Mandatory 2 questions?

Two functions needs to call each other
- Define with and

boolexp/aritexp not of type exp?
- Wrapitinanexp

If xandy
- Keyword andalso

datatype direction = ...

datatype grid = Size of int * int;

datatype exp = Identifier of string ...

datatype boolexp = BiggerThan of exp * exp
| LessThan of exp * exp ...

datatype stmt = Move of direction * exp ...

datatype robot = Robot of vardecl list * start * stmt list ...
datatype program = Program of grid * robot;

fun evalExp(BiggerThan(el, e2), decls) = if evalExp(el, decls) > evalExp(e2, decls) then 1 else O ...
exception OutOfBounds;

fun interpret (Program(Size(x, y), Robot(decls, Start(xpos, ypos), Move(direction, exp) :: stmtlst))) = ...

Problem 1 —Allocation

* Exercise 7.1 in Mitchell: Debug a program that
(tries to) calculate the absolute value of an
Integer

— This exercise is about C specifics!

— The moral of this story is: know the semantics of
your language before you try to program (things of
importance) in it.

7.1 Activation Records for In-Line Blocks

You are helping a friend debug a C program. The debugger gdb, for example, lets
you set breakpoints in the program, so the program stops at certain points. When
the program stops at a breakpoint, you can examine the values of variables. If you
want, you can compile the programs given in this problem and run them under a
debugger yourself. However, you should be able to figure out the answers to the
questions by thinking about how activation records work.

(a) Your friend comes to you with the following program, which is supposed to
calculate the absolute value of a number given by the user:

1 int main()

z

3 int num, absVal;

‘ e Why does the program not work?

5; printf(“Absolute Value\n");

6: printf(“Please enter a number:”);

. i * Cdoes not require that variables are initialized

o4 (= (so the program compiles and runs)

2 , —mmoem * But: the inner absval declarations shadow the
: lse

e ; outer

15; int absVal = -num;

16: }

17:

18: printf(“The absolute value of %d is %d.\n \n”,num,absVal);

19:

20: return 0;

21: }

(b) Your explanation must not have been that good, because your friend does not

believe you. Your friend brings you another program:

1
2
3
4:
5%
6-
7
3

9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

int main()

{

}

int num;

printf(“Absolute Value\n");
printf(“Please enter a number:");
scanf(“%d”,&num);

if (num == 0)
{
int absVal = num;
}
else
i .
int absVal = -num;
}
{
int absVal; €

printf(“The absolute value of %d is %d.\n\n",num,

}

This program works. Explain why.

absVal);

The behavior of such programs is left
unspecified in C
What might happen is that inner
absVal will be written to the same
location as the (uninitialized) outer
absVal

e The value may thus be correct

at the end of the program

Control link

Local variables

Intermediate results

" Control link

Local variables

Intermediate results

Environment
Pointer

—t]

(¢) Imagine that line 17 of the program in part (b) was split into three lines:

17a: {
17b: i
17¢: }

Write a single line of code to replace the ... that would guarantee this program
would NEVER be right. You may not declare functions or use the word absVal
in this line of code.

For instance: { int arbitraryValue =-1; }

(d) Explain why the change you made in part (c) breaks the program in part (b).

This will allocate the arbitraryValue in the same place in memory as absVal.
-1 is never a valid absolute value.

Control link

Control link Co ink Control link Control link
num }.
absVal 5 absVa 5 arbitraryVal -1 absVal

absVal

Problem 2 — Static and Dynamic scope

= Static scope

— global refers to declaration in closest enclosing block
*= Dynamic scope

— global refers to most recent activation record

7.8 Static and Dynamic Scope
Consider the following program fragment, written both in ML and in pseudo-C:

1 letx=2in int x = 2; {

2 let val fun f(y) =x+ yin int f (inty) { retumx+y; } {
3 letval x =7 in intx=7;{

4 X+ X+

5 : f(x) f(x); <

6 end }

7 end }

8 end; }

The C version would be legal in a version of C with nested functions.

(a) Under static scoping, what is the value of x + f(x) in this code? During the
execution of this code, the value of x is needed three different times (on lines
2, 4, and 5). For each line where x is used, state what numeric value is used
when the value of x is requested and explain why these are the appropriate
values under static sconine.

(b) Under dynamic scoping, what is the value of x + f(x) in this code? For each line
in which x is used, state which value is used for x and explain why these are the
appropriate values under dynamic scoping.

(a) =+fi(x)=

(b) =+f(x)=

f{)

7+ £(7) =T + (2+7
line 2 4
¥ i 7
T+ £(7) =7 + (7 + 7)
line 2 4
X 7
—» Control link
Access link -
% 2
—> Control link
Access link
% 7
Control link
Access link

Y

= 16

Problem 3 — Scope and Lifetime

= Scope
— REQiOI’I of program text where declaration is visible
» | ffetime Scope Life-time
_ Period of time when location is allocated i’ 1in block 1 block 1 minus block 2 block 1
(and thereby also
o - minus block 3 and 4,
—— C .
{ . i . %le “k 1 as these are defined
int 1, 3j, k; -1 within block 2), and
block 5 as this does
not define the name
{ —-block 2 s
int i, k; -2 "j7 in block 1 block 1, block 2 block 1
(minus block 3), block
T) 4 and 5
{ —--block 3 "k’ in block 1 block 1 minus block 2 block 1
int j; --3 (and thereby also
block 3 and 4), and
} et 1 bl 3 block 5
——2I1(ocC
o i’ in block 2 block 2 including block 2
block 3, but not block
{ —-block 4 A !
int i, l; ! "k¥' in block 2 block 2 (including block 2
block 3 and 4)
} —-end block 4 "§7 in block 3 block 3 block 3
} ——end block 2
i’ in block 4 block 4 block 4
1’ in block 4 block 4 block 4
{ —--block 5
int a, b, <, d; --5 ra’ in block 5 block 5 block 5
b’ in block 5 block 5 block 5
c’ in block 5 block 5 block 5
__ =
} end block |5 "d’ in block 5 block 5 block 5
} ——end block 1

Describe scope and life-time of the various variables wrt to the
different blocks. Use the names of the blocks and the numbers of
interesting lines.

Problem 4 — Static Scope

2 int i =1, j=2, k=3:
3 alpha ()

4 {

3 int i=4, 1=5;
& i = k+1;

T —_
g betal);

2] }:

11 betal)

12 |

13 int k =a&;

14 i=17+ k:

15 -— %

16 alpha () s
17 }:

9 main()
0 {
bketa():

[I L I N)
[y

Execution starts by executing main().

Draw the run-time stack at three points of execution:
1) first time execution reaches the line marked with *,
2) when execution reaches the line marked with **, and
3) second time execution reaches the line marked with *

Show access and control links, and values of variables.
language is statically scoped.

As execution starts with execution of main, the control
main activation record is of no significance.

program

main

1) * beta

2) ** alpha

3) *
beta

Assume that the

link of the

|

W

control link

access link

control link

access link

|

control link

access link

control link

access link

|

6

Problem 5 — Dynamic Scope

{
£2() |
int i;
i
]
}
£f10) A
int j;
i
... k
£2() s
}
main ()
int i, 3, k;
k = 0;
i 5;
) =71
£1() 7
£2() s
}
}

Assume that this is written in a language with dynamic scoping. What
will happen at the two calls fl1() and £2(): to which declarations will
the applications of i, j, k within fl and f2 be bound?

Problem 5 — Dynamic Scope

{
20 A

int i;

?T‘

r s

}

Assume that this is written in a language with dynamic scoping. What
will happen at the two calls fl1() and £2(): to which declarations will
the applications of i, j, k within fl and f2 be bound?

fl()in main: ‘i’ is bound to ’"i’ in main, 'k’ is bound to 'k’ in main

f2()in f£1: 'i' is bound to 'if in f2, 'jf is bound to 'j' 1in fl
f2()in main: 'i’ is bound to 'i’ in f£2, 73’ is bound to "j’ in main

Problem 5 — Dynamic Scope

{

20 A

int i;

int j;
i

... k
£2() s

}

main () {
int i, 3, k;
k = 0;
i 5;
J=7;
£1() 7
£2() s

}

}

Assume that this is written in a language with dynamic scoping. What
will happen at the two calls fl1() and £2(): to which declarations will
the applications of i, j, k within fl and f2 be bound?

fl1()in main: i’ is bound to i’ in main, 'k’ is bound to 'k’ in main
f2()in f1: 'i’ is bound to 7i’" in f2, 'i" is bound to "' in f1

f2()in main: 'i’ is bound to f1i’' in f2, 73’ 1is bound to "]’ in main

Problem 5 — Dynamic Scope

{
£2() |
int i;
i
J
+
£f10) A
int j;
i
... k
£2() s
}
main () {
int i,
k = 0;
i 5;
) =71
£1() 7
£2() s
}

}

Assume that this is written in a language with dynamic scoping. What
will happen at the two calls fl1() and £2(): to which declarations will
the applications of i, j, k within fl and f2 be bound?

fl1()in main: i’ is bound to i’ in main, 'k’ is bound to 'k’ in main
f2()in £1: 'i’ is bound to 'if in f2, 'jf is bound to 'j’ in fl
f2()in main: 'i’ is bound to 'i’ in f£2, 73’ is bound to "J’ in main

Problem 6 — Static Scope

This is an example in a language with static scoping.

{
int %, vy, z:
£1(){
int t, u:
£f2(){
int x, w:
£30){
int y, w, t:

] Contral link

Access link

L L.

Return address

Return result addr

Parameters

Local variables

Intermediate results

Environment
Pointer

— |

= Control link

— Link to activation record of
previous (calling) block

= Access link (static link)

— Link to activation record of
closest enclosing block in
program text

= Difference

— Control link depends on
dynamic behavior of program

— Access link depends on static
form of program text

Show the run-time stack with both control and access links for the
following call sequence: main; f1(): £2();

£30);

t2().

Explain what happens with wvariable bindings when executing 'z =y + t +
w + z' in the latest call of f£2. Look especially at y, t and z.

y is from "program", tis from "f1", w is from “f2”, z is from "program"

program

main

f1

f2

f3

f2

X
Y
z I
control link
access link
Z
t
control link
access link
£
u
control link
access link
X
w
control link
access link
i
W
t
control link
access link
X
W

Problem 7 — Parameter passing

Consider the example below.
value-result for swapl(alil,

swap (int x,
X=X + ¥
y =% - ¥
X=X - ¥y;

int v)

{

Discuss call by reference and call by
al]l

) . What happens if i=j?

In call by value-result, the actual parameter supplied by the caller is copied
into the callee's formal parameter; the function is run; and the (possibly
modified) formal parameter is then copied back to the caller

— 2 wiki

As an example we assume a(i)=1 and a(j)=2. In the following table x and
y are only used in the call-by-result case, while for call by reference
the addresses are used. For i=j we just use i and thereby a(i)=1.

by reference, not(i=j) by wvalue-result, not(i=3])

a(i) = a(i) + a(g) =1+ 2 =23 z=a(i) =1

a(j) = a(i) - a(3) =3 2 =1 vy = al(j) = 2

a{(i) = a(i) - a(j)y = 3 1 =2 x=x+y=1+2 =3
yv=xX-y=3-2=1
x=xX-y=3-1=2
a(i) = x =2
a(j) =y=1

by reference, i=j by wvalue-result, i=j

a(i) = a(i) + a(i) =1 1 =2 x=a(i) =1

a(j) = a(i) - a(i) = 2 2=20 y =a(i) =1

a(i) = a(i) - a(i) =0 0=20 x=x+y=1+1=2
y=xX-y=2-1=1
2=x-y=2-1=1

Problem 8 — Parameter passing

Exercise 7.4 a) in Mitchell: Call by value/ call by reference

7.4 Parameter Passing
Consider the following procedure, written in an Algol/Pascal-like notation:

proc power(x, y, z : int)

begin
z:=1
while y > 0 do
z:=2"X
yi=y-1
end
end

The code that makes up the body of power is intended to calculate x¥ and place the
result in z. However, depending on the actual parameters, power may not behave
correctly for certain combinations of parameter-passing methods. For simplicity,
we only consider call-by-value and call-by-reference.

(a) Assume that a and c are assignable integer variables with distinct L-values.
Which parameter-passing methods make c=a? after a call power(a, a, ¢). You
may assume that the R-values of a and ¢ are nonnegative integers.

Problem 8 — Parameter passing

proc power(x, y, z : int)

Control link
begin
z:=1 Access link a
while y > 0 do Chd
g om i ° = x}’
yi=y-1
C
end
end
The following cases work: Control link Control link

- 1: power(x by value, y by value, z by ref)

- 2:power(x by value, y by ref, z by ref) Access link Access link

- 3:power(x by ref, y by value, z by ref) , .
v y
Why? . 5
- Obviously z needs to be by ref, in order to return a value
from the function by value by reference

- 1:local x and y; harmless

- 2:since x is by value, changing the original value of a through
its reference in y is harmless, and thus this is OK

- 3:xis never assigned to in the function, so passing this by ref
is OK, as long as y is by value

- Having all three by ref will clearly not work (decrementing y
would also change x)

Problem 9 — Parameter passing

e Exercise 7.7 in Mitchell

7.7 Parameter-Passing Comparison
For the following Algol-like program, write the number printed by running the
program under each of the listed parameter passing mechanisms. Pass-by-value-
result, also sometimes called copy-in/copy-out, is explained in problem 6:
begin
integer i;

procedure pass (X, V);
integer x, y; // types of the formal parameters

begin
X:=x+1;
yi=x+1;
X.:=Y;
i=1i+1
end
1:=1;
pass (i, i);
print i

end
(a) pass-by-value
(b) pass-by-reference

(c) pass-by-value-result

Problem 9 — Parameter passing

1:=1;

pass (1, 1);

pant .1

by-value by-reference by-value-result

X:= x + 1; x=2 i=2 x=2
yi= x + 1; yv=3 1=3 v=3
Xi= yi x=3 1=3 ®=3
ir=1 + 1 i=2 i=4 i=2

2 is printed

4 is printed|

At exit 1 1is
assigned the
value 3 from
both % and vy, so
3 is printed

For the by-value-result case it 1s not specified in which order the
local x and y are assigned back to i, but in this special case this

does not matter, since x and y have the same value

