
Semaphores

Otto J. Anshus
University of {Tromsø, Oslo}

Tuesday, 14.September, 2010



Concurrency: Double buffering

Put (t,g)

/* Copy */ 
t := s;

Input sequence f

Output sequence g

Get (s,f) s

t

/* Fill s and empty t concurrently */

•Put and Get are disjoint

•but not with regards to Copy

•The order of Copy vs. Put & Get: 

•OK, defined by program

Get(s,f);

Repeat

Copy;

cobegin

Put(t,g);

Get(s,f);

coend;

until completed;

(Two threads)
Alternative syntax:
{put() || get()}

cobegin & coend 
specifies concurrent 
execution.

put get

until compleated

get;
repeat

copy;
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Put (t,g)

/* Copy */ 
t := s;

Input sequence f

Output sequence g

Get (s,f) s

t

/* Fill s and empty t concurrently */

•Put and Get are disjoint

•but not with regards to Copy

•The order of Copy vs. Put & Get: 

•OK, defined by program

Think about non-preemptive vs. preemptive scheduling by OS

Get(s,f);

Repeat

Copy;

cobegin

Put(t,g);

Get(s,f);

coend;

until completed;

(Two threads)
Alternative syntax:
{put() || get()}

cobegin & coend 
specifies concurrent 
execution.

put get

until compleated

get;
repeat

copy;
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Concurrency: Double buffering

Put (t,g)

/* Copy */ 
t := s;

Input sequence f

Output sequence g

Get (s,f) s

t

Three threads executing concurrently:

{put_thread || get_thread || copy_thread}   /*Assume preemptive sched. by kernel */

What is shared between the threads?: The buffers s and t. So what can happen 
unless we make sure they are used by one and only one thread at a time?: 
Interference between the threads possible/likely.

Need how many locks? 2, one for each shared resource.

Proposed code (but not quite good enough):

copy_thread:: *{acq(lock_t); acq(lock_s); t=f;  rel(lock_s); rel(lock_t);}

get_thread:: *{ack(lock_s); s=f; rel(lock_s);}

put_thread:: *{ack(lock_t): g=t; rel(lock_t);}

/* Fill s and empty t concurrently: OS Kernel will do preemptive scheduling of GET, COPY and PUT*/

•Not too bad, but NO ORDER

•what can happen?

•same/old s values copied again

•s values never copied because Get overwrites

•same/old t values read by Put

•t values lost because Copy overwrites

Threads specifies 
concurrent execution
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Protecting a Shared Variable
• Remember: we need a shared address space to share variables (memory)

– threads inside a process share an address space
– processes: do not share address space(s) (of course not, that is the point)

• (but can do so by exporting/importing memory regions (buffers) (not in this course))
• Assume we have support in the OS kernel for user and/or kernel level threads: they can be 

individually scheduled

• Acquire(lock_A); count++; Release(lock_A);
• (1) Acquire(lock) system call

• User level library
• (2) Push parameters (acquire, lock_name) onto stack
• (3) Trap to kernel (int instruction)

• Kernel level
– Interrupt handler

– (4) Verify valid pointer to lock_A
• Jump to code for Acquire()

• (5a) lock closed: block caller: insert(current, lock_A_wait_queue) (and 
then do schedule and dispatch to some other thread in same address space 
or even to another process)

• (5b) lock open: close lock_A (and schedule and dispatch to library routine 
(or even to another thread or process)

• User level: (6) execute count++
• (7) Release(lock) system call
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Lock Performance and Cost Issues

• Implement the lock-mechanism by spinning or blocking?
• Competition for a lock

– Un-contended = rarely in use by someone else
– Contended = often used by someone else
– Held = currently in use by someone

• Think about the implications of these situations
– Contended (High contention lock): 

• Spinning: Worst (slow in, many cpu cycles wasted)
• Blocking: OK (slow in, but fewer cycles wasted relative)

– Un-contended (Low contention lock): 
• Spinning: Best (fastest in, few cpu cycles wasted)
• Blocking: Bad (fast in, overhead cpu cycles wasted)
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Use of locks when implementing

Block/unblock syscalls 
(implemented by the OS Kernel)

• What we want to achieve
– Block thread on a queue called waitq

• insert (waitq, last, remove (readyq, current))
– Unblock

• insert (readyq, scheduler, remove (waitq, first))

• (By the way, useful instruction:)
– (“test and set” works both at user and kernel level)

tcb_refposq_ref q_ref tcb_ref
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Implementation of Block and Unblock inside OS Kernel

• Block (lock)
– Spin until lock is open %Why?

• Save context to the TCB
• Enqueue the TCB

– Open lock
– goto scheduler

• UnBlock (lock)
– Spin until lock is open

-Dequeue first TCB
-Put TCB into ready_queue

– Open lock
– goto scheduler

Do we really need a lock if this is implemented inside the 
kernel?

Is spinning such a good idea inside the kernel?
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Two Styles of Synchronization

Acquire (l_id);

MUTEX

CONDITION 
SYNCHRONIZATION

Acquire will 
block first caller 
until Release

Acquire will let 
first caller through, 
and then block next 
until Release

Threads inside one 
process: Shared address 
space. They can access the 
same variablesProcess w/two threads
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Two Styles of Synchronization

Acquire (l_id);

MUTEX

CONDITION 
SYNCHRONIZATION

LOCK is initially CLOSED

Acquire will 
block first caller 
until Release

Acquire will let 
first caller through, 
and then block next 
until Release

Threads inside one 
process: Shared address 
space. They can access the 
same variables

Acquire (l_id);

   <CR>

Release (l_ id);

Acquire (l_id);

   <CR>

Release (l_id);

LOCK is initially OPEN

Process w/two threads
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Two Styles of Synchronization

Acquire (l_id); Release (l_id);

MUTEX

CONDITION 
SYNCHRONIZATION

LOCK is initially CLOSED

Acquire will 
block first caller 
until Release

Acquire will let 
first caller through, 
and then block next 
until Release

Threads inside one 
process: Shared address 
space. They can access the 
same variables

Acquire (l_id);

   <CR>

Release (l_ id);

Acquire (l_id);

   <CR>

Release (l_id);

LOCK is initially OPEN

Process w/two threads
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Two Styles of Synchronization
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CONDITION 
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Two Styles of Synchronization

Acquire (l_id); Release (l_id);

MUTEX

CONDITION 
SYNCHRONIZATION

SIGNAL

LOCK is initially CLOSED

Acquire will 
block first caller 
until Release

Acquire will let 
first caller through, 
and then block next 
until Release

Threads inside one 
process: Shared address 
space. They can access the 
same variables

Acquire (l_id);

   <CR>

Release (l_ id);

Acquire (l_id);

   <CR>

Release (l_id);

LOCK is initially OPEN

Process w/two threads
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Think about ...

• Mutual exclusion using Acquire - Release:
– Easy to forget one of them?
– Difficult to debug?

•  must check all threads for correct use: “Acquire-CR-Release”
– No help from the compiler?

• It does not understand that we mean to say MUTEX
• But could 

– check to see if we always match them “left-right”
– associating (by specification/declaration) a variable with a 

Mutex, and never allow access to the variable outside of 
CR
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Semaphores (Dijkstra, 1965)

• Down(s) a.k.a Wait(s) a.k.a P(s)
– itself a critical region: MUTEX
– DELAY (block, or busy wait) if 

not positive (s<1)
– Decrement semaphore value by 1

{
  if (--s < 0)
    Block(s);
}

{
  if (++s <= 0)
    Unblock(s);
}

• Up(s) a.k.a Signal(s) a.k.a V(s)
– itself a critical region: MUTEX
– Increment semaphore by 1
– Wake up the longest waiting 

thread if any

s must NOT be 
accessible 
through other 
means than 
calling P and V

Can get negative s: counts number of waiting threads

MUTEX

Published as an appendix to the paper on the THE operating system

The semaphore, s, must be given an initial value

P(s) V(s)

P: Passieren == to pass
P: Proberen == to test V: Vrijmagen == to make free

V: Verhogen == to incrementDutch words
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A Blocking Semaphore Implementation

s_wait_queue

Threads waiting to get return after calling P (s) when s was <=0s

V (s) P (s)

integer

+1 -1

Unblock one waiting thread 
(FIFO is fair)

Block calling threads when 
s <=0

•NB: s and waitq are shared resources
So what?

•Approaches to achieve atomicity
Disable interrupts

P() and V() as System calls

Entry-Exit protocols
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Using Semaphores

s := 1;

P (s);
    <CR>
V(s);

P (s);
    <CR>
V(s);

s := 8;
P (s);
 <max 8>
V(s);

P (s);
 <max 8>
V(s);

s := 0;

P (s); V (s);

A is delayed until B says 
V

A B

One thread gets in, next is 
delayed until V is executed

Up to 8 threads can pass P, the ninth 
will block until V is said by one of 
the eight already in there

NB: remember to set the
initial semaphore value!

“The Signal” “The 
Mutex”
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Simple to debug?

P (x);

V (y);

<code>
P (y);

V (x);

<code>

What will happen?

x := 0;

y := 0;

A B
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Simple to debug?

P (x);

V (y);

<code>
P (y);

V (x);

<code>

What will happen?

x := 0;

y := 0;

A B

THEY ARE FOREVER WAITING FOR EACH OTHERS SIGNAL

Circular Wait

Classic (but not good) situation resulting in a Deadlock
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Rendezvous between two threads 
(or: a Barrier for two threads)

THREAD 1
.
.
V(a)
P(b)
next
.
.
.

THREAD 2
.
.
V(b);
P(a);
.
.
.

a=b=0

The semaphores remember the signals

The threads meet in time (quite close at least)

a++b++

time

Thread 1 waits
Until this time, and
then statement next will
execute
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Bounded Buffer using Semaphores

PUT (msg):
    P(nonfull);
        P(mutex);
            <insert>
        V(mutex);
    V(nonempty);

GET (buf):
    P(nonempty);
        P(mutex);
            <remove>
        V(mutex);
    V(nonfull);

out

in

Capacity: N

B

Producer

PUT (msg):
GET (buf):

Consumer

Use one semaphore for 
each condition we must 
wait for to become TRUE:

•B empty: nonempty:=0

•B full: nonfull:=N

Condition 
synchronization:

•No Get when empty

•No Put when full

•Is Mutex needed when only 1 P and 1 C?

•PUT at one end, GET at other end

MUTEX:

•B shared, so must have 
mutex between Put and 
Get

Use one semaphore for 
each shared resource 
toproytect it from i:

•B mutex: mutex:=1
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“Dining Philosophers”

•Each: need 2 forks to eat

•5 philosophers: 10 forks

•5 forks: 2 can eat concurrently

i

i i+1
i+1

s Ti

Ti

Ti

s(i): One 
semaphore per fork
to be used in 
mutex style P-V

Things to observe:

•A fork can only be used by 
one at a time, please

•No deadlock, please

•No starving, please

•Concurrent eating, please
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“Dining Philosophers”

•Each: need 2 forks to eat

•5 philosophers: 10 forks

•5 forks: 2 can eat concurrently

i

i i+1
i+1

s

Get L; Get R if free else Put L;

•Starvation possible

Mutex on whole table:

•1 can eat at a time

P(mutex);     

    eat;
V(mutex);

Ti

Get L; Get R;
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        eat;
    V(s(i+1));
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Ti

Ti

s(i): One 
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Dining Philosophers

i

i i+1
i+1

states
•Thinking

•Eating

•Want

While (1) {
    <think>
    ENTRY;
        <eat>
    EXIT;
}

Ti

S(i) = 0 initially

P(mutex);
    state(i):=Want;
    if (state(i-1) !=Eating AND state(i+1) != Eating) 
    {/*Safe to eat*/        
        state(i):=Eating; 
        V(s(i));   /*Because  */    }
V(mutex);    
P(s(i)); /*Init was 0!! I or right (left) neighbor may have said V(i) to me!*/

P(mutex);
    state(i):=Thinking;
    if (state(i-1)=Want AND state(i-2) !=Eating)
    {
        state(i-1):=Eating;
        V(s(i-1));  /*Start Left neighbor*/   
    }
/*Analogue for Right neighbor*/
V(mutex);

To avoid starvation they could look after each other:

•Entry: If L and R is not eating I can

•Exit: If L (R) wants to eat and L.L (R.R) is not eating 
I start him eating

One semaphore per philosopher
Used in signal style

Trouble: starvation pattern possible:
2&4 at table, 1&3 hungry
2 gets up, 1 sits down
4 gets up, 3 sits down
3 gets up, 4 sits down
1 gets up, 2 sits down
Ad infinitum => Phil 0 will starve
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Dining Philosophers

i

i i+1
i+1

s

Get L; Get R;

•Deadlock possible
P(s(i));
    P(s(i+1));
        eat;
    V(s(i+1));
V(s(i));

S(i) = 1 initially 

T1, T2, T3, T4:

T5

P(s(i)):
    P(s(i+1));
        <eat>
    V(s(i+1));
V(s(i));

P(s(1));
    P(s(5));
        <eat>
    V(s(5));
V(s((1));

•Remove the danger of 
circular waiting (deadlock)

•T1-T4: Get L; Get R;

•T5: Get R; Get L; 

Can we in a simple way do better 
than this one?

•Non-symmetric solution. Still quite elegant
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A Spinning Semaphore Implementation?

V(s): 

s++;

P(s): 

while (s <= 0) {};
s--;

MUTEX
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A Spinning Semaphore Implementation?

V(s): 

s++;

P(s): 

while (s <= 0) {};
s--;

MUTEX

“You Got a Problem with This?”
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Spinning Semaphore

V(s): 

s++;

P(s): 

while (s <= 0) {};
s--;
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Spinning Semaphore

V(s): 

s++;

P(s): 

while (s <= 0) {};
s--;

If P spinning inside mutex then V will not get in
Starvation possible (Lady Luck may ignore/favor some threads)

Of P’s
Of V’s

Must open mutex, say, between every iteration of while() to 
make it possible for V to get in

Costly
Every 10th iteration?

Latency
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Implementation of Semaphores
• Implementing the P and V of semaphores

– If WAIT is done by blocking
• Expensive
• Must open mutex

– But no real problems because we have a waiting queue now and 
we will not get starvation

– If done by spinning 
• Must open mutex during spin to let V in

– Starvation of P’s and V’s possible 
• May not be a problem in practice

• What can we do to “do better”?
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Implementing Semaphores using Locks
Using locks to implement a semaphore

• mutex lock: lock is initially open
• “delay me” lock: lock is initially locked

• SEMAPHORE value is called “s.value” in the code below: Initially 0

Trouble
Lost V calls
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Hemmendinger’s solution (1988)
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Kearn’s Solution (1988)
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Hemmendinger’s Correction (1989)
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Hsieh’s Solution (1989)
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Example: Condition Synchronization between 
Interrupt Handler and Device Driver

• A device thread and the interrupt handler
– need to handle shared data between them

27

21

Example: Interrupt Handler

! A device thread works with an interrupt handler

! What to do with shared data?

! What if “m” is held by another thread or by itself?

Device thread

...

Acquire();

...

Release();

...

Interrupt handler

...

Acquire();

...

Release();

...

?

22

Interrupted Thread

…

Interrupt

…

Use Semaphore to Signal 

Interrupt handler
...

V(s);

...

Device thread
while (1) {

P(s);

Acquire(m);

...

deal with interrupt

...

Release(m);

}

Init(s,0);
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Equivalence

! Semaphores

" Good for signaling

" Not good for mutex because it is easy to introduce a bug

! Monitors

" Good for scheduling and mutex

" Maybe costly for a simple signaling

24

Summary

! Semaphores

! Monitors

" Hoare’s 

" Mesa-style and its idiom

! Examples

" Use cases for semephores

semaphore s; s=0;
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