
Mandatory Exercise 1 INF3110
	
In	this	exercise,	you	are	going	to	write	a	small	interpreter	for	a	simple	language	
for	controlling	a	robot	on	a	2-dimensional	grid.	The	language	is	called	ROBOL,	a	
clever	acronym	for	“ROBOT	LANGUAGE”,	and	its	grammar	is	defined	below.	
	
The	grid	on	which	the	robot	can	move	about	is	defined	by	its	x	and	y	bounds,	for	
instance:	
	
0,6	

	 	 	 	 	 	
7,6	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

	 	 	

	

	 	 	 	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

0,0	
	 	 	 	 	 	

7,0	

	
The	grid	above	is	defined	by	the	bound	(7,	6),	and	the	robot	is	currently	located	
at	position	(3,	3).	Moving	the	robot	1	step	north	would	put	it	at	(3,4).	Moving	it	
one	step	east	would	put	it	at	(4,3),	etc.		

Assignment
	
Make	an	interpreter	for	the	ROBOL	language	in	your	object-oriented	language	of	
choice	(e.g.	Java	or	Python;	if	you	want	to	choose	another	language,	please	ask	
the	gruppelærer).	The	interpreter	shall	operate	on	an	abstract	syntax	tree	(AST)	
representing	a	ROBOL	program.	You	do	not	need	to	write	a	scanner	or	a	parser	
for	the	language	(however,	if	you	want	to	rise	to	the	challenge,	feel	free!).		
	
You	can	design	the	classes	for	the	AST	as	you	like,	but	they	should	provide	a	
somewhat	faithful	representation	of	the	grammar	listed	below.	The	outermost	
element	program	from	the	grammar	should	be	represented	by	a	class	Program,	
that	provides	an	interpret-method	which,	when	called,	will	interpret	the	entire	
program.	
	

	
Requirements:	
	

- The	interpreter	must	check	that	the	poor	robot	does	not	fall	off	the	edge	
of	the	world	(i.e.,	moves	beyond	the	bounds	of	the	grid).	
	

- You	can	display	the	state	of	the	program	in	any	form	you	like	during	
execution,	but	at	minimum,	the	program	should,	upon	termination,	print	
its	state	in	the	form	of	the	current	location	of	the	robot.		

	
- There	are	some	example	programs	below.	You	should	check	that	your	

implementation	returns	the	correct	result	after	running	these	programs,	
and	include	instructions	on	how	to	run	their	AST	representations	with	
your	implementation.	

	
- Write	a	design	document	that	explains	how	you	have	implemented	the	

interpreter,	and	why	you	have	done	it	in	this	way.	Furthermore,	the	
document	should	explain	how	to	run	your	program	from	the	Linux	
command	line.	
	

- It	should	be	possible	to	use	the	program	from	the	command	line	like	this:	
<ProgramName> 1|2|3|4|all	
Example:	a	Java	program	with	the	main	method	in	a	class	called	Oblig1.	
java Oblig1 2			–	should	run	test	code	2	and	print	the	results	
java Oblig1 all	–	should	run	all	the	4	programs	and	print	the	results	

	 There	is	an	implementation	of	this	provided	in	the	program	sketch	
	
Deliverables	
	

- The	entire	program	and	the	design	document	should	be	placed	in	a	single	
.zip	file	
	

- The	name	of	the	file	should	be	INF3110_Mandatory1_<username>.zip	
	

- The	submission	is	done	through	Devilry:	https://devilry.ifi.uio.no/	
	

	

ROBOL Grammar
	
//	a	program	consists	of	a	robot,	and	a	grid	on	which	it	can	move	around	
<program>	::=	<grid>	<robot>	
	
//	size	of	the	grid	given	as	a	bound	for	the	x	axis	and	the	y	axis;	both	axes	
//	start	at	0,	number	is	a	positive	integer.	
<grid>	::=	size	(<number>	*	<number>)	
	
//	the	robot	has	a	list	of	variable	declarations,	a	starting	point,	and	a		
//	a	set	of	statements	that	control	its	movement	
<robot>	::=	<var-decl>*	<start>	<stmt>*		
	
//	a	variable	declaration	consists	of	a	name	and	an	initial	value	
<var-decl>	::=	var	<identifier>	=	<exp>	
	
//	statements	control	the	robot’s	movement	
<stmt>	::=		
									<stop>	
							|	<move>	<exp>	
							|	<assignment>		
							|	<loop>	
	
//	start	gives	the	initial	position	for	the	robot	
<start>	::=	start	(<exp>	,	<exp>)		
<stop>	::=	stop	
	
//	on	the	grid,	moving	north	means	up	along	the	y	axis,	east	means	to	the	right		
//	along	the	x	axis,	etc.	
<move>	::=	north	|	south|	east|	west	
	
<assignment>	::=	<identifier>++	|	<identifier>--	
	
<loop>	::=	loop	{	(<stmt>	|<break>)	+	}	
<break>	::=	break-if	<boolean-exp>	
	
//	expressions;	number	is	an	integer,	identifier	is	a	string	of	
//	letters	and	numbers,	starting	with	a	letter	
<exp>	::=		
				<identifier>	|	<number>|	(<exp>)	|	<arithmetic-exp>	|	<boolean-exp>	
	
<boolean-exp>	::=	
				(<boolean-op>	<exp>	<exp>)	
	
<boolean-op>	::=	<	|	>	|	=	
	

<arithmetic-exp>	::=		
						(<arithmetic-op>	<args>)			
					
<arithmetic-op>	::=	+	|	-	|	*	
//at	least	2	arguments,	but	could	be	more	
<args>	::=	<exp>	<exp>	<exp>*	
	

Hints, program sketch and example programs
	
Hints:	

- You	may	assume	that	expressions	are	type-correct	(so	you	do	not	have	to	
implement	a	type	checker).	You	can	assume	that	no-one	writes	programs	
that	tries	to	add	Booleans	and	numbers,	for	instance.	

- It	might	simplify	things	if	all	expressions	can	calculate	an	integer	value.	
Boolean	expressions	can,	for	instance,	return	1	for	true	and	0	for	false.	

- The	robot	probably	needs	to	have	a	reference	to	the	grid,	and	the	
statements	probably	need	to	have	a	reference	to	the	robot.	This	can	be	
achieved	in	many	ways,	choose	one	that	fits	with	your	overall	design.	

	
Program	sketch:	
	
Below	is	a	Java	sketch	of	an	implementation	of	the	interpreter.	You	can	use	this	
as	a	starting	point	for	your	own	implementation,	if	you	like.	You	may	also	change	
all	of	these	definitions	if	you	think	that	is	necessary.	
	
class	Oblig1	{	
				public	static	void	main(String[]	args)	{	
								TestCode	testCode	=	new	TestCode();	
									
								switch(args.length	>	0	?	args[0]	:	"")	{	
												case	"1":	testCode.runProgram1();	return;	
												case	"2":	testCode.runProgram2();	return;	
												case	"3":	testCode.runProgram3();	return;	
												case	"4":	testCode.runProgram4();	return;	
												case	"all":	testCode.runAll();	return;	
												default:	System.out.println("USAGE:	java	Oblig1	1|2|3|4|all");	return;	
								}	
				}	
}	
	
class	TestCode	{	
				void	runProgram1()	{	
								//	Create	the	AST	based	on	testing	code	1	
							//	This	code	is	just	to	help	you	understand	how	to	create	an	AST	
	
								Grid	grid	=	new	Grid(new	NumberExp(64),new	NumberExp(64));	
								Start	start	=	new	Start(new	NumberExp(23),new	NumberExp(30));	
	

Legend:		
<non-terminal>	
terminal	

								statements.add(new	Move(Direction.west,	new	NumberExp(15)));	
								statements.add(new	Move(Direction.south,	new	NumberExp(15)));	
								Program	prog;	
								//	Fill	in	rest	of	the	code	
					
								//	Run	the	interpreter	
								prog.interpret();	
				}	
					
				void	runProgram2()	{	
								//same	as	runProgram1	but	with	the	AST	based	on	testing	code	2	
				}	
					
				void	runProgram3()	{	
									
				}	
					
				void	runProgram4()	{	
									
				}	
					
				void	runAll()	{	
								runProgram1();	
								runProgram2();	
								runProgram3();	
								runProgram4();	
				}	
}	
	
interface	Robol	{	
				void	interpret();	
}	
	
class	Program	implements	Robol	{	
				Grid	grid;	
				Robot	robot;	
	
				public	Program(Grid	grid,	Robot	robot)	{	
								this.grid	=	grid;	
								this.robot	=	robot;						
				}	
					
				public	void	interpret()	{	
								robot.interpret();	
				}	
	}	
	
class	Robot	implements	Robol	{	
				public	void	interpret()	{	

						//	write	interpreter	code	for	the	robot	here	
				}	
}	
	
abstract	class	Statement	implements	Robol	{	
				public	abstract	void	interpret();	
}	
class	Assignment	extends	Statement	{	
			public	void	interpret()	{	
							//	write	interpreter	code	here	
				}			
}	
	
class	Loop	extends	Statement	{	
				BoolExp	condition;	
				List<Statement>	statements;	
				
				public	void	interpret()	{	
							//	write	interpreter	code	here	
				}				
}	
	
abstract	class	Expression	{		…	}	
	
abstract	class	BoolExp	extends	Expression	{	
				protected	Expression	left;	
				protected	Expression	right;		
				…	
}	
	
	
Example	programs:	

Testing	Code	1:	Simple	Example	
size	(64*64)	
start(23,30)	
west	15	
south	15	
east	(+	2	3)	
north	(+	10	27)	
stop	

The	result	is	(13,	52)	

Testing	Code	2:	Example	with	variables	
size(64*64)	
var	i	=	5	

var	j	=	3	
start(23,6)	
north	(*	3	i)		
east	15		
south	4		
west	(+	(*	2	i)	(*	3	j))	 	
stop	

The	result	is	(19,	17)	

Testing	Code	3:	Example	with	loop	and	assignment	
size(64*64)	
var	i	=	5	
var	j	=	3	
start(23,6)	
north	(*	3	i)	
west	15	
east	4	
loop	
{	
				break-if	(<	j	1)	
				south	j	
				j--	
}	
stop	

The	result	is	(12,	15)	

Testing	Code	4:	Example	with	movement	over	the	edge	
size(64*64)	
var	j	=	3	
start(1,1)	
loop	
{	
				north	j	
				break-if	(>	j	100)	
}	
stop	

The	result	should	be	an	error	saying	that	the	bounds	of	the	grid	have	been	
overstepped.	
	
	
	
	

