
Mandatory 2 questions?

datatype direction = …

datatype grid = Size of int * int;

datatype exp = Identifier of string …

datatype boolexp = BiggerThan of exp * exp
| LessThan of exp * exp …

datatype stmt = Move of direction * exp …

datatype robot = Robot of vardecl list * start * stmt list …
datatype program = Program of grid * robot;

fun evalExp(BiggerThan(e1, e2), decls) = if evalExp(e1, decls) > evalExp(e2, decls) then 1 else 0 …
exception OutOfBounds;

fun interpret (Program(Size(x, y), Robot(decls, Start(xpos, ypos), Move(direction, exp) :: stmtlst))) = …

- Two functions needs to call each other
- Define with and

- boolexp/aritexp not of type exp?
- Wrap it in an exp

- If x and y
- Keyword andalso

Problem 1 –Allocation

• Exercise 7.1 in Mitchell: Debug a program that
(tries to) calculate the absolute value of an
integer

– This exercise is about C specifics!

– The moral of this story is: know the semantics of
your language before you try to program (things of
importance) in it.

Why does the program not work?

• C does not require that variables are initialized
(so the program compiles and runs)

• But: the inner absval declarations shadow the
outer

Might not work - depends on compiler’s
implementation!
• The behavior of such programs is left

unspecified in C
• What might happen is that inner

absVal will be written to the same
location as the (uninitialized) outer
absVal
• The value may thus be correct

at the end of the program

For instance: { int arbitraryValue = -1; }

This will allocate the arbitraryValue in the same place in memory as absVal.
-1 is never a valid absolute value.

Problem 2 – Static and Dynamic scope

Problem 3 – Scope and Lifetime

Problem 4 – Static Scope

1) *

2) **

3) *

Problem 5 – Dynamic Scope

Problem 5 – Dynamic Scope

Problem 5 – Dynamic Scope

Problem 5 – Dynamic Scope

Problem 6 – Static Scope

y is from "program", t is from "f1", w is from “f2”, z is from "program"

Problem 7 – Parameter passing

In call by value-result, the actual parameter supplied by the caller is copied
into the callee's formal parameter; the function is run; and the (possibly
modified) formal parameter is then copied back to the caller

– c2 wiki

Problem 8 – Parameter passing

• Exercise 7.4 a) in Mitchell: Call by value/ call by reference

Problem 8 – Parameter passing

The following cases work:
- 1: power(x by value, y by value, z by ref)
- 2: power(x by value, y by ref, z by ref)
- 3: power(x by ref, y by value, z by ref)

Why?
- Obviously z needs to be by ref, in order to return a value

from the function
- 1: local x and y; harmless
- 2: since x is by value, changing the original value of a through

its reference in y is harmless, and thus this is OK
- 3: x is never assigned to in the function, so passing this by ref

is OK, as long as y is by value
- Having all three by ref will clearly not work (decrementing y

would also change x)

Problem 9 – Parameter passing

• Exercise 7.7 in Mitchell

Problem 9 – Parameter passing

