
Protection and System Calls

Otto J. Anshus

Tuesday, 24.August, 2010

Protection Issues

• CPU protection
– Prevent a user from using the CPU for too long

• Throughput of jobs, and response time to events (incl. user interactive
response time)

• Memory protection
– Prevent users from modifying kernel code and data structures
– …and each others code and data

• I/O protection
– Prevent users from performing illegal I/O’s

• Question
– what is the difference between protection and security?

Tuesday, 24.August, 2010

Application Registers

In protected mode, there are 8 32-bit general-purpose
registers for use:

• data registers
◦ EAX, the accumulator (32 bits (16 and AX (AH, AL)))

◦ EBX, the base register
◦ ECX, the counter register

◦ EDX, the data register
• address registers
◦ ESI, the source register
◦ EDI, the destination register

◦ ESP, the stack pointer register
◦ EBP, the stack base pointer register

3

Tuesday, 24.August, 2010

Non-Application Registers

In addition there are non-application registers available, which change
the state of the processor:

• control registers

◦ CR0, CR1, CR2, CR3

• test registers

◦ TR4, TR5, TR6, TR7

• descriptor registers

◦ GDTR, the global descriptor table register (see below)

◦ LDTR, the local descriptor table register (see below)

◦ IDTR, the interrupt descriptor table register (see below)

• task register

◦ TR
4

Tuesday, 24.August, 2010

Flags Registers
• EFLAGS, which contain the processor state.

– Each flag is one bit - and thus set 0 or 1, also called set, high,
and unset or low.

– Important flags in the EFLAGS register is: carry (bit 0), zero (bit
6), sign flag (bit 7) and overflow (bit 12).

• Flags are used in the x86 architecture for comparisons.

• A comparison is made between two registers, for example, and
in comparison of their difference a flag is raised.

• A jump instruction then checks the respective flag and jumps
if the flag has been raised: for example

cmp ax, bx jne do_something

first compares the AX and BX registers, and if they are
unequal, the code branches off to the do_something label.

5

Tuesday, 24.August, 2010

Instruction Pointer Register

• EIP
– The IP register points to where in the program

the processor is currently executing it's code.
– The IP register cannot be accessed by the

programmer directly. WHY NOT?

6

Tuesday, 24.August, 2010

Architecture Support: Privileged Mode

Tuesday, 24.August, 2010

Interrupts and Exceptions

• Interrupt sources
– HW (by external devices)
– SW: INT n

• Exceptions
– Program errors: faults, traps, aborts
– SW generated: INT 3
– Machine-check exceptions

• See Intel doc Vol. 3 for details

Tuesday, 24.August, 2010

Interrupts and Exceptions

Tuesday, 24.August, 2010

Interrupts and Exceptions

Tuesday, 24.August, 2010

Privileged Instruction Examples

• Memory address mapping
• Data cache flush and invalidation
• Invalidating TLB entries
• Loading and reading system registers
• Changing processor mode from kernel to user
• Changing the voltage and frequency of the processor
• Halting a processor
• Reset a processor
• I/O operations

Tuesday, 24.August, 2010

Tuesday, 24.August, 2010

Tuesday, 24.August, 2010

IA32 Protection Rings

No worries, we will use level 0 and 3

Tuesday, 24.August, 2010

System Calls

• Operating System API
– Interface between a process and OS kernel
– Seen as a set of library functions

• Categories
– Process management
– Memory management
– File management
– Device management
– Communication

Tuesday, 24.August, 2010

System Calls

• Process management
• end, abort , load, execute, create, terminate, set, wait

• Memory management
• mmap & munmap, mprotect, mremap, msync, swapon & off,

• File management
• create, delete, open, close, R, W, seek

• Device management
• res, rel, R, W, seek, get & set atrib., mount, unmount

• Communication
• get ID’s, open, close, send, receive

Tuesday, 24.August, 2010

System Call Mechanism
• User code can be arbitrary
• User code cannot modify kernel

memory
• Makes a system call with

parameters
• The call mechanism switches

code to kernel mode
• Execute system call
• Return with results

Kernel in
protected memory

entry

User
program

User
program

call

return

But HOW?

Tuesday, 24.August, 2010

System Call Implementation

• Use an “interrupt”
• Hardware devices (keyboard, serial port, timer, disk,…)

and software can request service using interrupts
• The CPU is interrupted

– ...and a service handler routine is run
• …when finished the CPU resumes from where it was

interrupted (or somewhere else determined by the OS
kernel)

Tuesday, 24.August, 2010

OS Kernel: Trap Handler

HW Device
Interrupt

HW exceptions

SW exceptions

System Call

Virtual address
exceptions

HW implementation of the boundary

System
service
dispatcher System

services

Interrupt
service
routines

Exception
dispatcher

Exception
handlers

VM manager’s
pager

Sys_call_table

Tuesday, 24.August, 2010

Passing Parameters

• Pass by registers
• #registers
• #usable registers
• #parameters in syscall

• Pass by memory vector
– A register holds the address of

a location in users memory
• Pass by stack

– Push: done by library
– Pop: done by Kernel

frame

frame

Top

REMEMBER: Kernel has
access to callers address
space, but not vice versa

Tuesday, 24.August, 2010

The Stack
•Many stacks possible, but only
one is “current”: the one in the
segment referenced by the SS
register

•Max size 4 gigabytes

•PUSH: write (--ESP);

•POP: read(ESP++);

•When setting up a stack
remember to align the stack
pointer on 16 bit word or 32 bit
double-word boundaries

Tuesday, 24.August, 2010

Library Stubs for System Calls
• User process: read(fd, buf, size)

int read(int fd, char * buf, int size)
{
 move READ to R0

 move fd, buf, size to R1, R2, R3

 int $0x80
 load result code from Rresult

}

User
stack

Registers

User
memory

Kernel
stack

Registers

Kernel
memory

Returns
here when
work is
done

Could be an error
code

32-255
available
to user

Win NT: 2E

Linux: 80

HW takes over and IP is set to OS Kernel

Tuesday, 24.August, 2010

System Call Entry Point

User
stack

Registers

User
memory

Kernel
stack

Registers

Kernel
memory

• Assume passing parameters in
registers
EntryPoint inside OS Kernel:
 switch to kernel stack;
 save user context;
 if legal(R0) call service;

 restore user context;
 switch to user stack;
 iret;

int 0x80

SW
interrupt

Put results into buf Or: User stack

Or: some register

Change to user
mode and return

Kernel
Mode:
Total
control.
All
interrupts
are
disabled

Tuesday, 24.August, 2010

System Call Entry Point
• Assume passing parameters in

registers
(EntryPoint:)
 switch to kernel stack;
 save all registers;
 if legal(R0) call sys_call_table[R0];
 restore user registers;
 switch to user stack;
 iret; %next instr in user space app

int 0x80

SW
interrupt

Save/Restore Context?

If envoked code executes for a long
time: should SCHEDULE or at least
ENABLE interrupts

READ returns with result and
handler must return them to user
Or SCHEDULE to run another process

Tuesday, 24.August, 2010

Polling instead of Interrupt?

• OS kernel could check a request queue instead of using
an interrupt?

• Waste CPU cycles checking
• All have to wait while the checks are being done
• When to check?

– Non-predictable
– Pulse every 10-100ms?

» too long time

• Same valid for HW Interrupts vs. Polling
• However, spinning can give good performance (more

later)

But used for Servers

Tuesday, 24.August, 2010

Design Issues for Syscall
• We used only one result reg, what if more results?
• In kernel and in called service: Use caller’s stack or a

special stack?
– Use a special stack

• Quality assurance
– Use a single entry or multiple entries?

• Simple is good?
– Then a single entry is simpler, easier to make robust

• Can kernel code call system calls?
– Yes, but should avoid the entry point mechanism

Tuesday, 24.August, 2010

System calls vs. Library calls

• Division of labor (a.k.a. Separation of Concerns)
• Memory management example

– Kernel
• Allocates “pages” (w/HW protection)
• Allocates many “pages” (a big chunk) to library

– Big chunks, no “small” allocations

– Library
• Provides malloc/free for allocation and deallocation of memory
• Application use malloc/free to manage its own memory at fine

granularity
• When no more memory, library asks kernel for a new chunk of pages

Tuesday, 24.August, 2010

User process vs. kernel

• User process -> kernel
– syscalls

• Kernel -> user process
– Kernel is all powerful

• Can write into user memory
• Can terminate, block and activate user processes

Tuesday, 24.August, 2010

