Mandatory 1

* Any questions?

e Some hints:

— No need to scan or parse. Can initiate with creation of
objects. Eg. Something like:
xxX.interpret([new Statement(new Expression),]);

— It is OK to assume that programs are written in a relatively
reasonable manner; you don’t have to take every potential
error into consideration

* Please include the example programs in your delivery

— Itis better to deliver a solution that almost works, than
nothing at all

Problem 1

Cype o% is struct { a = b; // (1)
int v;
- X = aj /[l (2)
int w;

} s c=fm; // (3

type S2 1s struct { d = f£(a); /] (4)
int v;

) int wj Which of these four statements are correct under

bi I - a) name compatibility?

type "'.3 1s struct |{ b) structural compatibility?
int v;

)7

S3 f(S1 p) { ... };

i T -
w0 L d; }‘L,r
o .
D r
S3 <y

int d;

Problem 1

type Sl if struct { a = b; // (1)

int vy;

I X = aj; /] (2)
s c=£Mm); // (3)
type 82 1is struct | d = f(a); [/ (4)

int v;
) int wj Which of these four statements are correct under
bi . - a) name compatibility?
type "'.3 13 struct { b) structural compatibility?

int v;
bi | | Name compatibility
S3 £(S1 p) { ... }: . iff

a = b; is incorrect Ditterent type

51 2 X = a; is correct
S3 c; c =f(b); isincorrect Ret diff type
int d;

d =f(a); isincorrect Ret diff type

Problem 1

type o% is struct { a = b; /) (1)
int vy;
nt y; x = a; /] (2)
1nt w;

s c = £(b); /7 (3)

type S2 1s struct { d = f£(a); /] (4)
int v;

* 1nt w; Which of these four statements are correct under

bi . - a) name compatibility?

type S3 is struct { b) structural compatibility?
int vy;

bi Structural compatibility

s3 f(s1l p) { ... }; .
a = b; is correct

sl a, x; X = a; IS correct

S2 b;
S3 c; c = f(b); is correct
int d;

d =f(a); is incorrect Struct vs int

Problem 2

We have the following classes:

class Food { ... }
class Cheese extends Food { ... }

Azssume that we have the following functions:

int f (Cheesec){... }

int f' (Food f) { .. }// in this language, f’ is just an ordinary name

someFood 1s a value of type Food, and someCheese is a value of type
Cheese. Then we know that

f’ (someCheese) can be substituted for f(someCheese)

that is, whenever we have a call ‘f(someCheese)’ we may Just as well
call £ with the same someCheese parameter without causing any static
type errors: f’ can be said to be a subtype of f.

Why cannot f (someFood) be substituted for ' (someFood)? That is why can
not £ said to be a subtype of £'? Give an example of class Cheese (that
is a more elaborate Cheese than above) and a definition of £ that will
create a type error.

Problem 2

The answer is of course that f expects a more specific type than Food, namely Cheese.
Cheese might have properties that Food does not.

For instance, imagine this definition of Cheese:

class Cheese extends Food { void melt() { ... } }

and this definition of f:

int f (Cheese c¢) { ... c.melt(); ... }

Clearly, a call to f(someFood) would not work here.

Problem 3 — Exercise 10.2 in Mitchell

enum shape.tag {s_point, s_circle, s_rectangle };
class point {
shape_tag tag;
int x;
int y;
point (int xval, int yval)
{ x = xval; y = yval; tag = 5_point; }
int x_coord () { return x; }
int y_coord () { return y; }
void move (int dx, int dy) { x +=dy; y += dy; }
|5
class circle {
shape_tag tag;
point ¢;
intr;
circle (point center, int radius)
{ ¢ = center; r = radius; tag = s_circle }
point center (} { return ¢; }
int radius () { return radius; }
void move (int dx, int dy) { c.move (dx, dy); }
void stretch (int dr) { r +=dr; }
b
class rectangle {
shape_tag tag;
point tl;
point br;

rectangle (point topleft, point botright)

{ tl = topleft; br = botright; tag = s_rectangle; }
point top_left () { return ti; }
point bot right () { return br; }

b
/* Rotate shape 90 degrees. */

void rotate (void *shape) { :
switch ((shape_tag *) shape) { € Switch on
case s_point: type tag

case s_circle:
break;
case s_rectangle:

{

rectangle *rect = (rectangle *) shape; €¢— Type
int d = ((rect->bot_right ().x_coord () cast

- rect->top_left ().x_coord ()) -
(rect->top_left ().y_coord ()
- rect->bot_right ().y_coord ()));
rect-=move (d, d):
rect-»stretch (-2.0 * d, -2.0 * d);

}
}

] a) Rewrite this so that each class
has a Rotate method, and no tag
field

(in other words, make an OO
solution)

void move (int dx, int dy) { tl.move (dx, dy); br.move (dx, dy); }

void stretch (int dx, int dy) { br.move (dx, dy); }

Problem 3 -10.2 a)

class Point {
int x, y;
void move(int dx, int dy){
X +=dx;
y +=dy
I
void rotate(){};
I

class Circle extends Point {
// the inherited point can be the center
int radius;
// no new move() or rotate() methods are needed

I

class Rectangle extends Point {
// the inherited point can be the center, although the original

// did not have that
Point topLeft, bottomRight;

void rotate(){ /* implement rotate here */ };

Problem 3 -10.2 a)

class Point {
int x, y;
void move(int dx, int dy){
X +=dx;
y +=dy
I
void rotate(){};
I

class Circle extends Point {

// the inherited point can be the center

int radius;

Another option would be to
add a Shape class at the top
of the hierarchy, and letting
Point, Circle and Rectangle
inherit from this class.

// no new move() or rotate() methods are needed

I

class Rectangle extends Point {

// the inherited point can be the center, although the original

// did not have that

Point topLeft, bottomRight;

void rotate(){ /* implement rotate here */ };

Problem 3 -10.2 b)

 What if we add a Triangle class? What
modifications would be necessary with the
original version, and our new version?
— Original:
* modify the shape tag enum to include a triangle tag

e add a new triangle class
* change the rotate procedure

Problem 3 -10.2 b)

 What if we add a Triangle class? What
modifications would be necessary with the
original version, and our new version?

— New, OO, version:

e add a new triangle class (with required methods)

class Rectangle extends Point {
Point p1, p2, p3 // the three points defining the triangle

void rotate(){ /* implement rotate here */ };
void move(){ /* implement move here */ };

Problem 3 - 10.2 c)

* Discuss the differences between changing the
definition of the rotate method in the original
and new (OO) version. (Remember that we
have added the Triangle.)

— Both versions would require invasive changes

* The Mitchell only to one procedure (the common
rotate), while our new solution would require changes
to all non-trivial rotate methods.

Problem 4

a) Which of the methods C_equals 1 or

SC_equals 1 will be called by the statements

below?

e Remember that which overload to call is
determined at compile-time, while which
override to call is determined at runtime.

C cC = new C{();
SC sc = new S5C();
cC cf = new SC{();
c.equals(c) C_equals 1

c.equals(c’) C_equals 1

c.equals(sc) C_equals1

c’.equals(c) SC_equals 1
c’.equals(c’) SC_equals 1
c’.equals(sc) SC_equals1
sc.equals(c) SC_equals 1
sc.equals(c’) SC_equalsl
sc.equals(sc) equals 2

class C {
bool equals(C pC) {

-
}

class SC extends C {
bool equals(C pC) {
}

bool equals(SC pSC) {

.
}

/l C_equals 1

/[SC_equals 1

/[equals 2

b) Suppose that SC_equals 1 is no longer there.
Remember that which overload to call is
determined at compile-time, while which
override to call is determined at runtime.

(2
(2

iy

C scC
r

()

P
-

c.equals(c)
c.equals(c’)
c.equals(sc)
c’.equals(c)
c’.equals(c’)
c’.equals(sc)
sc.equals(c)
sc.equals(c’)
sc.equals(sc)

new
= new
new

C_equals 1
C_equals 1
C_equals 1
C_equals 1
C_equals 1
C_equals 1
C_equals 1
C_equalsl
equals 2

Problem 4

0

L U

CA
SC
SC

)

(
(

Vi ™ Ty

=

class C {
bool equals(C pC) {

.
}

class SC extends C {
bool equals(SC pSC) {

.
}

/l C_equals 1

/[equals 2

Problem 5 a)

Write in Java an abstract data type and a class for a data type Date, with year, month
and day, and operations before, after and daysBetween.

Abstract data type:
Abstract data type: meaning of an operation is
class Date { always the same

int year, month, day; operation (operands)

Date date(inty, m, d) {.. ; return new Date(...) ; ..} Class:

Meaning of operation might

boolean static before(Date d1,Date d2) { depend on runtime type of

if (d1.year < d2.year) {return true} else object
if (d1.year > d2.year) {return false} else (polymorphism/dynamic
if (d1.month < d2.month) {return true} else dispatch)
if (d1.month > d2.month) {return false} else object.operation(arguments)

return d1.day < d2.day;
Iy

Problem 5 a)

Write in Java an abstract data type and a class for a data type Date, with year, month
and day, and operations before, after and daysBetween.

Abstract data type:
Class meaning of an operation is
class Date { always the same

int year, month, day; operation (operands)

Date date(inty, m, d) {.. ; return new Date(...) ; ..} Class:

Meaning of operation might

boolean before(Date d) { depend on runtime type of

if (year < d.year) {return true} else object
if (year > d.year) {return false} else (polymorphism/dynamic
if (month < d.month) {return true} else dispatch)
if (month > d.month) {return false} else oobject.operation(arguments)

return day < d.day;
Iy

Problem 5 b)

How would you make
the Date class
independent of the
representation of
years, months and
days?

— Abstraction is key!

class Month {
int mAsInt;
Boolean before(Month m) {
return mAsint < m.mAsint;

}
I
class Year {/* correspondingly */};
class Day {/* correspondingly */};

class Date {
Year year; Month month, Day day;
Date date(Year y, Month m, Day d) {..}

boolean before(Date d) {
if year.before(d.year)
{return true} else
if month.before(d.month)
{return true} else
return day.before(d.day); }

