Deadlocks, Message Passing
Brief refresh from last week



Deadlocks

e Formal definition :

A set of processes is deadlocked
if each process in the set is waiting for an event
that only another process in the set can cause

e Usually the event is release of a currently held resource

* None of the processes can ...
— Run
— Release resources
— Be awakened



1.

2.

3.

4.

Four Conditions for Deadlock

Mutual exclusion condition

Each resource is either assigned to one process or it is
available

Hold and wait condition

Process holding resources may request more resources

No preemption condition

Previously granted resources cannot be taken away by force

Circular wait condition

Must be at least one circular chain involving two or more
processes

Each is waiting for resource held by next member of the chain



Deadlocks: Strategies

lgnore the problem

— |t is user’s fault

Detection and recovery

— Fix the problem afterwards

Dynamic avoidance

— Careful allocation

Prevention

— Negate one of the four conditions



Which is your favorite?

lgnore the problem
— It’s the user’s fault

Detection and recovery
— Fix the problem afterwards

Dynamic avoidance
— Careful allocation

Prevention (Negate one of four conditions)

— Avoid mutual exclusion
— Avoid hold and wait

— No preemption

— No circular wait

Spool everything

Request all resources initially
Forcefully reclaim resources

Order resources numerically



message passing ©

communication?
ﬁ



Asynchronous vs. Synchronous

. msg
¢ Sy =2L0NOUS (bIOCklng): msg operation,
i ~operation Hnblock thread

block thread,
execute msg operation
in another thread/kernel

time

— thread is blocked until message primitive has been
performed

— may be blocked for a very long time



Asynchronous vs. Synchronous

Asynchronous (non-blocking): msg operation

_resume immediately

execute msg operation
in another thread/kernel

— thread gets control back immediately time
— thread can run in parallel other activities
— thread cannot reuse buffer for message before message is received

— how to know when to start if blocked on full/empty buffer?
* poll
* interrupts/signals



Asynchronous vs. Synchronous

* Send semantic:

— Synchronous

e Will not return until data is out

of its source memory
Block on full buffer

— Asynchronous

Return as soon as initiating its

hardware
Completion

— Require application to
check status

— Notify or signal the
application

Block on full buffer

e Receive semantic:

— Synchronous

Return data if there is a
message

Block on empty buffer

— Asynchronous

Return data if there is a
message

Return null if there is no
message



Buffering

* No buffering
— synchronous
— Sender must wait until the receiver receives the message
— Rendezvous on each message

e Buffering
— asynchronous or synchronous

— Bounded buffer
* Finite size
* Sender blocks when the buffer is full
* Use mesa-monitor to solve the problem?

— Unbounded buffer
* “Infinite” size
* Sender never blocks



Direct Communication

* Must explicitly name the sender/receiver (“dest” and “src”) processes

* A buffer at the receiver
— More than one process may send messages to the receiver
— To receive from a specific sender, it requires searching through the whole buffer

* A buffer at each sender
— A sender may send messages to multiple receivers



Indirect Communication

e “dest” and “src” are a shared (unique) mailbox

e Use a mailbox to allow many-to-many communication
— Requires open/close a mailbox before using it

e Where should the buffer be?
— A buffer and its mutex and conditions should be at the mailbox



Linux: Mailboxes vs. Pipes

Are there any differences between a mailbox and a pipe?

— Message types
* mailboxes may have messages of different types
e pipes do not have different types

— Buffer
* pipes —one or more pages storing messages contiguously
* mailboxes — linked list of messages of different types

— Termination
* pipes exists only as long as some have open the file descriptors
* mailboxes must often be closed

— More than two processes
* a pipe often (not in Linux) implies one sender and one receiver
* many can use a mailbox



Remote Pr
* Message passing uses

%edure Call

 |dea of RPC is to make function calls

 Small libraries (stubs) and OS take care of
communication

Client CPU

2

Client
stub

Operating system

Y

-

Server CPU

Server.
stub

5
TN
A |Server

4

A Operating system

_J




Publish — Subscribe

Subject for later course

Decoupled
Asynchronous
Anonymous
Filtering



