
Processes and
Non-Preemptive Scheduling

Otto J. Anshus

1

2

Concurrency and Process
• Challenge: Physical reality is Concurrent

– Smart to do “concurrent software” instead of sequential?
– At least we want to have many apps running on a single computer “at the same time”

• Must share CPU, memory, I/O devices

• Lots of interrupts/traps/exceptions and faults (page faults) will happen

– Options
• let each application/computation see the others and deal with it (each must fight or

cooperate with the others)
• let each application/computation believe it has the computer all alone (analogy: each

car sees the highway without other cars (but perhaps it is a highway where the width
and the speed limit can change at any time)

• Trad. approach:
– Make the OS understand “process” and support processes
– Now we can decompose complex problems into simpler ones

• Applications/computations are comprised of one or several processes
– Cooperating processes need synchronization and communication (using message passing)

• Each process comprised of one or several
• Cooperating threads

• Synchronization and communication (using locks, semaphores, monitors)

• Deal with one at a time
• Each process can believe it has a computer to itself: it can be written as if this is indeed

the case

2

3

Kernel

Processes

Threads

Processes

Kernel

Processes

Get input from
device Process input Action 2

Action 1

Action 3

3

4

Process
• An instance of a program under execution

– Program specifying (logical) control-flow (thread)
– Data
– Private address space
– Open files
– Running environment

• Very important operating system concept
– Used for supporting the concurrent execution of independent or

cooperating program instances
– Used to structure applications and systems
– Protection unit

Kernel

Processes

Threads

Processes

4

5

Flow of Execution

Kernel Mode

User Mode

“Input finished” interrupt
from Disk

P1: Read file syscall

P1: CPU bound

P2: CPU bound

Trap handling;
Scheduler (selects P2);
Dispatch Pselected;

Trap handling;
Scheduler (selects P1);
Dispatch Pselected;

Trap handling;
Scheduler (selects some P);
Dispatch Pselected;

Int0x80 interrupt from
user level application

Timer Interrupt
(repeated every 10-100ms)

(OS scheduler can select any ready
process to run)

(Assume R to disk =>
long wait 10-100’s ms)

Time
(interleaved

sequence)
5

6

Concurrency & performance

• Common in physical reality
• Speedup

– ideal: n processes, n speedup
– reality: bottlenecks + overheads

• + sequential vs. parallel parts if & when the processes cooperate

– Questions
• Speedup when

– working with 1 partner?
– working with 20 partners?

• Super-linear speedup?
– Also check out Amdahl’s Law

6

7

Procedure, Co-routine, Thread, Process

• Procedure, Function, (Sub)Routine
• Call-execute all-return nesting

• Co-routine
• Call-resumes-return

• Thread (more later)
• Process

– Single threaded
– Multi threaded

User level non preemptive “scheduler”
in user code

7

8

Procedure and Co-routine

Call A;
Call B;

Call B;

Main A B

Call A;
Call B; Resume A;

Resume B;

Main A B

Resume A;

Return

Return

Never executed

“User Yield when finished”

“User Yield during execution
to share CPU”

Return

8

9

Process

• “Modern” process: Process and Thread are separated
as concepts

• Process—Unit of Resource Allocation—Defines the
context

• Thread—Control Thread—Unit of execution,
scheduling

• Every process have at least one thread
– Every thread exists within the context of a process?

9

10

Simplest (single threaded, sequential) Process

• Sequential execution of operations
– No concurrency inside a (single threaded) process
– Everything happens sequentially

• Process state
– Registers
– Stack(s)
– Main memory
– I/O devices

• Files and their state
• Communication ports

– Other resources

10

11

Program and Process

main()
{
…
foo()
…
bar()
…
baz()
…
qux()
…
quux()
…
}

foo(){…}
bar() {…}/* a.k.a. gazonk
baz() {…}
qux() {…}
quux() {…}
 Program

main()
{
…
foo()
…
bar()
…
baz()
…
qux()
…
quux()
…
}

foo(){…}
bar() {…}
baz() {…}
qux() {…}
quux() {…}

 Process

heap
stack
main
foo

registers
PC

Resources:
comm. ports,

files,
semaphores

PID

For at least one
thread of execution

The
context

11

12

Process vs. Program

• Process “>” program
– Program is just part of process state
– Example: many users can run the same program

• Process “<“ program
– A program can invoke more than one process
– Example: Fork off processes

12

13

Supporting and Using Processes
• Multiprogramming

– Supporting concurrent execution (overlapping or (transparently)
interleaved) of multiple processes (or multiple threads if only one
process per program.)

– Achieved by process- or context switching, switching the CPU(s) back
and forth among the individual processes (threads), keeping track of each
process’ (threads) progress

• Concurrent programs
– Programs that exploit multiprogramming for some purpose (e.g.

performance, structure)
– Independent or cooperating
– Operating systems is important application area for concurrent

programming. Many others (event driven programs, servers, ++)

Kernel

Processes

Threads

Processes

13

14

Process State Transitions

Running

BlockedReady
Sc

he
du

ler

dis
pa

tch W
ait for

resource

Resource becomes
available

Create
a process

terminate

P4P3P2P1

P2

P1

ReadyQueue P4P3

BlockedQueue

Scheduler

Dispatcher

Trap
Handler

Service

!

Current

Trap Return
Handler

U s e r L e v e l P r o c e s s e s

KERNEL

MULTIPROGRAMMING

•Uniprocessor: Interleaving
(“pseudoparallelism”)

•Multiprocessor: Overlapping (“true
paralellism”)

PCB’s

Memory resident part

Instruction Pointer
(program counter) in the
EIP register

14

15

What needs to be saved and restored on a context switch?

• Volatile state
• Program counter (Program Counter (PC) also called Instruction

Pointer (Intel: EIP))
• Processor status register
• Other register contents
• User and kernel stack pointers
• A pointer to the address space in which the process runs

• the process’s page table directory

15

16

Basic Flow of Context Switch

• Save(volatile machine state, current process);
• Load(another process’s saved volatile state);
• Start(new process);

16

17

Implementing processes

• OS (kernel) needs to keep track of all processes
– Keep track of it’s progress
– (Parent process, if such a concept has been added)
– Metadata (priorities etc.) used by OS
– Memory management
– File management

• Process table with one entry (Process Control Block)
per process

• Will also have the processes in queues

17

18

Make a Process

• Creation
– load code and data into memory
– create an empty stack
– initialize state to same as after a process switch
– make process READY to run

• insert into OS scheduler queue (Ready_Queue)
• Clone

– Stop current process and save (its) state
– make copy of currents code, data, stack and OS state
– make the new process READY to run

18

19

Process Control Block (PCB)

• Process management info
– State (ready, running, blocked)
– Registers, PSW, EFLAGS, and other CPU state
– Stack, code, and data segment

• Memory management info
– Segments, page table, stats, etc

• I/O and file management
– Communication ports, directories, file descriptors, etc.

• OS must allocate resources to each process, and do the state
transitions

19

20

Primitives of Processes

• Creation and termination
– fork, exec, wait, kill

• Signals
– Action, Return, Handler

• Operations
– block, yield

• Synchronization
– We will talk about this later

20

21

Processes (II)

• Classical/traditional processes were, using today’s
terminology, Single Threaded

• Sequential program
– Single process

• Parallel program
– Multiple cooperating processes

21

22

Threads

• thread
– a sequential execution stream within a process (a.k.a.

lightweight process)
– threads in a process share the same address space

• thread concurrency
– easy to program overlapping of computation with I/O
– supports doing many things at a time: web browser
– a server serves multiple requests

22

23

Thread Control Block (TCB)

• state (ready, running, blocked)
• registers
• status (EFLAGS)
• program counter (EIP)
• stack
• code

23

24

Thread API

• creation
– fork, join

• mutual exclusion
– acquire(lock_name), release (lock_name)

• operations on monitor condition variables
– wait, signal, broadcast

• alert
– alert, alertwait, testalert

24

25

Thread vs. Procedure

• threads may resume out of order
– cannot use LIFO stack to save state
– each thread has its own stack

• threads can be asynchronous
– procedure is synchronous: can use compiler to save state,

and restore
• multiple overlapping threads

– multiple CPUs

25

26

Process vs. Thread

• address space
– processes do not (usually) share memory, threads in a

process do
• therefore, process context switch implies getting a new

address space in place
– page table and other memory mechanisms

• privileges
– each process has its own set, threads in a process share

26

27

Threads and Processes in the Course Project OS

Kernel threads

Kernel
Address
Space

Kernel Level

User Level

Project OSTrad. Threads
Single-threaded processes in individual address spaces

Kernel Level

User Level Thread Support

Process

Threads

27

28

User- and Kernel-Level Thread Support

• User-level threads within a process are
– Indiscernible by OS
– Scheduled by (user-level) scheduler in process

• Kernel-level threads
– Maintained by OS
– Scheduled by OS

28

29

User vs. Kernel-level Threads

• Question
– What is the difference between user-level and kernel-level threads?

• Discussion
– User-level threads are scheduled by a scheduler in their process at user-level

• Co-routines
• Cooperative scheduling (explicit “yield” syscall, implicitly at any syscall

(Warning: shared resources can result in race conditions and deadlocks))
• Timer interrupt to get preemption (Warning: shared resources)

– Kernel-level threads are scheduled by kernel scheduler
– Implications

• When a user-level thread is blocked on an I/O event, the whole process is
blocked

• A context switch of kernel threads is more expensive than for user threads
• A smart scheduler (two-level) can avoid both drawbacks. But is more

complex
– Do we like complexity?

29

30

Threads & Stack

• Private: Each user thread has its own kernel stack
• Shared: All threads of a process share the same kernel

stack

30

31

Example: fork (UNIX)

• fork() clones a process
– Spawns a new process (with new PID)
– Called in parent process
– Returns in parent and child process
– Return value in parent is child’s PID
– Return value in child is ’0’
– Child gets duplicate, but separate, copy of parent’s user-level virtual

address space
– Child gets identical copy of parent’s open file descriptors

• exec overlays (replaces) the current process
• if	 ((pid=fork())==0){

 /*child*/	 exec(“foo”);	 /*does	 not	 return*/}
else	 /*parent*/	 wait(pid);	 /*wait	 for	 child	 to	 terminate*/

31

32

fork, exec, wait, kill

• Return value tested for error, zero, or positive
• Zero, this is the child process

– Typically redirect standard files, and
– Call Exec to load a new program instead of the old

• Positive, this is the parent process
• Wait, parent waits for child’s termination

– Wait before corresponding exit, parent blocks until exit
– Exit before corresponding wait, child becomes zombie (un-dead) until

wait

• Kill, specified process terminates

32

33

When may OS switch contexts?

• Only when OS runs
• Events potentially causing a context switch:

– (User level) system calls
• Process created (fork)
• Process exits (exit)
• Process blocks implicitly (I/O calls, block/wait, IPC calls)
• Process enters state ready explicitly (yield)

– System Level Trap
• By HW
• By SW exception

– Kernel preempts current process
• Potential scheduling decision at “any of above”
• +“Timer” to be able to limit running time of processes

User
process

Syscall/Exception

TIMER
INTERRUPT
(100ms)

Interrupt handler: Start service or Handle exception

Interrupt
Hardware

Operating
System
Kernel

Service
Service

Service
Service

Scheduler
(i) Select next process to run
(ii) Restore context
(iii) Run it

I/O INTERRUPT
(from keyboard,
floppy, other)

User
process

33

34

Context Switching Issues
• Performance

– Overhead multiplied so need to keep it fast (nano vs micro vs milli
seconds)

– Most time is spent SAVING and RESTORING the context of processes
• Less processor state to save, the better

– Pentium has a multitasking mechanism, but SW can be faster if it saves
less of the state

• How to save time on the copying of context state?
– Re-map (address) instead of copy (data)

• Where to store Kernel data structures “shared” by all processes
• Memory

• How to give processes a fair share of CPU time
• Preemptive scheduling, time-slice defines maximum time interval

between scheduling decisions

34

35

Example Process State Transitions

P4P3P2P1

P2

P1

ReadyQueue P4P3

BlockedQueue

Scheduler

Dispatcher

Trap
Handler

Service

!

Current

Trap Return
Handler

U s e r L e v e l P r o c e s s e s

KERNEL

MULTIPROGRAMMING

•Uniprocessor: Interleaving
(“pseudoparallelism”)

•Multiprocessor: Overlapping (“true
paralellism”)

PC

PCB’s

Memory resident part

Running

BlockedReady

Resource becomes available
(move to ready queue)

Create
a process

Terminate
(call scheduler)

Yield
(call scheduler)

Block for resource
(call scheduler)

Scheduler
dispatch

35

36

Scheduler

• Non-preemptive scheduler invoked by syscalls (to OS Kernel)
– block
– yield
– (fork and exit)

• The simplest form
 Scheduler:
 save current process state (store to PCB)
 choose next process to run
 dispatch (load state stored in PCB to registers, and run)
• Does this work?

• PCB must be resident in memory
• Remember the stacks

36

37

Stacks
• Remember: We have only one copy of the Kernel in memory

 => all processes “execute” the same kernel code
 => Must have a kernel stack for each process

• Used for storing parameters, return address, locally created
variables in frames or activation records

• Each process
– user stack
– kernel stack

• always empty when process is in user mode executing
instructions

• Does the Kernel need its own stack(s)?

37

38

More on Scheduler

• Should the scheduler use a special stack?
– Yes,

• because a user process can overflow and it would require another
stack to deal with stack overflow

• (because it makes it simpler to pop and push to rebuild a process’s
context)

• (Must have a stack when booting…)

• Should the scheduler simply be a “kernel process” (kernel
thread)?
– You can view it that way because it has a stack, code and its data

structure
– This thread always runs when there is no user process

• “Idle” process
– In kernel or at user level?

38

39

Win NT Idle

• No runable thread exists on the processor
– Dispatch Idle Process (really a thread)

• Idle is really a dispatcher in the kernel
– Enable interrupt; Receive pending interrupts; Disable interrupts;
– Analyze interrupts; Dispatch a thread if so needed;
– Check for deferred work; Dispatch thread if so needed;
– Perform power management;

39

40

Process Context Switch

• save a context
– all registers (general purpose ad floating-point)
– all co-processor state
– save all memory to disk?
– what about cache and TLB?

• start a context: reverse of above
• challenge: save state without changing it before it is saved

– hardware will save a few registers when an interrupt happens. We can use
them.

– CISC: have a special instruction to save and restore all registers to/from
stack

– RISC: reserve registers for kernel

40

41

Where Should PCB Be Kept?

• Save the PCB on user stack
– Many processors have a special instruction to do it

efficiently
– But, need to deal with the overflow problem
– When the process terminates, the PCB vanishes

• Save the PCB on the kernel heap data structure
– May not be as efficient as saving it on stack
– But, it is very flexible and no other problems

41

42

Job swapping

• The processes competing for resources may have combined
demands that results in poor system performance

• Reducing the degree of multiprogramming by moving some
processes to disk, and temporarily not consider them for
execution may be a strategy to enhance overall system
performance

42

43

Job Swapping

Partially executed
swapped-out processes

Ready Queue CPU

I/O Waiting
queues

I/O

Terminate

Swap outSwap in

43

44

Add Job Swapping to
State Transition Diagram

Running

BlockedReady

Create
a process

Terminate
(call scheduler)

Yield
(call scheduler)

Block for resource
(call scheduler)

Scheduler
dispatch

Resource becomes available
(move to ready queue) Swap out

Swap in
Swapped

Swap out

44

45

Concurrent Programming w/ Processes

• Clean programming model
– User address space is private

• Processes are protected from each other
• Sharing requires some sort of IPC (InterProcess

Communication)
• Overhead (slower execution)

– Process switch, process control expensive
– IPC expensive

45

46

Revisit Monolithic OS Structure
• All processes share the same kernel
• Kernel comprises

– Interrupt handler & Scheduler
– Key drivers
– Threads “doing stuff”
– Process & thread abstraction

realization
– Boot loader, BIOS

• Scheduler
– Use a ready queue to hold all

ready threads (==“process” if
single-threaded)

– Schedule a thread in
• current
• or a new context

We will have: Single threaded processes

We will have: Kernel with multiple
threads (kind of)

46

