Semaphores

Otto J. Anshus University of {Tromsø, Oslo}

- •Put and Get are disjoint
 - •but not with regards to Copy
 - •The **order** of Copy vs. Put & Get:
 - •OK, defined by program

- •but not with regards to Copy
 - •The **order** of Copy vs. Put & Get:
 - •OK, defined by program

Think about non-preemptive vs. preemptive scheduling by OS

Concurrency: Double buffering

/* Fill s and empty t concurrently: OS Kernel will do preemptive scheduling of GET, COPY and PUT*/

Three threads executing concurrently:

{put_thread || get_thread || copy_thread]

/*Assume **preemptive** sched. by kernel */

What is **shared** between the threads?: The buffers **s** and **t**. So what can happen unless we make sure they are used by one and only one thread at a time?: Interference between the threads possible/likely.

Need how many locks? 2, one for each shared resource.

Proposed code (but not quite good enough):

copy_thread:: *{acq(lock_t); acq(lock_s); t=f; rel(lock_s); rel(lock_t);}

get_thread:: *{ack(lock_s); s=f; rel(lock_s);}

put thread:: *{ack(lock t): g=t; rel(lock t);}

Threads specifies concurrent execution

Not too bad, but NO ORDER

- •what can happen?
 - •same/old s values copied again
 - •s values never copied because Get overwrites
 - •same/old t values read by Put
 - •t values lost because Copy overwrites

Protecting a Shared Variable

- Remember: we need a *shared address space* to share variables (memory)
 - threads inside a process share an address space
 - processes: do not share address space(s) (of course not, that is the point)
 - (but *can* do so by exporting/importing memory regions (buffers) (not in this course))
- Assume we have support in the OS kernel for user and/or kernel level threads: they can be individually scheduled
- Acquire(lock_A); count++; Release(lock_A);
 - (1) Acquire(lock) system call
 - User level library
 - (2) Push parameters (acquire, lock_name) onto stack
 - (3) Trap to kernel (int instruction)
 - Kernel level
 - Interrupt handler
 - (4) Verify valid pointer to *lock_A*
 - Jump to code for Acquire()
 - **(5a) lock closed: block caller: insert(current, lock_A_wait_queue)** (and then do *schedule* and *dispatch* to some other **thread** in same address space or even to another **process**)
 - **(5b) lock open: close lock_A (**and *schedule* and *dispatch* to library routine (or even to another thread or process)
 - User level: **(6) execute count++**
 - (7) Release(lock) system call

Lock Performance and Cost Issues

- Implement the lock-mechanism by spinning or blocking?
- Competition for a lock
 - Un-contended = rarely in use by someone else
 - Contended = often used by someone else
 - *Held* = currently in use by someone
- Think about the implications of these situations
 - Contended (**High** contention lock):
 - Spinning: **Worst** (slow in, many cpu cycles wasted)
 - Blocking: **OK** (slow in, but fewer cycles wasted *relative*)
 - Un-contended (Low contention lock):
 - Spinning: **Best** (fastest in, few cpu cycles wasted)
 - Blocking: **Bad** (fast in, overhead cpu cycles wasted)

Use of locks when implementing

Block/unblock syscalls

(implemented by the OS Kernel)

- What we want to achieve
 - Block thread on a queue called waitq
 - insert (waitq, last, remove (readyq, current))
 - Unblock
 - insert (readyq, scheduler, remove (waitq, first))

- (By the way, useful instruction:)
 - ("test and set" works both at user and kernel level)

Implementation of Block and Unblock inside OS Kernel

- Block (lock)
 - Spin until lock is open %Why?
 - Save context to the TCB
 - Enqueue the TCB
 - Open lock
 - goto scheduler

- UnBlock (lock)
 - Spin until lock is open
 - -Dequeue first TCB
 - -Put TCB into ready_queue
 - Open lock
 - goto scheduler

Do we really need a lock if this is implemented inside the kernel?

Is spinning such a good idea inside the kernel?

Think about ...

- Mutual exclusion using Acquire Release:
 - Easy to forget one of them?
 - Difficult to debug?
 - must check all threads for correct use: "Acquire-CR-Release"
 - No help from the compiler?
 - It does not understand that we mean to say MUTEX
 - But could
 - check to see if we always match them "left-right"
 - associating (by specification/declaration) a variable with a Mutex, and never allow access to the variable outside of CR

Semaphores (Dijkstra, 1965)

Published as an appendix to the paper on the THE operating system

- Down(s) a.k.a Wait(s) a.k.a P(s)
 - itself a critical region: MUTEX
 - DELAY (block, or busy wait) if not positive (s<1)
 - Decrement semaphore value by 1

- Up(s) a.k.a Signal(s) a.k.a V(s)
 - itself a critical region: MUTEX
 - Increment semaphore by 1
 - Wake up the longest waiting thread *if any*

The semaphore, s, must be given an initial value

Can get **negative** s: counts number of waiting threads

```
P: Passieren == to pass
```

P: Proberen == to test

V: Vrijmagen == to make free V: Verhogen == to increment

Dutch words

A Blocking Semaphore Implementation

- •NB: **s** and **waitq** are *shared resources*So what?
- Approaches to achieve atomicity

Disable interrupts

P() and V() as System calls

Entry-Exit protocols

Using Semaphores

"The Signal"

A is delayed until B says V

NB: remember to set the initial semaphore value!

One thread gets in, next is delayed until V is executed

Up to 8 threads can pass P, the ninth will block until V is said by one of the eight already in there

THEY ARE FOREVER WAITING FOR EACH OTHERS SIGNAL

Circular Wait

Classic (but not good) situation resulting in a *Deadlock*

THEY ARE FOREVER WAITING FOR EACH OTHERS SIGNAL

Circular Wait

Classic (but not good) situation resulting in a *Deadlock*

THEY ARE FOREVER WAITING FOR EACH OTHERS SIGNAL

Circular Wait

Classic (but not good) situation resulting in a *Deadlock*

Rendezvous between two threads (or: a Barrier for two threads)

Bounded Buffer using Semaphores

Condition synchronization:

Use one semaphore for each condition we must wait for to become TRUE:

•No Get when empty_

→•B empty: nonempty:=0

•No Put when full-

→•B full: nonfull:=N

MUTEX:

•B shared, so must have mutex between Put and

→Use one semaphore for each shared resource toproytect it from i:

•B mutex: mutex:=1

- •Is Mutex needed when only 1 P and 1 C?
- •PUT at one end, GET at other end

s(i): One semaphore per fork to be used in **mutex** style P-V •Each: need 2 forks to eat

•5 philosophers: 10 forks

•5 forks: 2 can eat concurrently

 T_i

 T_{i}

Things to observe:

•A fork can only be used by one at a time, please

•No deadlock, please

•No starving, please

•Concurrent eating, please

 T_{i}

•Each: need 2 forks to eat

•5 philosophers: 10 forks

•5 forks: 2 can eat concurrently

s(i): One semaphore per fork to be used in mutex style P-V

Mutex on whole table:

P(mutex);

•1 can eat at a time

eat; V(mutex);

 T_i

Things to observe:

•A fork can only be used by one at a time, please

•No deadlock, please

•No starving, please

•Concurrent eating, please

 T_{i}

• Each: need 2 forks to eat

•5 philosophers: 10 forks

•5 forks: 2 can eat concurrently

s(i): One semaphore per fork to be used in mutex style P-V

Mutex on whole table: P(mutex);

•1 can eat at a time eat; V(mutex);

Get L; Get R;

P(s(i));P(s(i+1));•Deadlock possible

eat;

V(s(i+1));S(i) = 1 initially V(s(i));

Things to observe:

•A fork can only be used by one at a time, please

•No deadlock, please

•No starving, please

•Concurrent eating, please

 T_i

 T_i

•Each: need 2 forks to eat

•5 philosophers: 10 forks

•5 forks: 2 can eat concurrently

S

s(i): One semaphore per fork to be used in **mutex** style P-V **Mutex on whole table:** P(mutex);

•1 can eat at a time eat; V(mutex):

Get L; Get R;

P(s(i));

Deadlock possible

P(s(i+1)); eat;

S(i) = 1 initially V(s(i+1));V(s(i));

Get L; Get R if free else Put L;

•Starvation possible

Things to observe:

•A fork can only be used by one at a time, please

•No deadlock, please

•No starving, please

•Concurrent eating, please

 T_{i}

 T_i

Can we in a simple way do better than this one?

Get L; Get R;
$$P(s(i));$$
 •Deadlock possible $P(s(i+1));$ eat; $V(s(i+1));$ $V(s(i));$

S(i) = 1 initially

- •Remove the danger of circular waiting (deadlock)
- •T1-T4: Get L; Get R;
- •T5: Get R; Get L;

```
T_1, T_2, T_3, T_4:

P(s(i)):

P(s(i+1));

< eat >

V(s(i+1));

V(s(i));
```

```
T_5
P(s(1));
P(s(5));
<eat>
V(s(5));
V(s(1));
```

•Non-symmetric solution. Still quite elegant

A Spinning Semaphore Implementation?

A Spinning Semaphore Implementation?

"You Got a Problem with This?"

Spinning Semaphore

V(s):

Spinning Semaphore

```
P(s):
                                             V(s):
       while (s \leq 0) {};
If P spinning inside mutex then V will not get in
   Starvation possible (Lady Luck may ignore/favor some threads)
      Of P's
      Of V's
Must open mutex, say, between every iteration of while() to
make it possible for V to get in
   Costly
      Every 10th iteration?
```

Latency

Implementation of Semaphores

- Implementing the P and V of semaphores
 - If WAIT is done by blocking
 - Expensive
 - Must open mutex
 - But no real problems because we have a waiting queue now and we will not get starvation
 - If done by spinning
 - Must open mutex during spin to let V in
 - Starvation of P's and V's possible
 - May not be a problem in practice
- What can we do to "do better"?

Implementing Semaphores using Locks

Using locks to implement a semaphore

- mutex lock: lock is initially **open**
- "delay me" lock: lock is initially **locked**
- SEMAPHORE value is called "s.value" in the code below: Initially 0

```
P(s) {
   Acquire(s.mutex);
   if (--s.value < 0) {
     Release(s.mutex);
     Acquire(s.mutex);
     Release(s.delay);
   } else
   Release(s.mutex);
}

Release(s.mutex);
}</pre>

V(s) {
   Acquire(s.mutex);
   Release(s.delay);
   Release(s.mutex);
}

Release(s.mutex);
}
```

Trouble Lost V calls

Kotulski (1988)

- Two processes call P(s) (s.value is initialized to 0) and preempted after Release(s.mutex)
- Two other processes call V(s)

Hemmendinger's solution (1988)

```
P(s) {
   Acquire(s.mutex);
   if (--s.value < 0) {
      Release(s.mutex);
      Acquire(s.mutex);
      Acquire(s.mutex);
      Acquire(s.delay);
      else
      Release(s.mutex);
   }
   Release(s.mutex);
}</pre>
```

- The idea is not to release s.mutex and turn it over individually to the waiting process
- P and V are executing in locksteps

Kearn's Solution (1988)

```
P(s) {
    Acquire(s.mutex);
    if (--s.value < 0) {
        Release(s.mutex);
        Acquire(s.mutex);
        Acquire(s.delay);
        Acquire(s.mutex);
        Acquire(s.mutex);
        if (--s.wakecount > 0)
            Release(s.mutex);
        Release(s.mutex);
    }
    Release(s.mutex);
}
Release(s.mutex);
```

Two Release(s.delay) calls are also possible

Hemmendinger's Correction (1989)

```
P(s) {
                                V(s) {
  Acquire(s.mutex);
                                  Acquire (s.mutex);
  if (--s.value < 0) {
                                  if (++s.value <= 0) {
    Release(s.mutex);
                                    s.wakecount++;
    Acquire(s.delay);
                                    if (s.wakecount == 1)
    Acquire (s.mutex);
                                      Release (s.delay);
    if (--s.wakecount > 0)
      Release(s.delay);
                                  Release(s.mutex);
  Release(s.mutex);
```

Correct but a complex solution

Hsieh's Solution (1989)

```
P(s) {
    Acquire(s.delay);
    Acquire(s.mutex);
    if (++s.value == 1)
        if (--s.value > 0)
        Release(s.delay);
    Release(s.mutex);
}
```

- Use Acquire(s.delay) to block processes
- Correct but still a constrained implementation

Example: Condition Synchronization between Interrupt Handler and Device Driver

- A device thread and the interrupt handler
 - need to handle shared data between them

semaphore s; s=0;

