
project title

Unit Testing – component testing

Unit testing, also known as Component testing verifies the

modules of the software (e.g. classes, functions/methods,

modules etc.) that are separately testable.

project title

Unit Testing – component testing

The developer writes code to test modules in the software under
test.

Unit test framework support the developer.

Unit testing should be done in isolation from the rest of the
system.

Stubs and drivers are used to replace the missing software and
simulate the interface between the software components.

project title

Unit Testing – component testing
A stub is called from the software component to be tested.

A driver calls a component to be tested.

Test cases are derived from work products such as the software
design or the data model

Unit tests and test suites for Java programs can be developed in
an integrated development environment, e.g. Eclipse and Netbeans.

project title

Exercise: Unit Testing

The Java program : PerfectNumbers.java finds perfect

numbers up to a given limit.

• Use Eclipse to develop JUnit test cases for the three

methods in the file PerfectNumbers.java.

• Create a JUnit test suite of all the test cases.

(To run the program, you must add the file PerfectTest.java.)

http://www.cs.hioa.no/~evav/inf3121-4121/PerfectNumber/PerfectNumbers.java

project title

Exercise: Unit Testing

For an added challenge you can try to make the program

yourself!

(If you want to run the program, you must add the file PerfectTest.java.)

If you need a Unit Test guide, see

https://www.youtube.com/watch?v=v2F49zLLj-8

http://www.cs.hioa.no/~evav/inf3121-4121/PerfectNumber/PerfectTest.java
https://www.youtube.com/watch?v=v2F49zLLj-8

project title

Exercise: Unit Testing

What is a perfect number?

An integer equal to the sum of all its real factors, including one (1)

Real factor means a factor less than the number itself

Examples

project title

Exercise: Unit Testing

PerfectNumbers.java

Calculates perfect numbers

perfect(int number): boolean

Is the given number perfect?

factorSum(int number): String

Calculate factor sum of number

findPerfectNumbers(int limit): String

Find perfect numbers given limit

project title

Exercise 2: Unit Testing

Testing perfect(int number)

What to test?

Confirm perfect number is perfect

Chosen number: 6

Variables

result → Holds the returned value

expected → Set to true

Assert

Check that the two values match

Testing perfect(int number)

What to test?

Confirm non-perfect is non-perfect

Chosen number: 7

Variables

result → Holds the returned value

expected → Set to false

Assert

Check that the two values match

Exercise 2: Unit Testing

Testing factorSum(int number)

What to test?

Confirm correct sum of factors

Chosen number: 6

Variables

result → Holds factor sum of 6

expected → Set to “1 + 2 + 3”

Assert

Check that the two values match

Exercise 2: Unit Testing

Testing findPerfectNumbers(int limit)

What to test?

Confirm correct retrieval of PN

Chosen number: 1000

Variables

result → Holds all PN within limit

expected → Set to 6, 28, and 496

Assert

Check that the two values match

Exercise 2: Unit Testing

JUnit Test Suite for all test cases

Where to place test suite?

AllTests.java

@RunWith(Suite.class)

What to include?

PerfectTest1.java

PerfectTest2.java

FactorSumTest.java

FindPerfectNumberTest.java

Exercise 2: Unit Testing

