
Deadlocks, Message Passing
Brief refresh from last week

Tore Larsen

Oct. 2010

Deadlocks

• Formal definition :

A set of processes is deadlocked
if each process in the set is waiting for an event
that only another process in the set can cause

• Usually the event is release of a currently held resource

• None of the processes can …

– Run

– Release resources

– Be awakened

2

Four Conditions for Deadlock
1. Mutual exclusion condition

– Each resource is either assigned to one process or it is
available

2. Hold and wait condition

– Process holding resources may request more resources

3. No preemption condition

– Previously granted resources cannot be taken away by force

4. Circular wait condition

– Must be at least one circular chain involving two or more
processes

– Each is waiting for resource held by next member of the chain

3

Deadlocks: Strategies

• Ignore the problem

– It is user’s fault

• Detection and recovery

– Fix the problem afterwards

• Dynamic avoidance

– Careful allocation

• Prevention

– Negate one of the four conditions

4

Which is your favorite?

• Ignore the problem
– It’s the user’s fault

• Detection and recovery
– Fix the problem afterwards

• Dynamic avoidance
– Careful allocation

• Prevention (Negate one of four conditions)
– Avoid mutual exclusion Spool everything

– Avoid hold and wait Request all resources initially

– No preemption Forcefully reclaim resources

– No circular wait Order resources numerically

5

Big Picture

communication?

shared memory

message passing

Asynchronous vs. Synchronous

• Synchronous (blocking):

– thread is blocked until message primitive has been

performed
– may be blocked for a very long time

msg
operation

block thread,
execute msg operation
in another thread/kernel

msg
operation,
unblock thread

time

Asynchronous vs. Synchronous

• Asynchronous (non-blocking):

– thread gets control back immediately
– thread can run in parallel other activities
– thread cannot reuse buffer for message before message is received
– how to know when to start if blocked on full/empty buffer?

• poll
• interrupts/signals
• …

msg operation,
resume immediately

execute msg operation
in another thread/kernel

time

Asynchronous vs. Synchronous

• Send semantic:

– Synchronous

• Will not return until data is out
of its source memory

• Block on full buffer

– Asynchronous

• Return as soon as initiating its
hardware

• Completion

– Require application to
check status

– Notify or signal the
application

• Block on full buffer

• Receive semantic:

– Synchronous

• Return data if there is a
message

• Block on empty buffer

– Asynchronous

• Return data if there is a
message

• Return null if there is no
message

Buffering

• No buffering
– synchronous
– Sender must wait until the receiver receives the message
– Rendezvous on each message

• Buffering

– asynchronous or synchronous

– Bounded buffer
• Finite size
• Sender blocks when the buffer is full
• Use mesa-monitor to solve the problem?

– Unbounded buffer

• “Infinite” size
• Sender never blocks

Direct Communication

• Must explicitly name the sender/receiver (“dest” and “src”) processes

• A buffer at the receiver
– More than one process may send messages to the receiver

– To receive from a specific sender, it requires searching through the whole buffer

• A buffer at each sender
– A sender may send messages to multiple receivers

Indirect Communication

• “dest” and “src” are a shared (unique) mailbox

• Use a mailbox to allow many-to-many communication
– Requires open/close a mailbox before using it

• Where should the buffer be?
– A buffer and its mutex and conditions should be at the mailbox

Linux: Mailboxes vs. Pipes

• Are there any differences between a mailbox and a pipe?

– Message types

• mailboxes may have messages of different types
• pipes do not have different types

– Buffer

• pipes – one or more pages storing messages contiguously
• mailboxes – linked list of messages of different types

– Termination

• pipes exists only as long as some have open the file descriptors
• mailboxes must often be closed

– More than two processes

• a pipe often (not in Linux) implies one sender and one receiver
• many can use a mailbox

Remote Procedure Call
• Message passing uses I/O

• Idea of RPC is to make function calls

• Small libraries (stubs) and OS take care of
communication

Publish – Subscribe
Subject for later course

• Decoupled

• Asynchronous

• Anonymous

• Filtering

