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Concurrency and Process
• Challenge: Physical reality is Concurrent

– Smart to do “concurrent software” instead of sequential?
– At least we want to have many apps running on a single computer “at the same time”

• Must share CPU, memory, I/O devices

• Lots of interrupts/traps/exceptions and faults (page faults) will happen

– Options
• let each application/computation see the others and deal with it (each must fight or 

cooperate with the others)
• let each application/computation believe it has the computer all alone (analogy: each 

car sees the highway without other cars (but perhaps it is a highway where the width 
and the speed limit can change at any time)

• Trad. approach: 
– Make the OS understand “process” and support processes
– Now we can decompose complex problems into simpler ones

• Applications/computations are comprised of one or several processes
– Cooperating processes need synchronization and communication (using message passing)

• Each process comprised of one or several
• Cooperating threads

• Synchronization and communication (using locks, semaphores, monitors)

• Deal with one at a time
• Each process can believe it has a computer to itself: it can be written as if this is indeed 

the case
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Kernel

Processes

Threads

Processes

Kernel

Processes

Get input from
device Process input Action 2

Action 1

Action 3
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Process
• An instance of a program under execution

– Program specifying (logical) control-flow (thread)
– Data 
– Private address space
– Open files
– Running environment

• Very important operating system concept
– Used for supporting the concurrent execution of independent or 

cooperating program instances
– Used to structure applications and systems
– Protection unit

Kernel

Processes

Threads

Processes
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Flow of Execution

Kernel Mode

User Mode

“Input finished” interrupt 
from Disk

P1: Read file  syscall

P1: CPU bound

P2: CPU bound

Trap handling; 
Scheduler (selects P2); 
Dispatch Pselected;

Trap handling; 
Scheduler (selects P1); 
Dispatch Pselected; 

Trap handling; 
Scheduler (selects some P); 
Dispatch Pselected;

Int0x80 interrupt from 
user level application

Timer Interrupt  
(repeated every 10-100ms)

(OS scheduler can select any ready 
process to run)

(Assume R to disk => 
long wait 10-100’s ms)

Time
(interleaved 

sequence)
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Concurrency & performance

• Common in physical reality
• Speedup

– ideal: n processes, n speedup
– reality: bottlenecks + overheads 

• + sequential vs. parallel parts if & when the processes cooperate

– Questions
• Speedup when 

– working with 1 partner?
– working with 20 partners?

• Super-linear speedup?
– Also check out Amdahl’s Law
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Procedure, Co-routine, Thread, Process

• Procedure, Function, (Sub)Routine
• Call-execute all-return nesting

• Co-routine
• Call-resumes-return

• Thread (more later)
• Process

– Single threaded
– Multi threaded

User level non preemptive “scheduler” 
in user code
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Procedure and Co-routine

Call A;
Call B;

Call B;

Main A B

Call A;
Call B; Resume A;

Resume B;

Main A B

Resume A;

Return

Return

Never executed

“User Yield when finished”

“User Yield during execution 
to share CPU”

Return
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Process

• “Modern” process: Process and Thread are separated 
as concepts

• Process—Unit of Resource Allocation—Defines the 
context

• Thread—Control Thread—Unit of execution, 
scheduling

• Every process have at least one thread
– Every thread exists within the context of a process?
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Simplest (single threaded, sequential) Process

• Sequential execution of operations
– No concurrency inside a (single threaded) process
– Everything happens sequentially

• Process state
– Registers
– Stack(s)
– Main memory
– I/O devices

• Files and their state
• Communication ports

– Other resources
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Program and Process

main()
{
…
foo()
…
bar()
…
baz()
…
qux()
…
quux()
…
}

foo(){…}
bar() {…}/* a.k.a. gazonk
baz() {…}
qux() {…}
quux() {…}
 Program

 
main()
{
…
foo()
…
bar()
…
baz()
…
qux()
…
quux()
…
}

foo(){…}
bar() {…}
baz() {…}
qux() {…}
quux() {…}

 Process

heap
stack
main
foo

registers
PC

Resources: 
comm. ports, 

files, 
semaphores

PID

For at least one 
thread of execution

The 
context

11



12

Process vs. Program

• Process “>” program
– Program is just part of process state
– Example: many users can run the same program

• Process “<“ program
– A program can invoke more than one process
– Example: Fork off processes

12



13

Supporting and Using Processes
• Multiprogramming

– Supporting concurrent execution (overlapping or (transparently) 
interleaved) of multiple processes (or multiple threads if only one 
process per program.) 

– Achieved by process- or context switching, switching the CPU(s) back 
and forth among the individual processes (threads), keeping track of each 
process’ (threads) progress 

• Concurrent programs
– Programs that exploit multiprogramming for some purpose (e.g. 

performance,  structure)
– Independent or cooperating
– Operating systems is important application area for concurrent 

programming. Many others (event driven programs, servers, ++)

Kernel

Processes

Threads

Processes
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Process State Transitions

Running

BlockedReady
Sc

he
du

ler
 

dis
pa

tch W
ait for

resource

Resource becomes
available

Create
a process

terminate

P4P3P2P1

P2

P1

ReadyQueue P4P3

BlockedQueue

Scheduler

Dispatcher

Trap 
Handler

Service

!

Current

Trap Return 
Handler

U s e r  L e v e l  P r o c e s s e s

KERNEL

MULTIPROGRAMMING

•Uniprocessor: Interleaving 
(“pseudoparallelism”)

•Multiprocessor: Overlapping (“true 
paralellism”)

PCB’s

Memory resident part

Instruction Pointer 
(program counter) in the 
EIP register
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What needs to be saved and restored on a context switch?

• Volatile state
• Program counter (Program Counter (PC) also called Instruction 

Pointer (Intel: EIP))
• Processor status register
• Other register contents
• User and kernel stack pointers
• A pointer to the address space in which the process runs 

• the process’s page table directory
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Basic Flow of Context Switch

• Save(volatile machine state, current process);
• Load(another process’s saved volatile state);
• Start(new process);
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Implementing processes

• OS (kernel) needs to keep track of all processes
– Keep track of it’s progress
– (Parent process, if such a concept has been added)
– Metadata (priorities etc.) used by OS
– Memory management
– File management

• Process table with one entry (Process Control Block) 
per process 

• Will also have the processes in queues
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Make a Process

• Creation
– load code and data into memory
– create an empty stack
– initialize state to same as after a process switch
– make process READY to run

• insert into OS scheduler queue (Ready_Queue)
• Clone

– Stop current process and save (its) state
– make copy of currents code, data, stack and OS state
– make the new process READY to run
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Process Control Block (PCB)

• Process management info
– State (ready, running, blocked)
– Registers, PSW, EFLAGS, and other CPU state
– Stack, code, and data segment

• Memory management info
– Segments, page table, stats, etc

• I/O and file management
– Communication ports, directories, file descriptors, etc.

• OS must allocate resources to each process, and do the state 
transitions
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Primitives of Processes

• Creation and termination
– fork, exec, wait, kill

• Signals
– Action, Return, Handler

• Operations
– block, yield

• Synchronization
– We will talk about this later
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Processes (II)

• Classical/traditional processes were, using today’s 
terminology, Single Threaded

• Sequential program
– Single process

• Parallel program
– Multiple cooperating processes
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Threads

• thread
– a sequential execution stream within a process (a.k.a. 

lightweight process)
– threads in a process share the same address space

• thread concurrency
– easy to program overlapping of computation with I/O
– supports doing many things at a time: web browser
– a server serves multiple requests
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Thread Control Block (TCB)

• state (ready, running, blocked)
• registers
• status (EFLAGS)
• program counter (EIP)
• stack
• code
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Thread API

• creation
– fork, join

• mutual exclusion
– acquire(lock_name), release (lock_name)

• operations on monitor condition variables
– wait, signal, broadcast

• alert
– alert, alertwait, testalert
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Thread vs. Procedure

• threads may resume out of order
– cannot use LIFO stack to save state
– each thread has its own stack

• threads can be asynchronous
– procedure is synchronous: can use compiler to save state, 

and restore
• multiple overlapping threads

– multiple CPUs

25



26

Process vs. Thread

• address space
– processes do not (usually) share memory, threads in a 

process do
• therefore, process context switch implies getting a new 

address space in place
– page table and other memory mechanisms

• privileges
– each process has its own set, threads in a process share
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Threads and Processes in the Course Project OS

Kernel threads

Kernel 
Address 
Space

Kernel Level

User Level

Project OSTrad. Threads
Single-threaded processes in individual address spaces

Kernel Level

User Level Thread Support

Process

Threads
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User- and Kernel-Level Thread Support

• User-level threads within a process are
– Indiscernible by OS
– Scheduled by (user-level) scheduler in process

• Kernel-level threads
– Maintained by OS
– Scheduled by OS
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User vs. Kernel-level Threads

• Question
– What is the difference between user-level and kernel-level threads?

• Discussion
– User-level threads are scheduled by a scheduler in their process at user-level

• Co-routines
• Cooperative scheduling (explicit “yield” syscall, implicitly at any syscall 

(Warning: shared resources can result in race conditions and deadlocks))
• Timer interrupt to get preemption (Warning: shared resources)

– Kernel-level threads are scheduled by kernel scheduler
– Implications

• When a user-level thread is blocked on an I/O event, the whole process is 
blocked

• A context switch of kernel threads is more expensive than for user threads
• A smart scheduler (two-level) can avoid both drawbacks. But is more 

complex
– Do we like complexity?
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Threads & Stack

• Private: Each user thread has its own kernel stack
• Shared: All threads of a process share the same kernel 

stack
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Example: fork (UNIX)

• fork() clones a process
– Spawns a new process (with new PID)
– Called in parent process
– Returns in parent and child process
– Return value in parent is child’s PID
– Return value in child is ’0’
– Child gets duplicate, but separate, copy of parent’s user-level virtual 

address space
– Child gets identical copy of parent’s open file descriptors

• exec overlays (replaces) the current process
• if	 ((pid=fork())==0){


 /*child*/	 
 
 exec(“foo”);	 
 /*does	 not	 return*/}
else	 
 /*parent*/	 
wait(pid);	 
 /*wait	 for	 child	 to	 terminate*/
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fork, exec, wait, kill

• Return value tested for error, zero, or positive
• Zero, this is the child process

– Typically redirect standard files, and
– Call Exec to load a new program instead of the old

• Positive, this is the parent process
• Wait, parent waits for child’s termination

– Wait before corresponding exit, parent blocks until exit
– Exit before corresponding wait, child becomes zombie (un-dead) until 

wait

• Kill, specified process terminates
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When may OS switch contexts?

• Only when OS runs
• Events potentially causing a context switch:

– (User level) system calls
• Process created (fork)
• Process exits (exit)
• Process blocks implicitly (I/O calls, block/wait, IPC calls)
• Process enters state ready explicitly (yield)

– System Level Trap
• By HW
• By SW exception

– Kernel preempts current process
• Potential scheduling decision at “any of above”
• +“Timer” to be able to limit running time of processes

User
process

Syscall/Exception

TIMER 
INTERRUPT 
(100ms)

Interrupt handler: Start service or Handle exception

Interrupt
Hardware

Operating 
System 
Kernel

Service
Service

Service
Service

Scheduler
(i) Select next process to run
(ii) Restore context
(iii) Run it

I/O INTERRUPT 
(from keyboard, 
floppy, other)

User
process
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Context Switching Issues
• Performance

– Overhead multiplied so need to keep it fast (nano vs micro vs milli 
seconds)

– Most time is spent SAVING and RESTORING the context of processes
• Less processor state to save, the better

– Pentium has a multitasking mechanism, but SW can be faster if it saves 
less of the state

• How to save time on the copying of context state?
– Re-map (address) instead of copy (data)

• Where to store Kernel data structures “shared” by all processes
• Memory

• How to give processes a fair share of CPU time
• Preemptive scheduling, time-slice defines maximum time interval 

between scheduling decisions
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Example Process State Transitions

P4P3P2P1

P2

P1

ReadyQueue P4P3

BlockedQueue

Scheduler

Dispatcher

Trap 
Handler

Service

!

Current

Trap Return 
Handler

U s e r  L e v e l  P r o c e s s e s

KERNEL

MULTIPROGRAMMING

•Uniprocessor: Interleaving 
(“pseudoparallelism”)

•Multiprocessor: Overlapping (“true 
paralellism”)

PC

PCB’s

Memory resident part

Running

BlockedReady

Resource becomes available
(move to ready queue)

Create
a process

Terminate
(call scheduler)

Yield
(call scheduler)

Block for resource
(call scheduler)

Scheduler
dispatch
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Scheduler

• Non-preemptive scheduler invoked by syscalls (to OS Kernel)
– block
– yield
– (fork and exit)

• The simplest form
 Scheduler:
  save current process state (store to PCB)
  choose next process to run
  dispatch (load state stored in PCB to registers, and run)
• Does this work?

• PCB must be resident in memory
• Remember the stacks
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Stacks
• Remember: We have only one copy of the Kernel in memory

 => all processes “execute” the same kernel code
   => Must have a kernel stack for each process

• Used for storing parameters, return address, locally created 
variables in frames or activation records

• Each process
– user stack
– kernel stack

• always empty when process is in user mode executing 
instructions

• Does the Kernel need its own stack(s)?
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More on Scheduler

• Should the scheduler use a special stack?
– Yes, 

• because a user process can overflow and it would require another 
stack to deal with stack overflow

• (because it makes it simpler to pop and push to rebuild a process’s 
context)

• (Must have a stack when booting…)

• Should the scheduler simply be a “kernel process” (kernel 
thread)?
– You can view it that way because it has a stack, code and its data 

structure
– This thread always runs when there is no user process

• “Idle” process
– In kernel or at user level?
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Win NT Idle

• No runable thread exists on the processor
– Dispatch Idle Process (really a thread)

• Idle is really a dispatcher in the kernel
– Enable interrupt; Receive pending interrupts; Disable interrupts;
– Analyze interrupts; Dispatch a thread if so needed;
– Check for deferred work; Dispatch thread if so needed;
– Perform power management; 
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Process Context Switch

• save a context
– all registers (general purpose ad floating-point)
– all co-processor state
– save all memory to disk?
– what about cache and TLB?

• start a context: reverse of above
• challenge: save state without changing it before it is saved

– hardware will save a few registers when an interrupt happens. We can use 
them.

– CISC: have a special instruction to save and restore all registers to/from 
stack

– RISC: reserve registers for kernel
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Where Should PCB Be Kept?

• Save the PCB on user stack
– Many processors have a special instruction to do it 

efficiently
– But, need to deal with the overflow problem
– When the process terminates, the PCB vanishes

• Save the PCB on the kernel heap data structure
– May not be as efficient as saving it on stack
– But, it is very flexible and no other problems
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Job swapping

• The processes competing for resources may have combined 
demands that results in poor system performance

• Reducing the degree of multiprogramming by moving some 
processes to disk, and temporarily not consider them for 
execution may be a strategy to enhance overall system 
performance
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Job Swapping

Partially executed
swapped-out processes

Ready Queue CPU

I/O Waiting
queues

I/O

Terminate

Swap outSwap in
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Add Job Swapping to
State Transition Diagram

Running

BlockedReady

Create
a process

Terminate
(call scheduler)

Yield
(call scheduler)

Block for resource
(call scheduler)

Scheduler
dispatch

Resource becomes available
(move to ready queue) Swap out

Swap in
Swapped

Swap out
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Concurrent Programming w/ Processes

• Clean programming model
– User address space is private

• Processes are protected from each other
• Sharing requires some sort of IPC (InterProcess 

Communication)
• Overhead (slower execution)

– Process switch, process control expensive 
– IPC expensive
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Revisit Monolithic OS Structure
• All processes share the same kernel
• Kernel comprises

– Interrupt handler & Scheduler
– Key drivers
– Threads “doing stuff”
– Process & thread abstraction 

realization
– Boot loader, BIOS

• Scheduler
– Use a ready queue to hold all 

ready threads (==“process” if 
single-threaded)

– Schedule a thread in 
• current 
• or a new context

We will have: Single threaded processes

We will have: Kernel with multiple 
threads (kind of)
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