

Filesystems & Disks

Contents

- Non-volatile storage
- Solid State Disks
- Disks
 Mechanics, properties, and performance
- Disk scheduling
- Additional Material: Data placement Prefetching and buffering Memory caching Disk errors Multiple disks (RAID)

Storage Properties

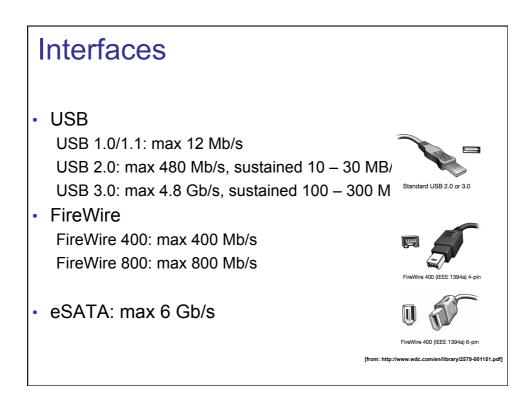
· Volatile and non-volatile

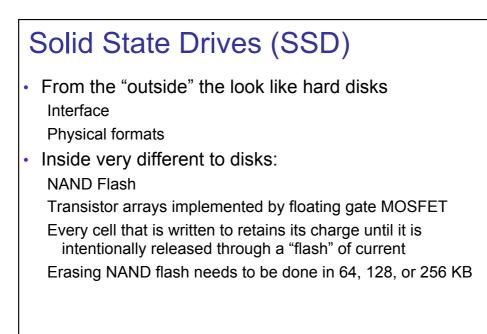
• ROM

- Access (sequential, random)
- Mechanical issues
- "Wear out"

Storage Hierarchy

- L1 cache
- L2 cache
- RAM
- ROM
- EPROM & flash memory (SSD)
- Hard disks
- (CD & DVD)
- ... and what about Floppy disks?

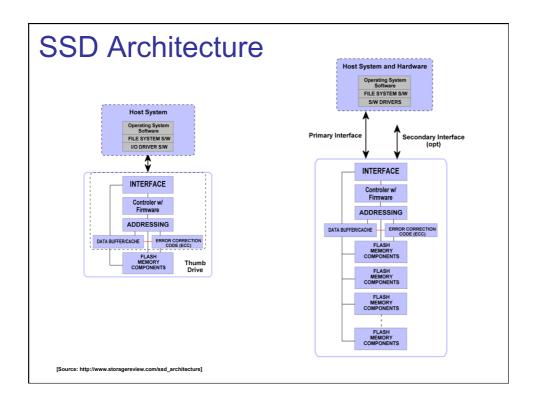

Storage Metrics


- · Maximum/sustained read bandwidth
- Maximum/sustained write bandwidth
- Read latency
- Write latency

Interfaces

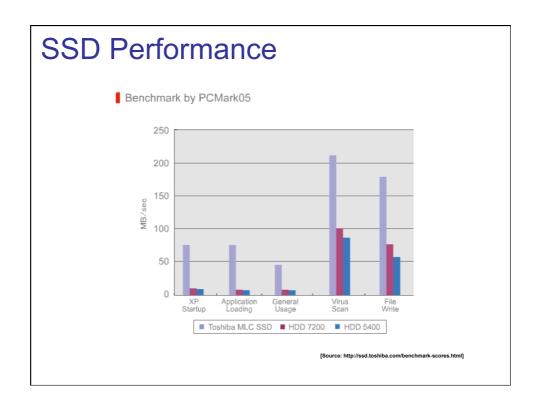
- Parallel ATA or simply ATA
- Parallel Small Computer Interface (SCSI)
- Fiber Channel (FC)
- Serial ATA 1.0 (SATA)
- Serial ATA II (SATA II)
- Serial Attached SCSI (SAS)

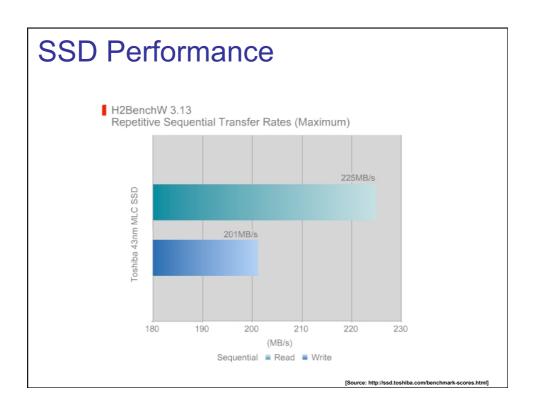
	ΑΤΑ	SCSI	Fiber Channel	SATA	SATA II'	Serial Attached SCSI ¹
PERFORMANCE						
Technology Introduction ²	2000	2002	2001	2002	2003	2004
Maximum Bus Speed ³	100MB/s shared/channel	320MB/s shared/channel	4.0Gb/s (400MB/s) dedicated or shared ⁴	1.5Gb/s (150MB/s) dedicated per device	3.0Gb/s (300MB/s) dedicated per device	3.0Gb/s (300MB/s dedicated per device
Topology	Shared bus master/slave	Shared bus	Arbitrated loop/ switched fabric⁵	Point-to-point	Point-to-point	Point-to-point
Number of Devices Per Channel	2	15	127 per arbitrated loop	1 (expandable to 128)	1 (expandable to 128)	1 (expandable to 12)
Command Queuing	No	Yes	Yes	Yes	Yes	Yes

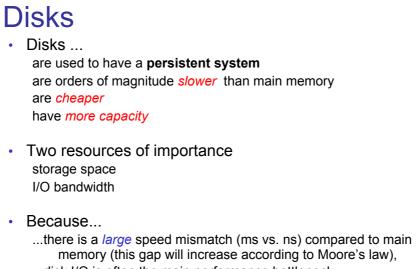

SSD

- 2 technologies
 Single Level Cell (SLC)
 Multi-Level Cell (MLC)
- Wear and tear

Toshiba 128GB: write capacity 80 Terabytes Wear leveling: spread out the data

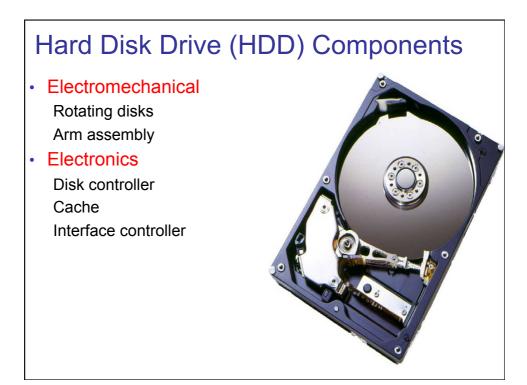

- Do not defragment a SSD!!
- TRIM: for delete

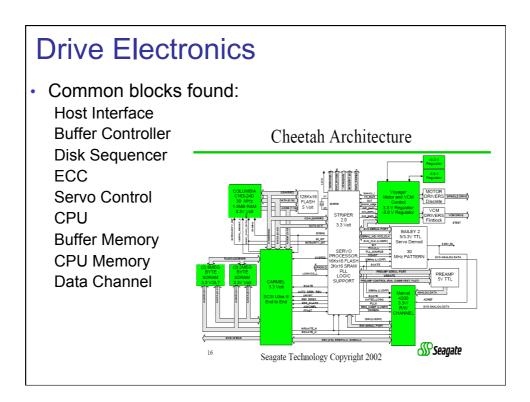

OSes that are not aware of SSD -> flagged as not in use TRIM -> push delete to the SSD controller (e.g. in Windows 7)

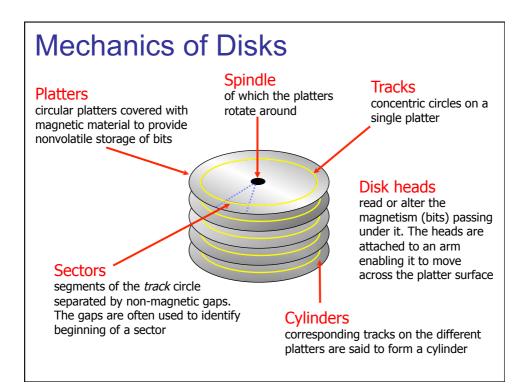


SSD vs. HDD

- SSD:
 - Faster Quieter More reliable
 - Less power
- HDD: Cheaper







- ...disk I/O is often the main performance bottleneck ...we need to minimize the number of accesses,
- ...

...we must look closer on how to manage disks

Disk Specifications

Disk technology develops "fast"

Seagate disks from 2002:

Note 1: disk manufacturers usually denote GB as 10⁹ whereas computer quantities often are powers of 2, i.e., GB is 2³⁰

	Barracuda 180	Cheetah 36	Cheetah X15
Capacity (GB)	181.6	36.4	36.7
Spindle speed (RPM)	7200	10.000	15.000
#cylinders (and tracks)	24.247	9.772	18.479
average seek time (ms)	7.4	5.7	3.6
min (track-to-track) seek (ms)	0.8	0.6	0.3
max (full stroke) seek (ms)	16	12	7
average latency (ms)	4.17	3	2
internal transfer rate (Mbps)	282 – 508	520 – 682	522 – 709
disk buffer cache	16 MB	4 MB	8 MB

Note 2:

•

•

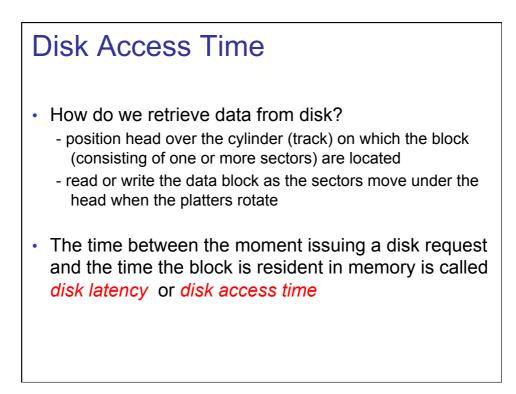
there is a difference between internal and formatted transfer rate. Internal is only between platter. *Formatted* is after the signals interfere with the electronics (cabling loss, interference, retransmissions, checksums, etc.)

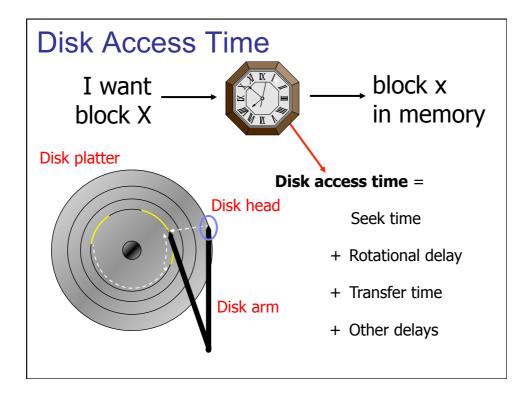
Note 3:

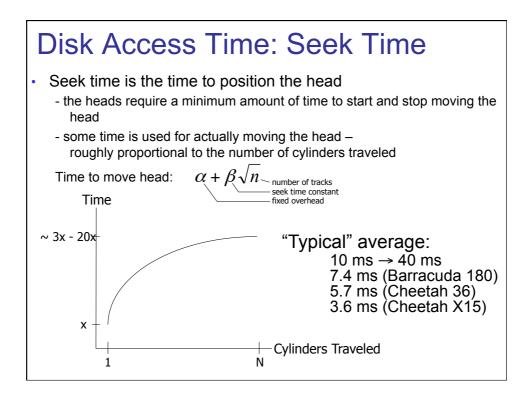
there is usually a trade off between speed and capacity

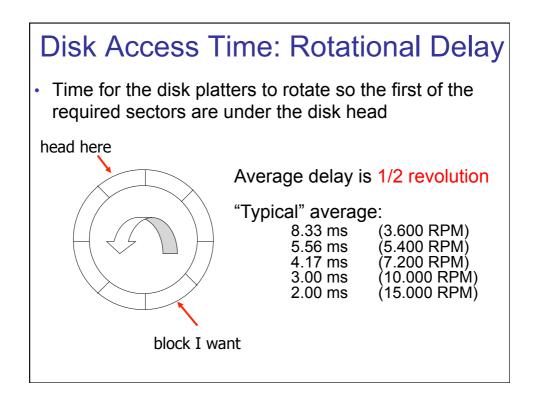
sk Specification Seagate Barracuda ES.2 Seagate Cheetah 15K.6							
Specifications	1 TB ¹	750 GB ¹	500 GB ¹	250 GB1	Specifications	450 GB1	300 GB1
Model Number	ST31000340NS	ST3750330NS	ST3500320NS	ST3250310NS	Model Number	ST3450856SS/FC	ST3300656SS/F0
Interface	ST31000640SS	ST3750630SS	ST3500620SS		Capacity		
intertace	SATA 36b/s, 1.56b/s SAS 36b/s	SATA 3Gb/s, 1.5Gb/s SAS 3Gb/s	SATA 3Gb/s, 1.5Gb/s SAS 3Gb/s	SATA 3Gb/s, 1.5Gb/s	Formatted 512 Kbytes/Sector (GB)	450	300
External Transfer Rate (Gb/s)	3.0	3.0	3.0	3.0	External Transfer Rate (MB/s)		
Performance					Fibre Channel	400	400
Transfer Rate					3-Gb/s Serial Attached SCSI	300	300
Maximum Internal (Mb/s)	1287	1287	1287	1287	Performance		
Maximum Sustained, SATA (MB/s) Maximum Sustained, SAS (MB/s)	105 116	105 116	105 116	105 116	Spindle Speed (RPM)	15K	15K
Cache, Multisegmented (MB)	110	110	110	110	Average Latency (ms)	2.0	2.0
SATA	32	32	32	32	Seek Time		
SAS	16	16	16	-	Average Read/Write (ms) Track-to-Track Read/Write (ms)	3.4/3.9 0.2/0.4	3.4/3.9 0.2/0.4
Average Latency (msec)	4.16	4.16	4.16	4.16	Transfer Rate	0.2/0.4	0.2/0.4
Spindle Speed (RPM)	7200	7200	7200	7200	Internal (Mb/s)	1051 to 2225	1051 to 2225
Seek Time Average Read/Write (msec)	8.5/9.5	85/95		85/95	Sustained (MB/s, 1000 x 1000)	171 to 110	171 to 110
Average Head/Write (msec) Track-to-Track Read/Write (msec)	8.5/9.5	8.5/9.5	8.5/9.5 0.8/1.0	8.5/9.5 0.8/1.0	Cache, Multisegmented (MB/s)	16	16
Configuration/Organization	0.071.0	0.001.0	0.00 1.0	0.0110	Configuration/Organization	10	10
Bytes per Sector					Discs	4	3
SATA	512	512	512	512	Heads	8	6
SAS	512, 520, 524, 528	512, 520, 524, 528	512, 520, 524, 528	-	Nonrecoverable Read Errors per Bits Read	•	
Reliability/Data Integrity					Reliability Rating at Full 24x7 Operation	1 sector per 10E16	1 sector per 10E
Mean Time Between Failures (MTBF, hours)	1.2 million	1.2 million	1.2 million	1.2 million	(AFR)	0.55%	0.55%
Reliability Rating at Full 24x7 Operation (AFR) Nonrecoverable Read Errors per Bits Read	0.73% 1 sector per 10E15	0.73% 1 sector per 10E15	0.73% 1 sector per 10E15	0.73% 1 sector per 10E15	Power Management	0.00%	0.0016
Error Control/Correction (ECC)	1 sector per 10E15	1 sector per 10E15 10 bit	1 sector per 10E15	1 sector per 10E15	Typical (W)		
Interface Ports	TO BR	10 01	10 01	10 Dit	Fibre Channel	17.0	16.1
SATA	Single	Single	Single	Single	SAS	17.3	15.8
SAS	Dual	Dual	Dual	-	Power Idle (W)		-
Limited Warranty (years)	5	5	5	5	Fibre Channel	12.0	11.2
Power Management					SAS	12.4	11.1
Typical (W) SATA				40.0	Environmental		
SAIA SAS	11.6 12.5	11.6 12.5	10.6 12.5	10.6	Temperature, Operating (°C)	5 to 55	5 to 55
Idie Average (W)					Temperature, Nonoperating (°C)	-40 to 70	-40 to 70
SATA	8.0	8.0	8.0	8.0	Shock, Operating: 2 ms (Gs)	60	60
SAS	9.0	9.0	9.0	-	Shock, Nonoperating: 2 ms (Gs)	250	250
Environmental					Acoustics Idle (bels-sound power)	3.6	3.6
Temperature, Operating (*C)	5 to 55	5 to 55	5 to 55	5 to 55	Vibration, Operating: <400 Hz (Gs)	1.0	1.0
Temperature, Nonoperating (°C) Shock, Operating: 2 ms (Gs)	-40 to 70	-40 to 70	-40 to 70	-40 to 70	Vibration, Nonoperating: <400 Hz (Gs)	2.0	2.0
Shock, Operating: 2 ms (Gs) Shock, Noncoerating: 2 ms (Gs)	63 300	63 300	63 300	63 300	Physical		-
Acoustics idle (bels—sound power)	300	2.7	2.5	2.5	Height (in/mm)	1.0/25.4	1.0/25.4
Rotational Vibration @ 1500 Hz max (Rad/sec ²)	2.7	2./	2.5	12.5	Width (in/mm)	4.0/101.6	4.0/101.6
Physical	14-14	16.0	14.50	16.0	Depth (in/mm)	5.75/146.05	5.75/146.05
Height (in/mm)	1.02/26.11	1.02/26.11	1.02/26.11	1.02/26.11	Weight (Ib/kg)	1.56/0.709	1.53/0.694
Width (in/mm)	4/101.6	4/101.6	4/101.6	4/101.6	Warranty	1.90/01/08	1.53/0.094
Depth (in/mm)	5.78/146.99	5.78/146.99	5.78/146.99	5.78/146.99	Limited Warranty (years)		
Weight (Ib/kg)	1,493/0.677	1.396/0.633	1,199/0.543	1.141/0.518	Linned warranty (years)	5	5

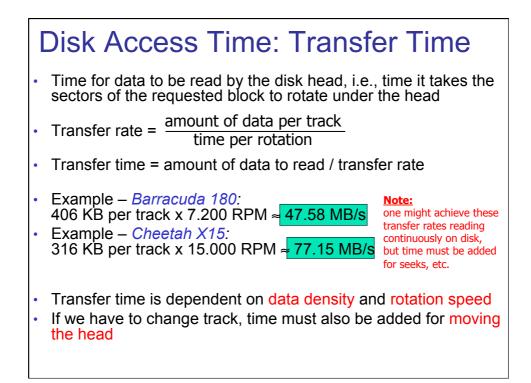
Disk Specification

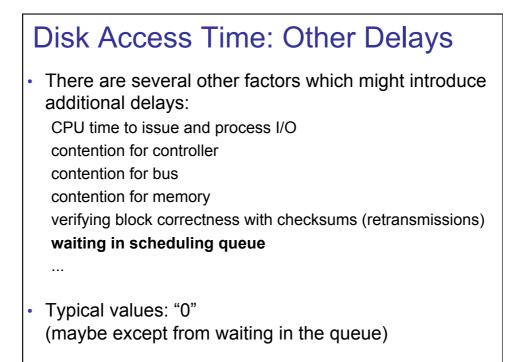

Seagate Barracuda 7200.14

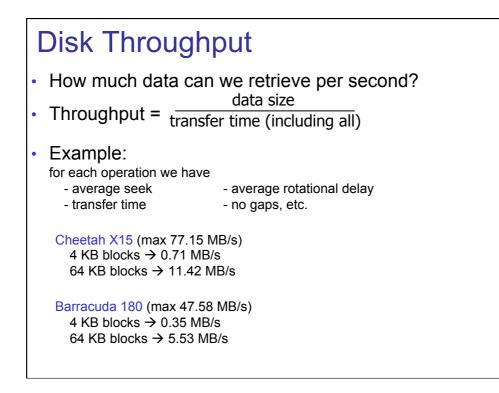

Specifications	3TB1	2TB ¹	1.5TB ¹	1TB ¹
Model Number	ST3000DM001	ST2000DM001	ST1500DM003	ST1000DM003
Interface Options	SATA 6Gb/s NCQ	SATA 6Gb/s NCQ	SATA 6Gb/s NCQ	SATA 6Gb/s NCQ
Performance				
Spindle Speed (RPM)	7,200	7,200	7,200	7,200
Cache, Multi-segmented (MB)	64	64	64	64
SATA Transfer Rates Supported (Gb/s)	6.0/3.0/1.5	6.0/3.0/1.5	6.0/3.0/1.5	6.0/3.0/1.5
Seek Average, Read (ms)	<8.5	<8.5	<8.5	<8.5
Seek Average, Write (ms)	<9.5	<9.5	<9.5	<9.5
Average Data Rate, Read/Write (MB/s)	156	156	156	156
Max Sustained Data Rate, OD Read (MB/s)	210	210	210	210

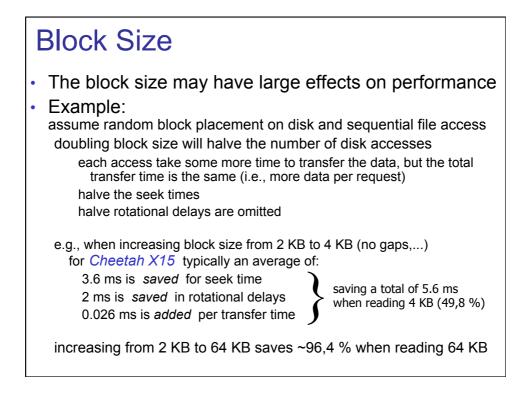

Specifications from <u>www.seagate.com</u> on 15. 10. 2012

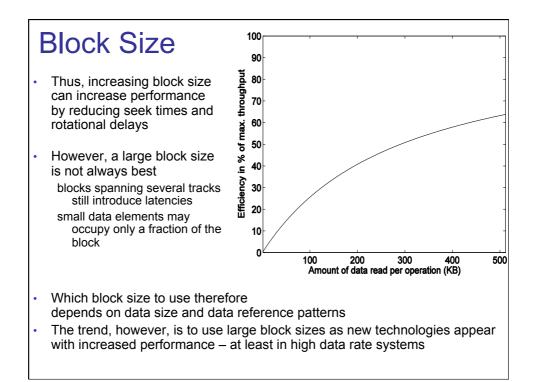

Disk Capacity

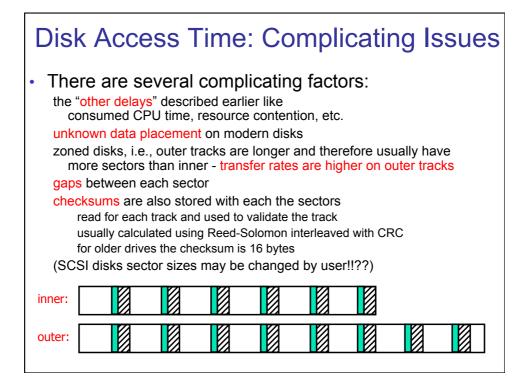

 The size (storage space) of the disk is dependent on the number of platters whether the platters use one or both sides number of tracks per surface (average) number of sectors per track number of bytes per sector
 Example (Cheetah X15): 4 platters using both sides: 8 surfaces 18497 tracks per surface 617 sectors per track (average) 512 bytes per sector Total capacity = 8 x 18497 x 617 x 512 ≈ 4.6 x 10¹⁰ = 42.8 GB Formatted capacity = 36.7 GB

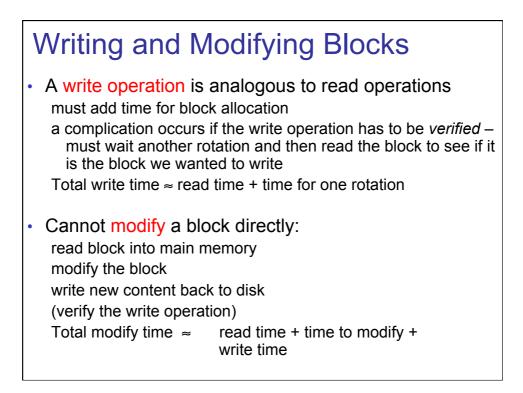












Disk Controllers

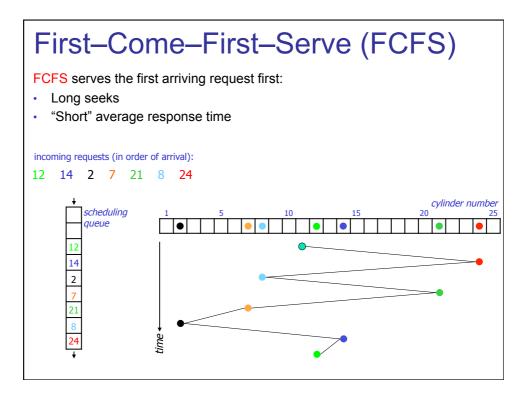
- To manage the different parts of the disk, we use a disk controller, which is a small processor capable of: controlling the actuator moving the head to the desired track selecting which platter and surface to use knowing when right sector is under the head transferring data between main memory and disk
- New controllers acts like small computers themselves both disk and controller now has an own buffer reducing disk access time

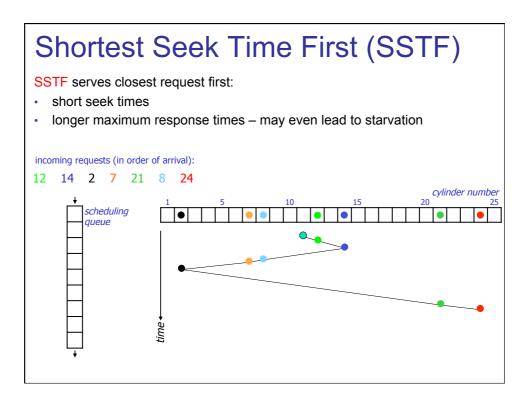
data on damaged disk blocks/sectors are just moved to spare room at the disk – the system above (OS) does not know this, i.e., a block may lie elsewhere than the OS thinks

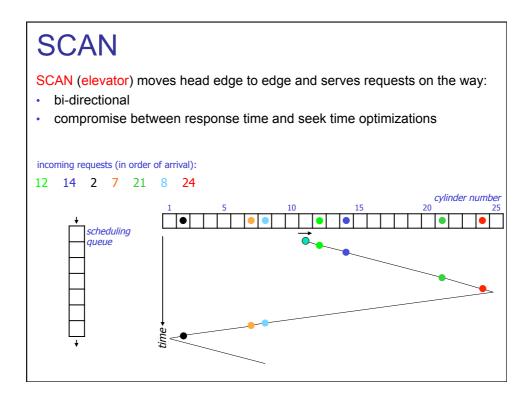
Efficient Secondary Storage Usage Must take into account the use of secondary storage there are large access time gaps, i.e., a disk access will probably dominate the total execution time there may be huge performance improvements if we reduce the number of disk accesses a "slow" algorithm with few disk accesses will probably outperform a "fast" algorithm with many disk accesses Several ways to optimize block size disk scheduling multiple disks prefetching file management / data placement memory caching / replacement algorithms . . .

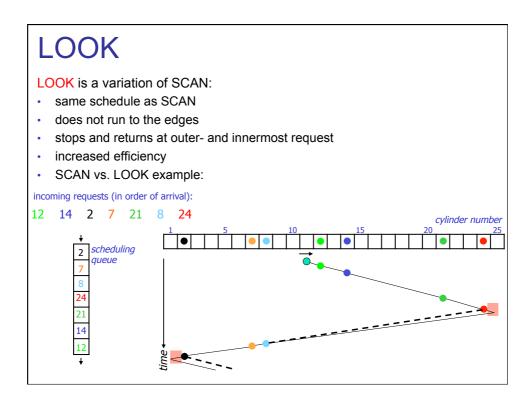
Disk Scheduling

- Seek time is a dominant factor of total disk I/O time
- Let operating system or disk controller choose which request to serve next depending on the head's current position and requested block's position on disk (disk scheduling)

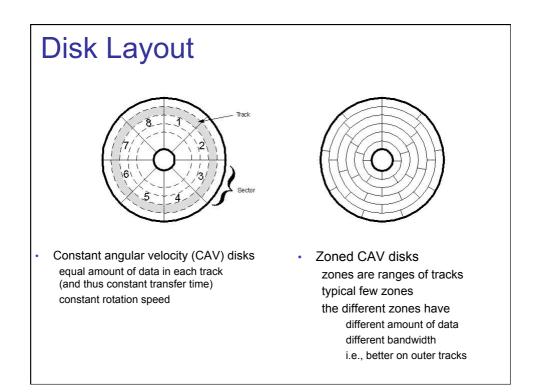

Is (or should) disk scheduling be preemptive or non-preemptive?


- General goals short response time high overall throughput fairness (equal probability for all blocks to be accessed in the same time)
- Tradeoff: seek and rotational delay vs. maximum response time


Disk Scheduling


Several traditional algorithms
 First-Come-First-Serve (FCFS)
 Shortest Seek Time First (SSTF)
 SCAN (and variations)
 Look (and variations)

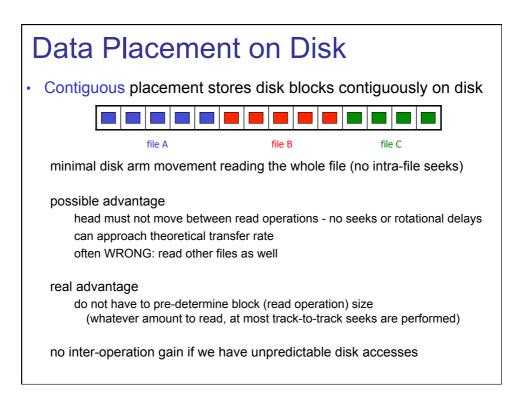
•••

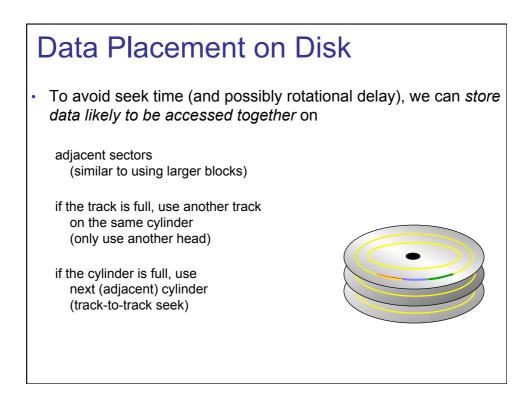


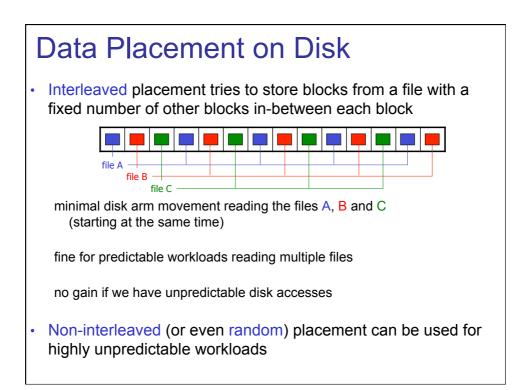
Data Placement on Disk

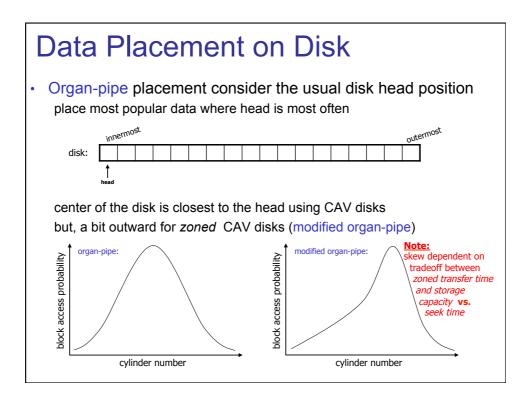
 Disk blocks can be assigned to files many ways, and several schemes are designed for

optimized latency increased throughput

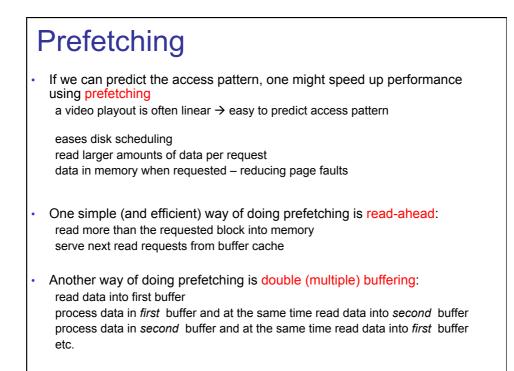

access pattern dependent

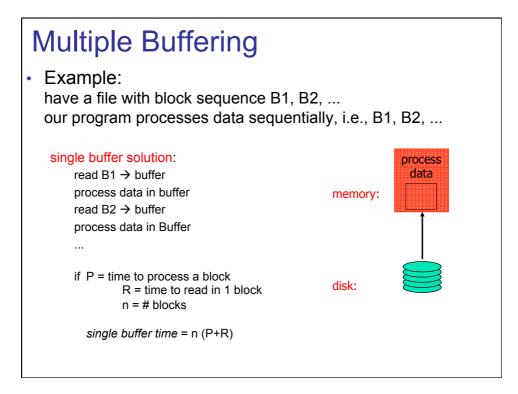


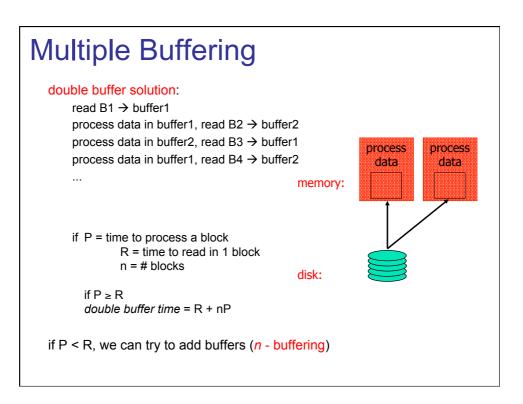

	 Disk Layout Cheetah X15.3 is a zoned CAV disk: 									
Zone	Cylinders per Zone	Sectors per Track	Spare Cylinders	Zone Transfer Rate Mb/s	Sectors per Zone	Efficiency	Formatted Capacity (Mbytes)			
0	3544	672	7	890,98	19014912	77,2%	9735,635			
1	3382	652	7	878,43	17604000	76,0%	9013,248			
3	3079	624	6	835,76	15340416	76,5%	7854,293			
4	2939	595	6	801,88	13961080	76,0%	7148,073			
5	2805	576	6	755,29	12897792	78,1%	6603,669			
6	2676	537	5	728,47	11474616	75,5%	5875,003			
7	2554	512	5	687,05	10440704	76,3%	5345,641			
8	2437	480	5	649,41	9338880	75,7%	4781,506			
9	2325	466	5	632,47	8648960	75,5%	4428,268			
10	2342	438	5	596,07	8188848	75,3%	4192,690			

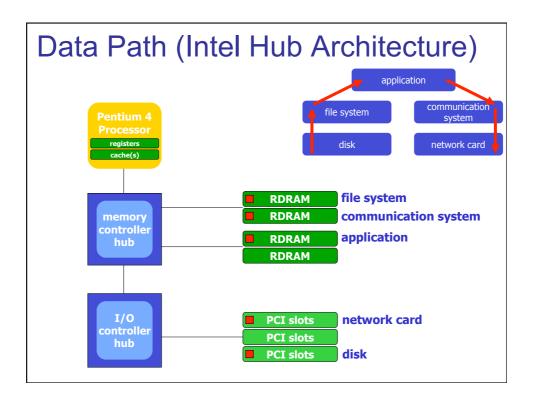

✓ Always place often used data on outermost tracks (zone 0) ...!?

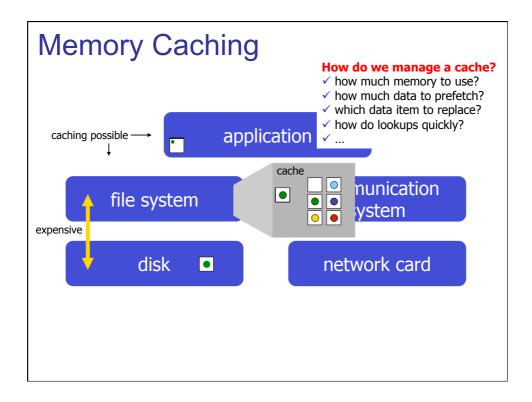
 $\boldsymbol{\diamondsuit}$ NO, arm movement is often more important than transfer time

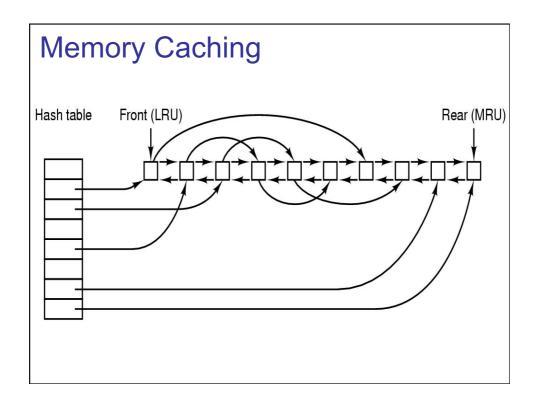



Concluding Questions


- What are the main differences between HDD and SDD?
- What are the main parameter of HDD performance?
- · What is the goal of disk scheduling?
- Would disk scheduling for SDD be useful?
- · Why should we not defragment SDDs?


Additional Material


- Prefetching & Buffering
- RAID systems



Disk Errors

Disk errors are rare:

	Barracuda 180	Cheetah 36	Cheetah X15
mean time to failure (MTTF)	1.2 x 10 ⁶	1.2 x 10 ⁶	1.2 x 10 ⁶
recoverable errors	10 per 10 ¹²	10 per 10 ¹²	10 per 10 ¹²
unrecoverable errors	1 per 10 ¹⁵	1 per 10 ¹⁵	1 per 10 ¹⁵
seek errors	10 per 10 ⁸	10 per 10 ⁸	10 per 10 ⁸

MTTF:

MTTF is the time in hours between each time the disk crashes

Recoverable:

how often do we read wrong values – corrected when re-reading

Unrecoverable:

how often do we get permanent errors on a sector – data moved to spare tracks

Seek:

how often do we move the arm wrong (over wrong cylinder) – make another

Disk Errors

· Even though rare, a disk can fail in several ways

intermittent failure -

temporarily errors corrected by re-reading the block, e.g., dust on the platter making a bit value wrong

media decay/write errors -

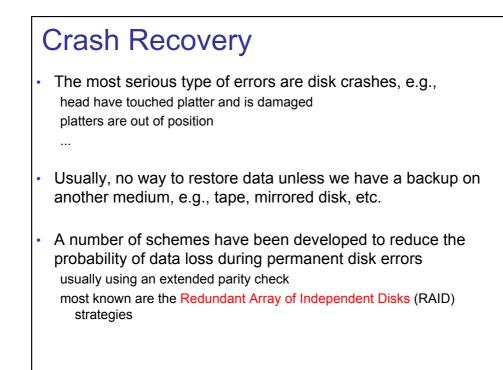
permanent errors where the bits are corrupted, e.g., disk head touches the platter and damages the magnetic surface

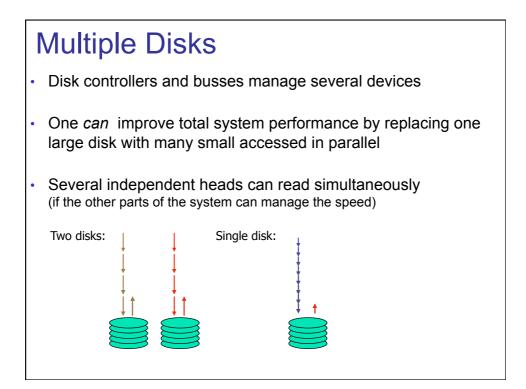
disk crashes –

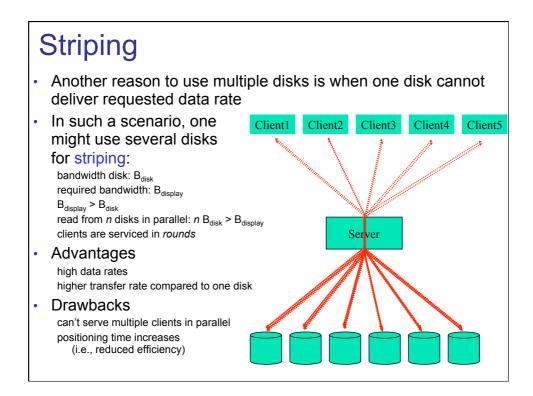
the entire disk becomes permanent unreadable

Checksums

- Disk sectors are stored with some redundant bits, called checksums
- Used to validate a read or written sector: read sector and stored checksum compute checksum on read sector compare read and computed checksum
- If the validation fails (read and computed checksum differ), the read operation is repeated until the read operation succeed → return correct content the limit of retries is reached → return error "bad disk block"
- Many ways to compute checksums, but (usually) they only detect errors


Disk Failure Models


 Our Seagate disks have a MTTF of ~130 years (at this time ~50 % of the disks are damaged), but

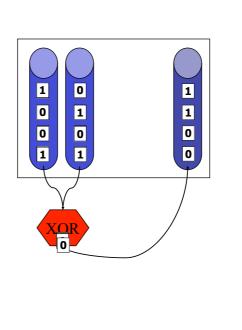

many disks fail during the first months (production errors)

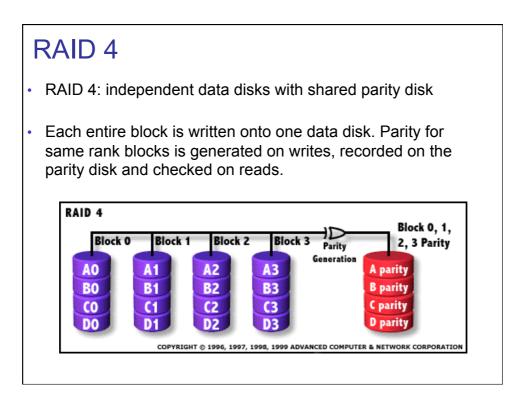
if no production errors, disks will probably work many years

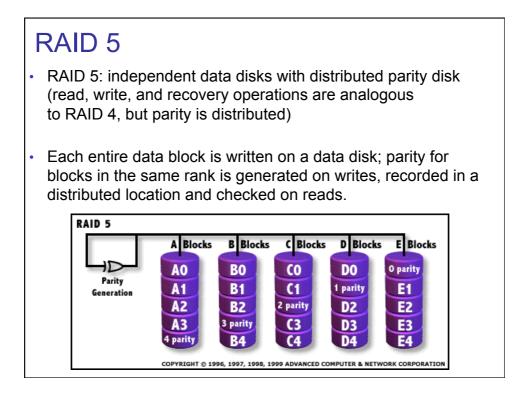
old disks have again a larger probability of failure due to accumulated effects of dust, etc.

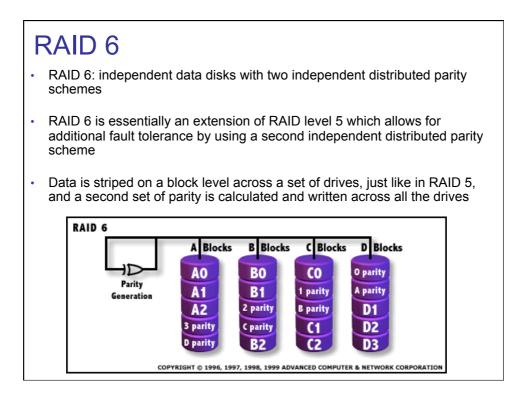
	Redundant Array of Inexpensive Disks (RAID)
•	The various RAID levels define different disk organizations to achieve higher performance and more reliability RAID 0 - striped disk array without fault tolerance (non-redundant)
	RAID 1 - mirroring
	RAID 2 - memory-style error correcting code (Hamming Code ECC)
	RAID 3 - bit-interleaved parity
	RAID 4 - block-interleaved parity
	RAID 5 - block-interleaved distributed-parity
	RAID 6 - independent data disks with two independent distributed parity schemes
	RAID 7
	RAID 10
	RAID 53
	RAID 1+0

RAID

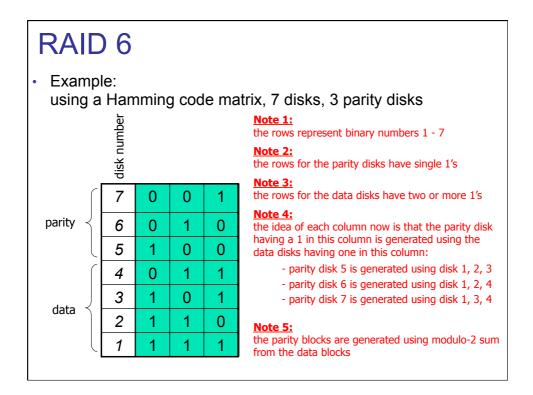

Main idea

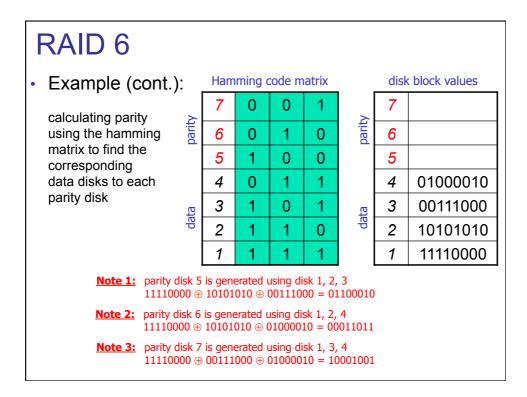

Store the XORs of the content of a block to the spare disk Upon any failure, one can recover the entire block from the spare disk (or any disk) using XORs


Pros

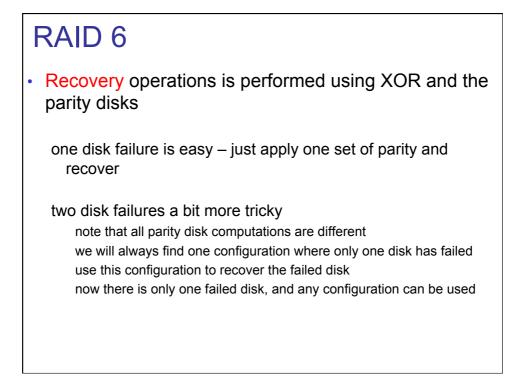

Reliability High bandwidth

Cons
 The controller is complex





RAID 6 In general, we can add several redundancy disks to be able do deal with several simultaneous disk crashes Many different strategies based on different EECs, e.g.,: Read-Solomon Code (or derivates): corrects n simultaneous disk crashes using n parity disks a bit more expensive parity calculations compared to XOR Hamming Code: corrects 2 disk failures using 2^K – 1 disks where k disks are parity disks and 2^K – k – 1 the parity disks are calculated using the data disks determined by the hamming code, i.e., a k x (2^K – 1) matrix of 0's and 1's representing the 2^K – 1 numbers written binary except 0



RAID 6

- Read operations is performed from any data disk as a normal read operation
- Write operations are performed as shown on previous slide (similar RAID 5), but now there are several parity disks each parity disk does not use all data disks
- Update operations are performed as for RAID 4 or RAID 5: perform XOR of old and new version of the block, and simply add the sum (again using XOR) to the parity block

RAID 6 disk block values Example update: 7 10001001 update data disk 2 to 00001111 parity parity disks 5 and 6 is using data disk 2 6 10111110 5 11000111 Note 1: 4 01000010 old value is 10101010. Difference is 10101010 ⊕ 00001111 = 10100101 3 00111000 data 2 Note 2: 00001111 insert new value in data disk 2: 00001111 1 11110000 Note 3: update parity disk 5, take difference between old and new block, and perform XOR with parity: $10100101 \oplus 01100010 = 11000111$ Note 5: Note 4: parity disk 6 is similarly updated insert new value in parity disk 5: 11000111

RAID 6								
• Example recovery:	Ham	ming o	code m	atrix	disk	block values		
disk 2 and 5 have failed	7	0	0	1	7	10001001		
parit	6	0	1	0	6	00011011		
Note 1: there is always a column in the	5	1	0	0	5	???		
hamming code matrix where only one of the failed disks	4	0	1	1	4	01000010		
have a 1- value	3	1	0	1	3	00111000		
Note 2:	2	1	1	0	2	???		
column 2 use data disk 2, and no other disks have crashed,	1	1	1	1	1	11110000		
i.e., use disk 1, 4, and 6 to recover disk 2								
Note 3: Note 4: restoring disk 2: restoring disk 5 can now be done using column 1 11110000 ⊕ 01000010 ⊕ 00011011 = 10101001 1								

Challenges Managing Multiple Disks

- How large should a stripe group and stripe unit be?
- Can one avoid hot sets of disks (load imbalance)?
- · What and when to replicate?
- Heterogeneous disks?

Summary

- The main bottleneck is disk I/O performance due to disk mechanics: seek time and rotational delays
- Much work has been performed to optimize disks performance Many algorithms trying to minimize seek overhead (most existing systems uses a SCAN derivate) use large block sizes or read many continuous blocks prefetch data from disk to memory striping might not be necessary on new disks (at least not on all disks) memory caching can save disk I/Os
- World today more complicated (both different access patterns and unknown disk characteristics)
 → new disks are "smart", we cannot fully control the device