

1

More on Paging
Virtualization

Knut Omang
Ifi/Oracle

14 Oct, 2010

(with slides from V. Goebel, C. Griwodz (Ifi/UiO), P. Halvorsen
(Ifi/UiO), K. Li (Princeton), A. Tanenbaum (VU Amsterdam), and

M. van Steen (VU Amsterdam))

2

Today

� More on page replacement algorithms

� Design issues for paging systems

� Segmentation

� Addressing on x86

� Virtualization

3

Implementing LRU

0 1 2 3

0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

0 1 2 3

0 1 1 1 1

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

0 1 2 3

0 0 1 1 1

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

Page ref: 0

0 1 2 3

0 0 0 1 1

1 1 0 1 1

2 0 0 0 0

3 0 0 0 0

1

0 1 2 3

0 0 0 0 1

1 1 0 0 1

2 1 1 0 0

3 0 0 0 0

2

Least recently used: Read binary value across
� Smallest value = LRU

4

Implementing LRU

LRU using a matrix � pages referenced in order
0,1,2,3,2,1,0,3,2,3

5

Implementing LRU

� Problem: Requires special hardware

� Lots of bits to update

� Software approximation?

� NFU (not frequently used)

� Scan R (referenced) bit of page table every clock
interrupt

� �aging� by bit shift

6

Least Recently Used (LRU)

Simulating LRU by using aging:
� �reference counter� for each page

� after a clock tick:
� shift bits in the reference counter to the right

(rightmost bit is deleted)
� add a page�s referece bit in front of the reference counter (left)

� page with lowest counter is replaced

1 00000000

2 00000000

3 00000000

4 00000000

5 00000000

6 00000000

1 10000000

2 00000000

3 10000000

4 00000000

5 10000000

6 10000000

1 11000000

2 10000000

3 01000000

4 10000000

5 01000000

6 01000000

Clock tick 0
1 0 1 0 1 1

Clock tick 1
1 1 0 1 0 0

Clock tick 2
1 1 0 1 0 1

Clock tick 3
1 0 0 0 1 0

Clock tick 4
0 1 1 0 0 0

1 11100000

2 11000000

3 00100000

4 11000000

5 00100000

6 10100000

1 11110000

2 01100000

3 00010000

4 01100000

5 10010000

6 01010000

1 01111000

2 10110000

3 10001000

4 00110000

5 01001000

6 00101000

7

LRU-K & 2Q

� LRU-K: bases page replacement in the last K

references on a page [O�Neil et al. 93]

� 2Q: uses 3 queues to hold much referenced and

popular pages in memory [Johnson et al. 94]

� 2 FIFO queues for seldom referenced pages

� 1 LRU queue for much referenced pages

FIFO LRU FIFO

Retrieved from disk Reused, move to LRU queue NOT Reused, move to FIFO queue

NOT reused, page out

NOT reused, page out

Reused, re-arrange LRU queue Reused, move back

to LRU queue

8

The Working Set Page Replacement Algorithm

� The working set is the set of pages used by
the k most recent memory references

� w(k,t) is the size of the working set at time, t

k

9

Working Set Model

� Working set:
set of pages which a process is currently using

� Working set model:

paging system tries to keep track of each process� working set and makes
sure that these pages is in memory before letting the process run

® reduces page fault rate (prepaging)

� Defining the working set:

� set of pages used in the last k memory references (must count backwards)

� approximation is to use all references used in the last XX instructions

10

Working Set Page Replacement Algorithm

� - time period to calculate the WS over

age - virtual time - last reference time

if all pages have R == 1

 select one page randomly

Expensive - must search the whole
page table

11

The WSClock Page Replacement Algorithm

� Working set algorithm expensive

� Must scan whole table for each fault

� WSClock

� Has simple implementation

� good performance

� good approximation

� Principle: Virtual timestamp + walk through
circular list of used pages

� If R = 0, evict -> done

� If R = 1, R := 0 (consider scheduling flush)

12

The WSClock Page Replacement Algorithm

13

Review of Page Replacement Algorithms

14

Locality and paging

� Reference locality:

� Time:
pages that are referenced in the last few instructions will
probably be referenced again in the next few instructions

� Space:
pages that are located close to the page being referenced
will probably also be referenced

15

Demand Paging Versus Prepaging

� Demand paging:
pages are loaded on demand, i.e., after a process needs it

� Should be used if we have no knowledge about future references

� Each page is loaded separatly from disk, i.e., results in many disk

accesses

� Prepaging:
prefetching data in advance, i.e., before use

� Should be used if we have knowledge about future references

� # page faults is reduced, i.e., page in memory when needed by a

process

� # disk accesses can be reduced by loading several pages in one

I/O-operation

16

Allocation Policies

� How should memory be allocated among the
competing runnable processes?

� Equal allocation:
all processes get the same amount of pages

� Proportional allocation:
amount of pages is depending on process size

17

Allocation Policies

� Local page replacement:
consider only pages of own process when replacing a page

� corresponds to equal allocation

� can cause thrashing

� multiple, identical pages in memory

� Global page replacemet:
consider all pages in memory when replacing a page

� corresponds to proportional allocation

� better performance in general

� monitoring of working set size and aging bits

� data sharing

18

Design Issues for Paging Systems
Local versus Global Allocation Policies (1)

� Original configuration
� Local page replacement
� Global page replacement

19

Local versus Global Allocation Policies (2)

� Page fault rate as a function of the number of
page frames assigned to a process

20

PFF � Page fault frequency algorithm

� Measure page fault rate

� Allocate or reclaim pages to keep page faults
between dotted lines A and B

21

Load Control

� Despite good designs, system may still thrash
� When PFF (page fault frequency) algorithm

indicates

� some processes need more memory

� but no processes need less

� Solution :
Reduce number of processes competing for
memory
� swap one or more to disk, divide up pages they

held

� reconsider degree of multiprogramming

22

Page Size (1)

Small page size

� Advantages

� less internal fragmentation

� better fit for various data structures, code sections

� less unused program in memory

� Disadvantages

� programs need many pages, larger page tables

23

Page Size (2)

� Overhead due to page table and internal
fragmentation

� Where
� s = average process size in bytes

� p = page size in bytes

� e = page table entry

2

s e p
overhead

p

×
= +

page table space

internal
fragmentation

Optimized when

2p se=

24

Separate Instruction and Data Spaces

� One address space

� Separate I and D spaces

25

Shared Pages

Two processes sharing same program sharing its page table

26

Cleaning Policy

� Need for a background process, paging daemon

� periodically inspects state of memory

� When too few frames are free

� selects pages to evict using a replacement algorithm

� It can use same circular list (clock)

� as regular page replacement algorithm but with diff
ptr

27

Implementation Issues
Operating System Involvement with Paging

1 Process creation
� determine program size

� create page table

1 Process execution
� MMU reset for new process

� TLB flushed

1 Page fault time
� determine virtual address causing fault

� swap target page out, needed page in

1 Process termination time
� release page table, pages

28

Page Fault Handling (1)

1.Hardware traps to kernel

2.General registers saved

3.OS determines which virtual page needed

4.OS checks validity of address, seeks page
frame

5.If selected frame is dirty, write it to disk

29

Page Fault Handling (2)

1 OS brings schedules new page in from disk

2 Page tables updated
� Faulting instruction backed up (undone)

� Faulting process scheduled

1 Registers restored

2 Program continues

30

Paging Daemons

� Paging daemons:
Background process which sleeps most of the time, but is for example
awakened periodically or when the CPU is idle

� Taking care that enough free page frames are
available by writing back modified pages before they
are reused

� Prepaging

31

Locking Pages in Memory

� Virtual memory and I/O occasionally interact

� Proc issues call for read from device into
buffer

� DMA (Direct Memory Access -from device)

� while waiting for I/O, another processes starts
up

� has a page fault

� buffer for the first proc may be chosen to be
paged out

� Need to specify some pages locked

� exempted from being target pages

32

Backing Store

(a) Paging to static swap area

(b) Backing up pages dynamically

33

Separation of Policy and Mechanism

Page fault handling with an external pager

34

Segmentation (1)

� One-dimensional address space with growing tables

� One table may bump into another

35

Segmentation (2)

Allows each table to grow or shrink, independently

36

Segmentation (3)

Comparison of paging and segmentation

37

Segmentation with Paging: MULTICS (1)

� Descriptor segment points to page tables

� Virtual address = seg# + page# + offset

38

Segmentation with Paging: MULTICS (2)

A 34-bit MULTICS virtual address

39

Segmentation with Paging: MULTICS (3)

Conversion of a 2-part MULTICS address into a main memory

address

40

Segmentation with Paging: Pentium (1)

� A Pentium segment selector

� CS register stores code segment selector

� DS register stores data segment selector

41

Segmentation with Paging: Pentium (2)

� Pentium code segment descriptor

� Data segments differ slightly

42

Segmentation with Paging: Pentium (3)

� Two tables

� LDT (Local Descriptor Table)

� GDT (Global Descriptor Table)

� Each segment up to 1G 32bit words

� maps to 32 bit 'linear' address

� Linear address used to lookup in MMU

43

Segmentation with Paging: Pentium (4)

Conversion of a (selector, offset) pair to a linear
address

44

Segmentation with Paging: Pentium (5)

� Mapping of a linear address onto a physical address

� Dir: pointer to the right page table

� Each page table: 1024 entries of 4K = 4M addr.space

45

PAE (Physical Address Extension)

46

Protection on the Pentium

Level

47

Virtualization

� Present a machine abstraction to guest
operating systems:
� Host operating system (often called hypervisor)

sees whole computer

� Guest operating system sees only a partition of
the real computer

� Adds another layer of protection

� OS fault only affects part of the system

� What about hardware fault? ...

� Flexibility wrt use of resources
� Imagine 100 services each 99% idle but requiring a

separate computer (Why?...)

48

Virtualization -> isolation!

� Popek and Goldberg,1974:
� Sensitive instructions: Instructions that for

protection reasons must be executed in kernel
mode

� Privileged instructions: Instructions that causes a
trap

� A machine is virtualizable iff the set of sensitive
instructions is a subset of the set of privileged
instructions.

49

Virtualization before ca.1995

� IBM CP/CMS -> VM/370, 1979
� Hardware support: Traps sensitive instructions

� Architecture still in use for IBM �mainframes�

� Largely ignored by others
� Taken up by Sun and HP around in 1990's

� x86-world? Difficult because
� Some sensitive instructions are ignored in user

mode!

� Some sensitive instructions are allowed from user
mode!

50

Virtualization in the (limited) x86

� Solutions
� Interpretation (emulating the instruction set)

� Performance penalty of factor 5-10

� Benefit: May emulate any type of CPU

� �Full� virtualization

� Privileged instructions in guest OS'es rewritten by
virtualization software (binary translation)

� Stanford DISCO --> VmWare workstation

� Does not require source code of OS..

� Paravirtualization

� Replacing parts of the guest operating system with
custom code for virtualization

51

Virtualization in the (limited) x86

� Problems:
� Performance

� I/O

� Page faults

� Interrupts (when?)

� Virtual Machine perf

� Host resource usage

� Avoidig 'leaking' instructions

� Pentium allows instruction that makes it possible to
determine if it is executed in kernel mode

� Might confuse OS..

52

x86 virtualization in Xen (Paravirtualization)

� Uses x86 privilege levels differently:
� Rings: 0, 1, 2, 3 (highest to lowest privilege)
� Normally OS executes in ring 0 and applications

execute in ring 3
� With Xen

� 0 � Hypervisor

� 1 � Guest OS

� 2 � unused

� 3 � Applications

� Guest OS modified for privileged instructions

� VMWare ESX: similar approach

53

Virtualization models
Special OS as hypervisor

or extensions to �full� OS

54

Virtualization terms

� Type 1 hypervisors:
� Based solely on traps

� requires sensitive � privileged)

� Type 2 hypervisors:
� Based on some amount of binary translation on

the fly

� Both runs unmodified OS'es

55

Virtualization with VT/SVM

� VT(Intel) and SVM(AMD):
� Inspired by VM/370

� Set of operations that trap controlled by bitmap
managed by host OS/hypervisor

� Present in most(all?) newer 64 bit versions of
AMD/Intel processors

� Allows type 1 hypervisors

� Effectively privileged mode, guest privileged
mode and user mode..

� A lot of open source activity around this:

� Qemu/KVM, VirtualBox, Xen,...

56

Memory virtualization

� Problem: Naive implementation would cause
contention for physical pages!
� Requires shadow page tables for guests, second

layer of indirection:

� Host physical addresses

� Guest physical addresses

� Guest virtual addresses

� Solution:Multi-level page tables
� Available in newer CPUs

58

I/O Virtualization
� Virtual I/O devices:

� Each OS expects it's own disk controllers, USB ports,
keyboards, network devices...

� DMA?

� Paravirtualization
� Typical: simple devices emulated

� IDE disk drive, simple PCI bus, simple USB device, old

and simple network card

� I/O Rings (Xen/KVM): generic support library for emulation

� Emulation causes performance issues

� Can dedicate devices to Vms

� High end devices with hardware support:
� Multiple logical devices in single physical

� PCI Express extensions for virtualizaton

