
val it = 0 : int

val it = 1 : int

val it = 1 : int

Second call to pred raises exception which is handled in twice

First call to dumb raises exception, once again handled in twice

First call of pred raises exception, but the exception is handled in smart
Therefore the call is able to continue executing. Smart indeed

Same algorithm, the exception is only raised
if x == y. If not, y will be returned. In short,
a value equal to y is always returned

Two reasons:

1. If equal value is found, the recursion stops
It will never find a value closer to x

2. If equal value is found, an exception avoids
the normal backtracking through the run-time stack

f(11)

f(9)

f(7)

f(5)

f(3)

f(1)

Exception raised

Does not handle

Does not handle

Handles with negating of n

The 3 first recursions
receive ~5 and are all
John Snow

Call stack between raising and handling popped

May contain pointers to memory areas in the heap with no other pointers pointing to them

No way to reach said memory area and, as a consequence, no way to free the memory

But memory still in use and cannot be used for anything else

From the 2013 exam

Let’s do it together! :D

Just in case I mess up, the answer is R = (int-> H) -> H

From the 2012 exam

From the 2012 exam

So what exactly is fAdd supposed to do?

Just take the first two elements from a list, add them and put the new value back in front

How about fNeg?
Just take the first element from a list, negate it, and put the negated value back in front

So, as the text says, we need to make a function that takes AN exp and
returns the corresponding stacklang list.

Divide the problem into many small, but manageable pieces.

fun convert(Const(i)) = [Push(i)] |
convert(Neg(e)) = convert(e) @ [Op(fNeg)] |
convert(Add(e1, e2)) = convert(e1) @ convert(e2) @ [Op(fAdd)];

Code given as solution (including 2b): Personally I prefer pattern matching, so something like this:

