
Exam in INF3110, December 12, 2016     Page 1 

 

   

 

                                                                                                                                                    

 UNIVERSITETET I OSLO 

 

 Det matematisk-naturvitenskapelige fakultet 

 

 

Exam in: INF3110 Programming Languages 

Day of exam: December 12, 2016  

Exam hours: 14:30 – 18:30 

This examination paper consists of 8 pages. 

Appendices:  No  

Permitted materials:  All printed and written, including the textbook  

  

 

Make sure that your copy of this examination paper is complete before answering.  

 

This exam consists of 3 questions that may be answered independently. If you think the 

text of the questions is unclear, make your own assumptions/interpretations, but be sure 

to write these down as part of the answers. 

 

Good luck! 

 

 



Exam in INF3110, December 12, 2016     Page 2 

 

Question 1. Runtime-systems, scoping, types (weight 40%) 

 

Consider the following EBNF definition of a small language: 

 

program   ::= <decl>+ 

 

decl    ::= <varDecl> | <procDecl> 

varDecl   ::= "var" <name> ":" <typename> "=" <expr> ";" 

procDecl   ::= "procedure" <name> "(" <formalParamList>? ")"  

         "begin" <blockBody> "end" 

formalParamList  ::= <formalParameter> ( "," <formalParameter> )* 

formalParameter  ::= <name> ":" <typename> 

blockBody   ::= <varDecl>* <statement>* 

 

statement   ::= <printStatement>  

              | <callStatement>  

              | <assignStatment> 

              | <ifStatement> 

 

printStatement  ::= "print" <expr> ";" 

callStatement  ::= "call" <name> "(" <actualParamList>  ")" ";" 

assignStatment  ::= <name> ":=" <expr> ";" 

ifStatement  ::= "if" <expr> "begin" <blockBody> "end" 

actualParamList  ::= <expr> ( "," <expr> )* 

 

expr    ::= <name> | <integer> | "true" | "false" 

 

In the productions above, nonterminals are enclosed within angled brackets (< and >), and terminals 

are quoted. Plus (+) is used for one or more repetitions, asterisk (*) for zero or more, and question 

mark (?) for zero or one. Regular parentheses are used for grouping symbols in the grammar. The 

nonterminals name, typename and integer are not specified in any further detail, but it will suffice 

to say that name and typename are strings of letters and numbers, and integer denotes “ordinary” 

integer numbers. 

  



Exam in INF3110, December 12, 2016     Page 3 

 

 

1a) 

Below is a small program in the language defined by the grammar above: 

 

var x : int = 0; 

var y : int = 1; 

 

procedure M(x : int)  

begin 

    var y : int = 42; 

    x := 1; 

    call N(x); 

end 

 

procedure N(x : int) 

begin 

    var z : int = 2; 

    if true begin 

        var z : int = 42; 

    end 

 

    print x; 

    print y; 

    print z; 

end 

 

procedure Main() 

begin 

    call M(x); 

end 

 

Explain what this program does; describe what will be printed, and why. Is there more than one 

reasonable interpretation? Explain your reasoning. Assume that the program execution starts with 

the execution of the procedure Main(), and that print <expr> will print the value of the 

expression to the console/terminal. Furthermore, assume that the program is legal and valid (it has 

no errors) in the language in question. 

 



Exam in INF3110, December 12, 2016     Page 4 

 

1b) 

Draw an abstract syntax tree for the procedure M from 1a). 

 

1c) 

Draw a runtime stack for the program from 1a) with activation records containing variables, 

parameters, access links and control links when the program has just executed the print z 

statement. Explain briefly the assumptions you make about the semantics of the language. 

 

1d) 

Extend the grammar provided at the top of this exercise to allow for procedures within procedures. 

E.g., the following should be allowed, where we have introduced new procedures P and Q: 

 

procedure N(x : int) 

begin 

    var z : int = 2; 

 

    procedure Q(v : int)  

    begin 

        print v; 

    end 

 

    if true begin 

        var z : int = 42; 

        procedure P() begin print z; end 

        call P(); 

    end 

 

    print x; 

    print y; 

    print z; 

 

    call Q(y); 

end 

 

You only need to write out the productions that you modify. 

 

 



Exam in INF3110, December 12, 2016     Page 5 

 

1e) 

Assume now, that in addition to procedures within procedures, we also allow procedures as 

parameters to other procedures. Explain briefly how this can be implemented in the runtime system. 

 

1f) 

Modify the procedure named N from 1d) so that this procedure now has a new formal parameter FP 

that is a procedure, and so that N performs a recursive call to itself with the procedure P as the 

actual parameter. Write down the new program, and the runtime stack right after the first recursive 

call to N, so that the activation block for this call is on the stack. (As in 1a, we assume that program 

execution starts with the Main() procedure.) 

 

You only need to write down the parts of the program you modify. You do not need to write any 

modified version of the grammar of the language in this exercise, just assume a suitable syntax for 

this purpose. If the program ends up with infinite recursion (non-termination), that is OK. 

Briefly state any further assumptions that you make about the language. 

 

Question 2. ML (weight 40%) 

2a 

Evaluate the following ML expressions: 

a) List.foldr (-) 4 [3,2,1] 
 

 

b) List.foldr (fn (y,x) => 2*x + y) 4 [1,2,3] 

 

2b 

Assume the standard definition of foldl: 

fun foldl (f: 'a*'b->'b) (acc: 'b) (l: 'a list): 'b = 

  case l of 

    [] => acc 

  | x::xs => foldl f (f(x,acc)) xs 

 

With the help of foldl, define the function 

val myReverse = fn : 'a list -> 'a list 

which returns the input list in reverse order. 

 

 



Exam in INF3110, December 12, 2016     Page 6 

 

2c 

1) Define a function that sums up all values in a list of integers 

(and consider also question (4) below): 

val sum = fn : int list -> int 

 

2) Define a function that finds the largest element in a list of integers: 

 
  val max = fn : int list -> int 

 

3) Define the function 

 
 val summax = fn : int list list -> int 

 

which takes a list of lists of integers and sums up the largest values from each list. 

Example: 

 
  summax [[1,2],[4,2],[3,6,5,9]] = 15 

 

4) Give function sum from the question (2c1) above as a tail-recursive function (if you have not 

done so immediately – you do not have to answer both questions separately if you directly 

give the tail-recursive version)! If you cannot answer question (2c1), explain the difference 

between a tail-recursive and a naïve implementation of a recursive function in a few 

sentences. 

 

 

 

2d 

1) Define a datatype for binary trees, 'a tree, with a constructor Empty, and a constructor 

Node with a value of type 'a and two subtrees. 

2) Define a function val mirror = fn : 'a tree -> 'a tree that returns a mirrored 

version of the tree passed as an argument. That is, for a node, each subtree must be 

mirrored. 

 

Examples (“E” for Empty): 

        
3) Define a function val sym = fn : 'a tree -> 'a tree -> bool which returns true, 

if the two trees are symmetric (that is, one is a mirror of the other), or false otherwise.  

 

1

2

E E

3

4

E E

E

1

3

E 4

E E

2

E E



Exam in INF3110, December 12, 2016     Page 7 

 

2e 

Calculate the type for the following expression according to the ML type inference algorithm:  

fn x => fn y => x (y x). 

Use the provided type variables in the parse graph below. Derive the corresponding equations for 

the parse graph, and solve the resulting equation system to obtain the type of the root node R. 

 

 
 

 

 
 
 
  

@:B

λ:R

@:C

x:X λ:A

y:Y



Exam in INF3110, December 12, 2016     Page 8 

 

Question 3.  Prolog (weight 20%) 

3a  

Give PROLOG’s answer (that is, the substitutions for all variables in a query, if the terms can be 

unified) for each of the queries below, or write “no” if no solution exists and give the reason. Be 

careful with the last question, the == is no typo! 

1. g(a,X,Y) = g(Z,c,f(Z)). 
 

2. g(a,X,Y) = g(Y,c,f(X)). 
 

3. f(X,Y,d) == f(Y,h(X),Z). 

 

 

3b   

Define the predicate rotate(L,N,R) which rotates cyclically a list L with N positions to the left, 

i.e. the following queries succeed:  

rotate([a,b,c,d], 1, [b,c,d,a]). 

rotate([a,b,c,d], 6, [c,d,a,b]). 

rotate([a,b,c,d], 3, [d,a,b,c]).  


