
Mandatory 1 Revisited

• Make an interpreter for the ROBOL language

• Any questions?

Problem 1 – Virtual methods

class Program {

public static void main(String[] args) {

Circle rCircle= new Circle();

rCircle.change(2);

}

}

class Circle {

int r;

Circle() {r = 1;}

class A {

void change(int p){r = r + p;}

}

A rA = new A();

void change(int p){

int r = p;

rA.change(p);

fromAtoB();

rA.change(p); // (*)

}

void fromAtoB(){

class B extends A {

void change(int p){

int j = r;

super.change(p);

r = r + j;

}

}

B rB = new B();

rA = rB;

}

}

Virtual method call

Polymorphism

Task: Put in values, access and control
links in the activation blocks (next slide)
when the execution is here after the call
marked (*)

2

2

2

2

3

2

1358

Problem 2 – call by name

Problem 2 – call by name; res1

i will have values from 1 to 10

x will have values 1*1, 2*2, 3*3,
..., 10*10

res1 = 1*1 + 2*2 + 3*3 + ... 10*10

Problem 2 – call by name; res2

i will have values from 1 to 5

x will have values a[1] to a[5]

res2 = 7+(-1)+11+8+4

Problem 2 – call by name; res3

i will have values from 1 to 5

x will have values 1, 1, 1, 0, 0
(odd or even number)

res3 = 1+1+1+0+0

Problem 3 – function parameters
Draw the run-time stack as it is when f is called
within b the second time.

ii
jj

ii
jj

control link

access link

control link

access link

control link

access link

control link

access link

global

main

b

b

c

control link

access link

control link

access link

kk

ii
jj

control link

access link

control link

access link

kk

1

2

3

Problem 4 – Scope in ML

(1) access (1)
x 5

(2) access (1)
f

.
(3) access (2)

g
.

(4) access (3)
x 10

(5)

g(f)

access (3)
h

.
x 7

(6)

h(x)
access (2)
x 7

<(2), .>

<(3), .>

|code for f|

|code for g|

result = 5+7-2 = 10

Activation records

Closures Compiled code

Problem 5

• Can the L-value of a variable be accessed only when its name is
visible (i.e. within scope)? If YES, why, and if NO, why and how?

• NO! For instance reference parameters, pointers, closures etc.
Example:

{ -- block that does not contain i
void f(ref int j) { ... j= … }

…
{

int i;
f(i)

}
}

Problem 6 - Determinism

• Parameters to procedures are often used in order to
parameterize the computation, so that procedures called
with different actual values perform different
computations.
– In which cases will a procedure without parameters not perform

the same computation every time it is called?

• For instance
– When it reads an external value (network, keyboard,

pseudorandom generator, etc)
– When it uses global variables
– When it uses undefined operations in the language (e.g. in C)
– Etc

Problem 7 - Call by ref vs value-result

• By-reference and by-value-result have
in most cases the same effect. Consider
this small example:
int x;

void p(int i) {

i=i+1;

x=x+1;

};

x=1;

p(x);

Will the call p(x) have the same or different
effect when the parameter i is by-reference
and by-value-result?

Call by ref: x = 1 +1 = 2; x = 2 + 1 = 3;
Call by value-result: i = 1 + 1 = 2; x = 1 + 1 = 2; x = 2;

Problem 8 – Functions vs call by name

• It was indicated at the lecture that functions as
parameters and name parameters are similar in that
the actual parameters have to maintain their
environment.

• Indicate a way in which some of the properties of
name parameters can be achieved by means of
functions as parameters. Which property cannot be
achieved in this way?
– When the name parameter is an expression that is just

used for its R-value, then a function will work in the same
way

– When the name parameter is assigned to, this will
(obviously) not work.

Call by name
Variable evaluated every time it is used

Call by need
Variables evaluated first time only
Gives the same value back every
following use

int i = 10;

void f(int a) {
for(...) {

i = i + a;
}

}
f(i);

What does this code give when using by-value and by-name?

By value: value of i is evaluated when
calling the function. Giving us i = i + 10;

By name: nothing is evaluated when
calling the function. a is evaluated
every time it is used. Giving us the
current value of i. Giving us i = i + i;

Problem 9 – Parameters in Java

• a) Java does not have call-by-reference parameters, while C# has.
How would you in Java get the effect of p(a), where a is a variable
and the formal parameter is a call-by-reference parameter?
– a = p(a); BUT, only for single-threaded programs!

• b) Java does not have call by value result parameters. How would
you in Java get the effect of p(a), where a is a variable and the
formal parameter is a call-by-value-result parameter.
– a = p(a)

• c) What about p(a,b), where both are call-by-value-result
parameters?
– You create an object with values for a and b, and pass this in.

