
Address Translation

Tore Larsen

Material developed by:

Kai Li, Princeton University

Topics

• Virtual memory

– Virtualization

– Protection

• Address translation

– Base and bound

– Segmentation

– Paging

– Translation look-ahead buffer (TLB)

Issues

• Many processes running concurrently

• Location transparency

• Address space may exceed memory size

– Many small processes whose total size may exceed memory

– Even one large may exceed physical memory size

• Address space may be sparsely used

• Protection

– OS protected from user processes

– User processes protected from each other

The Big Picture

• Memory is fast

– but expensive

• Disks are cheap

– but slow

• Goals

– Run programs as efficiently as possible

– Make system as safe as possible

Strategies

• Size: Can we use slow disks to “extend” the size of available

memory?

– Disk accesses must be rare in comparison to memory accesses so

that each disk access is amortized over many memory accesses

• Location: Can we device a mechanism that delays the bindings

of program address to memory location? Transparency and

flexibility.

• Sparsity: Can we avoid reserving memory for non-used regions

of address space?

• Process protection: Must check access rights for every memory

access

Protection Issue

• Errors in one process should not affect other processes

• For each process, need to enforce that every load or store are to

“legal” regions of memory

Expansion - Location Transparency Issue

• Each process should be able to run regardless of location in

memory

• Regardless of memory size?

• Dynamically relocateable?

• Memory fragmentation

– External fragmentation – Among processes

– Internal fragmentation – Within processes

• Approach

– Give each process large “fake” address space

– Relocate each memory access to actual memory addres

Why Virtual Memory?

• Use secondary storage

– Extend expensive DRAM with reasonable performance

• Provide Protection

– Programs do not step over each other, communicate with each

other require explicit IPC operations

• Convenience

– Flat address space and programs have the same view of the world

• Flexibility

– Processes may be located anywhere in memory, may be moved

while executing, may reside partially in memory and partially on

disk

Design Issues

• How is memory partitioned?

• How are processes (re)located?

• How is protection enforced?

Address Mapping Granularity

• Mapping mechanism

– Virtual addresses are mapped to DRAM addresses or onto disk

• Mapping granularity?

– Increased granularity

• Increases flexibility

• Decreases internal fragmentation

• Requires more mapping information & Handling

• Extremes

– Any byte to any byte: Huge map size

– Whole segments: Large segments cause problems

Locality of Reference

• Behaviors exhibited by most programs

• Locality in time

– When an item is addressed, it is likely to be addressed again shortly

• Locality in space

– When an item is addressed, its neighboring items are likely to be

addressed shortly

• Basis of caching

• Argues that recently accessed items should be cached together with an

encompassing region; A block (or line)

• 20/80 rule: 20 % of memory gets 80 % of references

• Keep the 20 % in memory

Translation Overview

• Actual translation is in

hardware (MMU)

• Controlled in privileged

software

• CPU view

– what program sees, virtual

memory

• Memory & I/O view

– physical memory

Translation

(MMU)

CPU

virtual address

Physical

memory

physical address

I/O

device

Goals of Translation

• Implicit translation for

each memory reference

• A hit should be very fast

• Trigger an exception on a

miss

• Protected from user’s

faults

Registers

Cache(s)

DRAM

Disk

2-20x

100-300x

20M-30Mx

paging

Base and Bound

• Built in Cray-1

• Protection

– A program can only access physical

memory in [base, base+bound]

• On a context switch:

– Save/restore base, bound registers

• Pros

– Simple

– Flat

• Cons:

– Fragmentation

– Difficult to share

– Difficult to use disks

virtual address

base

bound

error

+

>

physical address

Segmentation

• Provides separate virtual address spaces

(segments)

• Each process has a table of (seg, size)

• Protection

– Each entry has (nil,read,write)

• On a context switch

– Save/restore the table or a pointer to the

table in kernel memory

• Pros

– Efficient

– Easy to share

• Cons:

– Complex management

– Fragmentation within a segment

physical address

+

segment offset

Virtual address

seg size

. . .

>
error

Paging

• Use a fixed size unit called page

• Pages not visible from program

• Use a page table to translate

• Various bits in each entry

• Context switch

– Similar to the segmentation scheme

• What should be the page size?

• Pros

– Simple allocation

– Easy to share

• Cons

– Big page tables

– How to deal with holes?

VPage # offset

Virtual address

. . .

>
error

PPage# ...

PPage# ...

...

PPage # offset

Physical address

Page table

page table size

How Many PTEs Do We Need?

• Assume 4KB page size

– 12 bit (low order) displacement within page

– 20 bit (high order) page#

• Worst case for 32-bit address machine

– # of processes  220

– 220 PTEs per page table (~4MBytes). 10K processes?

• What about 64-bit address machine?

– # of processes  252

– Page table won’t fit on disk (252 PTEs = 16PBytes)

Segmentation with Paging

VPage # offset

Virtual address

. . .

>

PPage# ...

PPage# ...

...

PPage # offset

Physical address

Page table
seg size

. . .

Vseg #

error

Multics was the first

system to combine

segmentation and

paging.

www.multicians.org

Multiple-Level Page Tables

Directory .
.
.

pte

.

.

.

.

.

.

.

.

.

dir table offset

Virtual address

Inverted Page Tables

• Main idea

– One PTE for each physical

page frame

– Hash (Vpage, pid) to Ppage#

• Pros

– Small page table for large

address space

• Cons

– Lookup is difficult

– Overhead of managing hash

chains, etc

pid vpage offset

pid vpage

0

k

n-1

k offset

Virtual

address

Physical

address

Inverted page table

Virtual-To-Physical Lookup

• Program only knows virtual addresses

– Each process goes from 0 to highest address

• Each memory access must be translated

– Involves walk-through of (hierarchical) page tables

– Page table is in memory

• An extra memory access for each memory access???

• Solution

– Cache part of page table (hierarchy) in fast associative memory –

Translation-Lookahead-Buffer (TLB)

– Introduces TLB hits, misses etc.

Translation Look-aside Buffer (TLB)

offset

Virtual address

. . .

PPage# ...

PPage# ...

PPage# ...

PPage # offset

Physical address

VPage #

TLB

Hit

Miss

Real

page

table

VPage#

VPage#

VPage#

Bits in A TLB Entry

• Common (necessary) bits

– Virtual page number: match with the virtual address

– Physical page number: translated address

– Valid

– Access bits: kernel and user (nil, read, write)

• Optional (useful) bits

– Process tag

– Reference

– Modify

– Cacheable

Hardware-Controlled TLB

• On a TLB miss

– Hardware loads the PTE into the TLB

• Need to write back if there is no free entry

– Generate a fault if the page containing the PTE is invalid

– VM software performs fault handling

– Restart the CPU

• On a TLB hit, hardware checks the valid bit

– If valid, pointer to page frame in memory

– If invalid, the hardware generates a page fault

• Perform page fault handling

• Restart the faulting instruction

Software-Controlled TLB

• On a miss in TLB

– Write back if there is no free entry

– Check if the page containing the PTE is in memory

– If not, perform page fault handling

– Load the PTE into the TLB

– Restart the faulting instruction

• On a hit in TLB, the hardware checks valid bit

– If valid, pointer to page frame in memory

– If invalid, the hardware generates a page fault

• Perform page fault handling

• Restart the faulting instruction

Hardware vs. Software Controlled

• Hardware approach

– Efficient

– Inflexible

– Need more space for page table

• Software approach

– Flexible

– Software can do mappings by hashing

• PP#  (Pid, VP#)

• (Pid, VP#)  PP#

– Can deal with large virtual address space

Cache vs. TLB

• Similarity

– Both are fast and expensive with respect to capasity

– Both cache a portion of memory

– Both write back on a miss

• Differences

– TLB is usually fully set-associative

– Cache can be direct-mapped

– TLB does not deal with consistency with memory

– TLB can be controlled by software

• Logically TLB lookup appears ahead of cache lookup, careful design allows

overlapped lookup

• Combine L1 cache with TLB

– Virtually addressed cache

– Why wouldn’t everyone use virtually addressed cache?

TLB Related Issues

• What TLB entry to be replaced?

– Random

– Pseudo LRU

• What happens on a context switch?

– Process tag: change TLB registers and process register

– No process tag: Invalidate the entire TLB contents

• What happens when changing a page table entry?

– Change the entry in memory

– Invalidate the TLB entry

Consistency Issue

• Snoopy cache protocols

– Maintain cache consistency with DRAM, even when DMA

happens

• Consistency between DRAM and TLBs:

– You need to flush (SW) related TLBs whenever changing a page

table entry in memory

• Multiprocessors need TLB “shootdown”

– When you modify a page table entry, you need to do to flush

(“shootdown”) all related TLB entries on every processor

Summary

• Virtual memory

– Easier SW development

– Better memory utilization

– Protection

• Address translation

– Base & bound: Simple, but limited

– Segmentation: Useful but complex

• Paging: Best tradeoff currently

– TLB: Fast translation

– VM needs to handle TLB consistency issues

