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Topics 

• Virtual memory 

– Virtualization 

– Protection 

• Address translation 

– Base and bound 

– Segmentation 

– Paging 

– Translation look-ahead buffer (TLB) 



Issues 

• Many processes running concurrently 

• Location transparency 

• Address space may exceed memory size 

– Many small processes whose total size may exceed memory 

– Even one large may exceed physical memory size 

• Address space may be sparsely used 

• Protection 

– OS protected from user processes 

– User processes protected from each other 

 



The Big Picture 

• Memory is fast 

– but expensive 

• Disks are cheap 

– but slow 

• Goals 

– Run programs as efficiently as possible 

– Make system as safe as possible 

 



Strategies 

• Size: Can we use slow disks to “extend” the size of available 

memory? 

– Disk accesses must be rare in comparison to memory accesses so 

that each disk access is amortized over many memory accesses 

• Location: Can we device a mechanism that delays the bindings 

of program address to memory location? Transparency and 

flexibility. 

• Sparsity: Can we avoid reserving memory for non-used regions 

of address space? 

• Process protection: Must check access rights for every memory 

access  



Protection Issue 

• Errors in one process should not affect other processes 

• For each process, need to enforce that every load or store are to 

“legal” regions of memory 



Expansion - Location Transparency Issue 

• Each process should be able to run regardless of location in 

memory 

• Regardless of memory size? 

• Dynamically relocateable? 

• Memory fragmentation 

– External fragmentation – Among processes 

– Internal fragmentation – Within processes 

• Approach 

– Give each process large “fake” address space 

– Relocate each memory access to actual memory addres 



Why Virtual Memory? 

• Use secondary storage 

–  Extend expensive DRAM with reasonable performance 

• Provide Protection 

– Programs do not step over each other, communicate with each 

other require explicit IPC operations 

• Convenience 

– Flat address space and programs have the same view of the world 

• Flexibility 

– Processes may be located anywhere in memory, may be moved 

while executing, may reside partially in memory and partially on 

disk 



Design Issues 

• How is memory partitioned? 

• How are processes (re)located? 

• How is protection enforced? 



Address Mapping Granularity 

• Mapping mechanism 

– Virtual addresses are mapped to DRAM addresses or onto disk 

• Mapping granularity? 

– Increased granularity  

• Increases flexibility 

• Decreases internal fragmentation 

• Requires more mapping information & Handling 

• Extremes 

– Any byte to any byte: Huge map size 

– Whole segments: Large segments cause problems 



Locality of Reference  

• Behaviors exhibited by most programs 

• Locality in time 

– When an item is addressed, it is likely to be addressed again shortly 

• Locality in space 

– When an item is addressed, its neighboring items are likely to be 

addressed shortly 

• Basis of caching 

• Argues that recently accessed items should be cached together with an 

encompassing region; A block (or line) 

• 20/80 rule: 20 % of memory gets 80 % of references 

• Keep the 20 % in memory 

 



Translation Overview 

• Actual translation is in 

hardware (MMU) 

• Controlled in privileged 

software 

• CPU view 

– what program sees, virtual 

memory 

• Memory & I/O view 

– physical memory 

Translation 
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Goals of Translation 

• Implicit translation for 

each memory reference 

• A hit should be very fast 

• Trigger an exception on a 

miss 

• Protected from user’s 

faults 

Registers 

Cache(s) 

DRAM 

Disk 

2-20x 

100-300x 

20M-30Mx 

paging 



Base and Bound 

• Built in Cray-1 

• Protection 

– A program can only access physical 

memory in [base, base+bound] 

• On a context switch: 

– Save/restore base, bound registers 

• Pros 

– Simple  

– Flat 

• Cons:  

– Fragmentation 

– Difficult to share 

– Difficult to use disks 
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Segmentation 

• Provides separate virtual address spaces 

(segments) 

• Each process has a table of (seg, size) 

• Protection 

– Each entry has (nil,read,write) 

• On a context switch 

– Save/restore the table or a pointer to the 

table in kernel memory  

• Pros 

– Efficient 

– Easy to share 

• Cons: 

– Complex management 

– Fragmentation within a segment 
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Paging 

• Use a fixed size unit called page 

• Pages not visible from program 

• Use a page table to translate 

• Various bits in each entry 

• Context switch 

– Similar to the segmentation scheme 

• What should be the page size? 

• Pros 

– Simple allocation 

– Easy to share 

• Cons 

– Big page tables 

– How to deal with holes? 
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How Many PTEs Do We Need? 

• Assume 4KB page size 

– 12 bit (low order) displacement within page 

– 20 bit (high order) page# 

• Worst case for 32-bit address machine 

– # of processes  220 

– 220 PTEs per page table (~4MBytes). 10K processes? 

• What about 64-bit address machine? 

– # of processes  252  

– Page table won’t fit on disk (252 PTEs = 16PBytes) 



Segmentation with Paging 
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Multics was the first 

system to combine 

segmentation and 

paging.  

www.multicians.org 



Multiple-Level Page Tables 
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Inverted Page Tables 

• Main idea 

– One PTE for each physical 

page frame 

– Hash (Vpage, pid) to Ppage# 

• Pros 

– Small page table for large 

address space 

• Cons 

– Lookup is difficult  

– Overhead of managing hash 

chains, etc 
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Virtual-To-Physical Lookup 

• Program only knows virtual addresses 

– Each process goes from 0 to highest address 

• Each memory access must be translated 

– Involves walk-through of (hierarchical) page tables 

– Page table is in memory 

• An extra memory access for each memory access??? 

• Solution 

– Cache part of page table (hierarchy) in fast associative memory – 

Translation-Lookahead-Buffer (TLB) 

– Introduces TLB hits, misses etc. 



Translation Look-aside Buffer (TLB) 
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Bits in A TLB Entry 

• Common (necessary) bits 

– Virtual page number: match with the virtual address 

– Physical page number: translated address 

– Valid 

– Access bits: kernel and user (nil, read, write) 

• Optional (useful) bits 

– Process tag 

– Reference 

– Modify 

– Cacheable 



Hardware-Controlled TLB 

• On a TLB miss 

– Hardware loads the PTE into the TLB 

• Need to write back if there is no free entry 

– Generate a fault if the page containing the PTE is invalid 

– VM software performs fault handling 

– Restart the CPU 

• On a TLB hit, hardware checks the valid bit 

– If valid, pointer to page frame in memory 

– If invalid, the hardware generates a page fault 

• Perform page fault handling 

• Restart the faulting instruction 



Software-Controlled TLB 

• On a miss in TLB 

– Write back if there is no free entry 

– Check if the page containing the PTE is in memory 

– If not, perform page fault handling 

– Load the PTE into the TLB 

– Restart the faulting instruction 

• On a hit in TLB, the hardware checks valid bit 

– If valid, pointer to page frame in memory 

– If invalid, the hardware generates a page fault 

• Perform page fault handling 

• Restart the faulting instruction 



Hardware vs. Software Controlled 

• Hardware approach 

– Efficient 

– Inflexible 

– Need more space for page table 

• Software approach 

– Flexible 

– Software can do mappings by hashing 

• PP#  (Pid, VP#) 

• (Pid, VP#)  PP# 

– Can deal with large virtual address space 



Cache vs. TLB 

• Similarity 

– Both are fast and expensive with respect to capasity 

– Both cache a portion of memory 

– Both write back on a miss 

• Differences 

– TLB is usually fully set-associative 

– Cache can be direct-mapped 

– TLB does not deal with consistency with memory 

– TLB can be controlled by software  

• Logically TLB lookup appears ahead of cache lookup, careful design allows 

overlapped lookup 

• Combine L1 cache with TLB 

– Virtually addressed cache 

– Why wouldn’t everyone use virtually addressed cache? 



TLB Related Issues 

• What TLB entry to be replaced? 

– Random 

– Pseudo LRU 

• What happens on a context switch? 

– Process tag: change TLB registers and process register 

– No process tag: Invalidate the entire TLB contents 

• What happens when changing a page table entry? 

– Change the entry in memory 

– Invalidate the TLB entry 



Consistency Issue 

• Snoopy cache protocols 

– Maintain cache consistency with DRAM, even when DMA 

happens 

• Consistency between DRAM and TLBs:  

– You need to flush (SW) related TLBs whenever changing a page 

table entry in memory 

• Multiprocessors need TLB “shootdown” 

– When you modify a page table entry, you need to do to flush 

(“shootdown”) all related TLB entries on every processor 



Summary 

• Virtual memory 

– Easier SW development 

– Better memory utilization 

– Protection 

• Address translation 

– Base & bound: Simple, but limited 

– Segmentation: Useful but complex 

• Paging: Best tradeoff currently 

– TLB: Fast translation 

– VM needs to handle TLB consistency issues 

 


