int dx, int dy){

x +=dx;
y +=dy

};
void rotate(){};

};

class Circle extends Point {
// the inherited point can be the center
int radius;
// no new move() or rotate() methods are needed

};

class Rectangle extends Point {
// the inherited point can be the center, although the original
// did not have that
Point topLeft, bottomRight;

void rotate(){ /* implement rotate here */ };
};

Problem 3 - 10.2 a)
class Point {

int x, y;
void move(int dx, int dy){

x +=dx;
y +=dy

};
void rotate(){};

};

class Circle extends Point {
// the inherited point can be the center
int radius;
// no new move() or rotate() methods are needed

};

class Rectangle extends Point {
// the inherited point can be the center, although the original
// did not have that
Point topLeft, bottomRight;

void rotate(){ /* implement rotate here */ };
};

Another option would be to
add a Shape class at the top
of the hierarchy, and letting
Point, Circle and Rectangle
inherit from this class.

Problem 3 - 10.2 b)

• What if we add a Triangle class? What
modifications would be necessary with the
original version, and our new version?

– Original:

• modify the shape tag enum to include a triangle tag

• add a new triangle class

• change the rotate procedure

Problem 3 - 10.2 b)

• What if we add a Triangle class? What
modifications would be necessary with the
original version, and our new version?

– New, OO, version:

• add a new triangle class (with required methods)

class Rectangle extends Point {

Point p1, p2, p3 // the three points defining the triangle

void rotate(){ /* implement rotate here */ };
void move(){ /* implement move here */ };

};

Problem 3 – 10.2 c)

• Discuss the differences between changing the
definition of the rotate method in the original
and new (OO) version. (Remember that we
have added the Triangle.)

– Both versions would require invasive changes

• The Mitchell only to one procedure (the common
rotate), while our new solution would require changes
to all non-trivial rotate methods.

Problem 4
a) Which of the methods C_equals 1 or
SC_equals 1 will be called by the statements
below?
• Remember that which overload to call is

determined at compile-time, while which
override to call is determined at runtime.

c.equals(c)
c.equals(c’)
c.equals(sc)
c’.equals(c)
c’.equals(c’)
c’.equals(sc)
sc.equals(c)
sc.equals(c’)
sc.equals(sc)

C_equals 1
C_equals 1
C_equals 1
SC_equals 1
SC_equals 1
SC_equals 1
SC_equals 1
SC_equals1
equals 2

Problem 4
b) Suppose that SC_equals 1 is no longer there.
• Remember that which overload to call is

determined at compile-time, while which
override to call is determined at runtime.

c.equals(c)
c.equals(c’)
c.equals(sc)
c’.equals(c)
c’.equals(c’)
c’.equals(sc)
sc.equals(c)
sc.equals(c’)
sc.equals(sc)

C_equals 1
C_equals 1
C_equals 1
C_equals 1
C_equals 1
C_equals 1
C_equals 1
C_equals1
equals 2

Problem 5 a)

Write in Java an abstract data type and a class for a data type Date, with year, month
and day, and operations before, after and daysBetween.

class Date {
int year, month, day;
Date date(int y, m, d) {.. ; return new Date(...) ; ..}

boolean static before(Date d1,Date d2) {
if (d1.year < d2.year) {return true} else
if (d1.year > d2.year) {return false} else
if (d1.month < d2.month) {return true} else
if (d1.month > d2.month) {return false} else
return d1.day < d2.day;

};
..

}

Abstract data type:
Abstract data type:
meaning of an operation is
always the same
operation (operands)

Class:
Meaning of operation might
depend on runtime type of
object
(polymorphism/dynamic
dispatch)
object.operation(arguments)

Problem 5 a)

Write in Java an abstract data type and a class for a data type Date, with year, month
and day, and operations before, after and daysBetween.

class Date {
int year, month, day;
Date date(int y, m, d) {.. ; return new Date(...) ; ..}

boolean before(Date d) {
if (year < d.year) {return true} else
if (year > d.year) {return false} else
if (month < d.month) {return true} else
if (month > d.month) {return false} else
return day < d.day;

};
..

}

Class
Abstract data type:
meaning of an operation is
always the same
operation (operands)

Class:
Meaning of operation might
depend on runtime type of
object
(polymorphism/dynamic
dispatch)
object.operation(arguments)

Problem 5 b)
• How would you make

the Date class
independent of the
representation of
years, months and
days?
– Abstraction is key!

class Month {
int mAsInt;
Boolean before(Month m) {
return mAsInt < m.mAsInt;

}
};
class Year {/* correspondingly */};
class Day {/* correspondingly */};

class Date {
Year year; Month month, Day day;
Date date(Year y, Month m, Day d) {..}

boolean before(Date d) {
if year.before(d.year)
{return true} else
if month.before(d.month)
{return true} else
return day.before(d.day); }

}

