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Filesystems & Disks 
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Data placement 
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Disk errors 
Multiple disks (RAID) 
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Storage Properties 
•  Volatile and non-volatile 

•  ROM 

•  Access (sequential, random) 

•  Mechanical issues 

•  “Wear out” 

Storage Hierarchy 
•  L1 cache 
•  L2 cache 
•  RAM 
•  ROM 
•  EPROM & flash memory (SSD) 
•  Hard disks 

•  (CD & DVD) 

•  … and what about Floppy disks? 
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Storage Metrics 
•  Maximum/sustained read bandwidth 
•  Maximum/sustained write bandwidth 
•  Read latency 
•  Write latency 

Interfaces 
•  Parallel ATA or simply ATA 

•  Parallel Small Computer Interface (SCSI) 

•  Fiber Channel (FC) 

•  Serial ATA 1.0 (SATA) 

•  Serial ATA II (SATA II) 

•  Serial Attached SCSI (SAS) 



5 

Interfaces 

[Source: http://www.intel.com/technology/serialata/pdf/np2108.pdf] 

Interfaces 
 
•  USB 

USB 1.0/1.1: max 12 Mb/s 
USB 2.0: max 480 Mb/s, sustained 10 – 30 MB/s 
USB 3.0: max 4.8 Gb/s, sustained 100 – 300 MB/s 

•  FireWire 
FireWire 400: max 400 Mb/s 
FireWire 800: max 800 Mb/s 
 

•  eSATA: max 6 Gb/s 

[from: http://www.wdc.com/en/library/2579-001151.pdf] 
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Solid State Drives (SSD) 
•  From the “outside” the look like hard disks 

Interface 
Physical formats 

•  Inside very different to disks: 
NAND Flash 
Transistor arrays implemented by floating gate MOSFET 
Every cell that is written to retains its charge until it is 

intentionally released through a “flash” of current 
Erasing NAND flash needs to be done in 64, 128, or 256 KB 

SSD 
•  2 technologies 

Single Level Cell (SLC) 
Multi-Level Cell (MLC) 

•  Wear and tear 
Toshiba 128GB: write capacity 80 Terabytes 
Wear leveling: spread out the data  
Do not defragment a SSD!! 

•  TRIM: for delete 
OSes that are not aware of SSD -> flagged as not in use 
TRIM -> push delete to the SSD controller (e.g. in Windows 7) 
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SSD Architecture 

[Source: http://www.storagereview.com/ssd_architecture] 

SSD vs. HDD 
•  SSD: 

Faster 
Quieter 
More reliable 
Less power 
 

•  HDD: 
Cheaper 
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SSD Performance 

[Source: http://ssd.toshiba.com/benchmark-scores.html] 

SSD Performance 

[Source: http://ssd.toshiba.com/benchmark-scores.html] 
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Disks 
•  Disks ... 

are used to have a persistent system 
are orders of magnitude slower  than main memory 
are cheaper   
have more capacity 

 
•  Two resources of importance 

storage space 
I/O bandwidth 

 
•  Because... 

...there is a large speed mismatch (ms vs. ns) compared to main 
   memory (this gap will increase according to Moore’s law),  

...disk I/O is often the main performance bottleneck 

...we need to minimize the number of accesses, 

... 

...we must look closer on how to manage disks 

Hard Disk Drive (HDD) Components 
•  Electromechanical 

Rotating disks 
Arm assembly 

•  Electronics 
Disk controller 
Cache 
Interface controller 
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Drive Electronics 
•  Common blocks found: 

Host Interface 
Buffer Controller 
Disk Sequencer 
ECC 
Servo Control 
CPU 
Buffer Memory 
CPU Memory 
Data Channel 

Mechanics of Disks 
Platters 
circular platters covered with  
magnetic material to provide  
nonvolatile storage of bits 

Tracks 
concentric circles on a 
single platter 

Sectors 
segments of the track circle  
separated by non-magnetic gaps. 
The gaps are often used to identify 
beginning of a sector 

Cylinders 
corresponding tracks on the different  
platters are said to form a cylinder 

Spindle 
of which the platters  
rotate around 

Disk heads 
read or alter the 
magnetism (bits) passing 
under it. The heads are 
attached to an arm 
enabling it to move 
across the platter surface 
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Disk Specifications 
•  Disk technology develops “fast” 
•  Seagate disks from 2002: 

Note 1: 
disk manufacturers usually 
denote GB as 109 whereas 
computer quantities often are 
powers of 2, i.e., GB is 230 

Note 3: 
there is usually a 
trade off between 
speed and capacity 

Note 2: 
there is a difference between internal and formatted transfer rate. Internal  
is only between platter. Formatted  is after the signals interfere with the 
electronics (cabling loss, interference, retransmissions, checksums, etc.) 

Barracuda 180 Cheetah 36 Cheetah 
X15 

Capacity (GB) 181.6 36.4 36.7 
Spindle speed (RPM) 7200 10.000 15.000 
#cylinders (and tracks) 24.247 9.772 18.479 
average seek time (ms) 7.4 5.7 3.6  
min (track-to-track) seek (ms)  0.8 0.6 0.3 
max (full stroke) seek (ms) 16 12 7 
average latency (ms) 4.17 3 2 
internal transfer rate (Mbps) 282 – 508  520 – 682 522 – 709 
disk buffer cache 16 MB 4 MB 8 MB 

Disk Specification 
Seagate Barracuda ES.2 Seagte Cheetah 15K.6 

Specifications from www.seagate.com on 4. 11. 2008 
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Disk Specification 

Specifications from www.seagate.com on 15. 10. 2012 

Seagate Barracuda 7200.14 

Disk Capacity 
•  The size (storage space) of the disk is dependent on 

the number of platters  
whether the platters use one or both sides 
number of tracks per surface 
(average) number of sectors per track 
number of bytes per sector 

 

•  Example (Cheetah X15): 
4 platters using both sides: 8 surfaces 
18497 tracks per surface 
617 sectors per track (average) 
512 bytes per sector 
Total capacity = 8 x 18497 x 617 x 512 ≈ 4.6 x 1010 = 42.8 GB 
Formatted capacity = 36.7 GB 

Note: 
there is a difference between 
formatted and total capacity. Some 
of the capacity is used for storing 
checksums, spare tracks, gaps, etc.  
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Disk Access Time 

•  How do we retrieve data from disk? 
- position head over the cylinder (track) on which the block 

(consisting of one or more sectors) are located 
- read or write the data block as the sectors move under the 

head when the platters rotate 
 

•  The time between the moment issuing a disk request 
and the time the block is resident in memory is called 
disk latency  or disk access time 

     +  Rotational delay 

     +   Transfer time  

         Seek time   

Disk access time = 

     +   Other delays  

Disk platter  

Disk arm 

Disk head 

block x 
in memory 

I want 
block X 

Disk Access Time 
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Disk Access Time: Seek Time 
•  Seek time is the time to position the head 

- the heads require a minimum amount of time to start and stop moving the 
head 

- some time is used for actually moving the head –  
roughly proportional to the number of cylinders traveled 
 

Time to move head: 

~ 3x - 20x   

x 

1 N 
Cylinders Traveled 

Time 

“Typical” average:  
 10 ms → 40 ms 
 7.4 ms (Barracuda 180)
 5.7 ms (Cheetah 36) 
 3.6 ms (Cheetah X15) 

nβα + number of tracks 
seek time constant 
fixed overhead 

Disk Access Time: Rotational Delay 
•  Time for the disk platters to rotate so the first of the 

required sectors are under the disk head 

head here 

block I want 

Average delay is 1/2 revolution 
 
“Typical” average:  

   8.33 ms  (3.600 RPM) 
   5.56 ms  (5.400 RPM) 

    4.17 ms  (7.200 RPM) 
    3.00 ms  (10.000 RPM) 
    2.00 ms  (15.000 RPM) 
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Disk Access Time: Transfer Time 
•  Time for data to be read by the disk head, i.e., time it takes the 

sectors of the requested block to rotate under the head 
 

•  Transfer rate = 
 

•  Transfer time = amount of data to read / transfer rate 
 

•  Example – Barracuda 180: 
406 KB per track x 7.200 RPM ≈ 47.58 MB/s 

•  Example – Cheetah X15: 
316 KB per track x 15.000 RPM ≈ 77.15 MB/s 
 
 

•  Transfer time is dependent on data density and rotation speed 
•  If we have to change track, time must also be added for moving 

the head 

amount of data per track 
time per rotation 

Note: 
one might achieve these 
transfer rates reading 
continuously on disk, 
but time must be added 
for seeks, etc. 

Disk Access Time: Other Delays 
•  There are several other factors which might introduce 

additional delays: 
CPU time to issue and process I/O 
contention for controller 
contention for bus 
contention for memory 
verifying block correctness with checksums (retransmissions) 
waiting in scheduling queue 
... 

 
•  Typical values: “0”  

(maybe except from waiting in the queue) 
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Disk Throughput 
•  How much data can we retrieve per second? 

 

•  Throughput = 
 

•  Example: 
for each operation we have 
    - average seek   - average rotational delay 
    - transfer time   - no gaps, etc. 
 
Cheetah X15 (max 77.15 MB/s) 

4 KB blocks à 0.71 MB/s 
64 KB blocks à 11.42 MB/s 
 

Barracuda 180 (max 47.58 MB/s)  
4 KB blocks à 0.35 MB/s 
64 KB blocks à 5.53 MB/s 

data size  
 transfer time (including all) 

Block Size  
•  The block size may have large effects on performance 
•  Example: 

assume random block placement on disk and sequential file access  
doubling block size will halve the number of disk accesses 

each access take some more time to transfer the data, but the total 
transfer time is the same (i.e., more data per request) 

halve the seek times  
halve rotational delays are omitted 

 
e.g., when increasing block size from 2 KB to 4 KB (no gaps,...)  

for Cheetah X15  typically an average of: 
 3.6 ms is  saved  for seek time 
 2 ms is  saved  in rotational delays 
 0.026 ms is added  per transfer time  

 
increasing from 2 KB to 64 KB saves ~96,4 % when reading 64 KB 

} saving a total of 5.6 ms  
when reading 4 KB (49,8 %) 



17 

Block Size 
•  Thus, increasing block size  

can increase performance  
by reducing seek times and  
rotational delays 
 

•  However, a large block size  
is not always best 
blocks spanning several tracks  

still introduce latencies 
small data elements may  

occupy only a fraction of the  
block 
 
 
 

•  Which block size to use therefore  
depends on data size and data reference patterns 

•  The trend, however, is to use large block sizes as new technologies appear 
with increased performance – at least in high data rate systems 

Disk Access Time: Complicating Issues 
•  There are several complicating factors: 

the “other delays” described earlier like  
consumed CPU time, resource contention, etc. 

unknown data placement on modern disks 
zoned disks, i.e., outer tracks are longer and therefore usually have  

more sectors than inner - transfer rates are higher on outer tracks 
gaps between each sector 
checksums are also stored with each the sectors 

read for each track and used to validate the track 
usually calculated using Reed-Solomon interleaved with CRC 
for older drives the checksum is 16 bytes 

(SCSI disks sector sizes may be changed by user!!??) 

inner: 

outer: 
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Writing and Modifying Blocks 
•  A write operation is analogous to read operations 

must add time for block allocation 
a complication occurs if the write operation has to be verified – 

must wait another rotation and then read the block to see if it 
is the block we wanted to write 

Total write time ≈ read time + time for one rotation 
 

•  Cannot modify a block directly: 
read block into main memory 
modify the block 
write new content back to disk 
(verify the write operation) 
Total modify time  ≈  read time + time to modify +  

    write time 

Disk Controllers 
•  To manage the different parts of the disk, we use a 

disk controller, which is a small processor capable of: 
controlling the actuator moving the head to the desired track 
selecting which platter and surface to use 
knowing when right sector is under the head 
transferring data between main memory and disk 

 
•  New controllers acts like small computers themselves 

both disk and controller now has an own buffer reducing disk 
access time 

data on damaged disk blocks/sectors are just moved to spare 
room at the disk – the system above (OS) does not know 
this, i.e., a block may lie elsewhere than the OS thinks    
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Efficient Secondary Storage Usage 
•  Must take into account the use of secondary storage 

there are large access time gaps, i.e., a disk access will probably dominate 
the total execution time 

there may be huge performance improvements if we reduce the number of 
disk accesses 

a “slow” algorithm with few disk accesses will probably outperform a “fast” 
algorithm with many disk accesses 
 

•  Several ways to optimize ..... 
block size 
disk scheduling 
multiple disks 
prefetching 
file management / data placement 
memory caching / replacement algorithms 
… 

Disk Scheduling 
•  Seek time is a dominant factor of total disk I/O time 

 
•  Let operating system or disk controller choose which request  

to serve next depending on the head’s current position and 
requested block’s position on disk (disk scheduling) 
 

•  Note that disk scheduling ≠ CPU scheduling 
a mechanical device – hard to determine (accurate) access times 
disk accesses cannot be preempted – runs until it finishes 
disk I/O often the main performance bottleneck 

 
•  General goals 

short response time 
high overall throughput  
fairness (equal probability for all blocks to be accessed in the same time) 

 
•  Tradeoff: seek and rotational delay vs. maximum response time 

 
Is (or should) disk scheduling be  
preemptive or non-preemptive? 
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Disk Scheduling 
•  Several traditional algorithms 

First-Come-First-Serve (FCFS) 
Shortest Seek Time First (SSTF) 
SCAN (and variations) 
Look (and variations) 
… 

First–Come–First–Serve (FCFS) 
FCFS serves the first arriving request first: 
•  Long seeks 
•  “Short” average response time 

tim
e 

cylinder number 
1 5 10 15 20 25 

12 

incoming requests (in order of arrival): 

14 2 7 21 8 24 

scheduling 
queue 

24 

8 

21 

7 

2 

14 

12 
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Shortest Seek Time First (SSTF) 
SSTF serves closest request first: 
•  short seek times 
•  longer maximum response times – may even lead to starvation 

tim
e 

cylinder number 
1 5 10 15 20 25 

12 

incoming requests (in order of arrival): 

14 2 7 21 8 24 

scheduling 
queue 

SCAN 
SCAN (elevator) moves head edge to edge and serves requests on the way: 
•  bi-directional 
•  compromise between response time and seek time optimizations  

tim
e 

cylinder number 
1 5 10 15 20 25 

12 

incoming requests (in order of arrival): 

14 2 7 21 8 24 

scheduling 
queue 
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LOOK 
LOOK is a variation of SCAN: 
•  same schedule as SCAN 
•  does not run to the edges 
•  stops and returns at outer- and innermost request 
•  increased efficiency  
•  SCAN vs. LOOK example: 

tim
e 

cylinder number 
1 5 10 15 20 25 

12 

incoming requests (in order of arrival): 

14 2 7 21 8 24 

scheduling 
queue 

24 

8 

21 

7 

2 

14 

12 

Data Placement on Disk  
•  Disk blocks can be assigned to files many ways, and 

several schemes are designed for 
 
optimized latency 
increased throughput 

 
access pattern dependent 
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Disk Layout 

•  Constant angular velocity (CAV) disks 
equal amount of data in each track 
(and thus constant transfer time) 
constant rotation speed 

•  Zoned CAV disks 
zones are ranges of tracks 
typical few zones 
the different zones have 

different amount of data  
different bandwidth  
i.e., better on outer tracks 

Disk Layout 
•  Cheetah X15.3 is a zoned CAV disk: 

Zone 
Cylinders per 

Zone 
Sectors per 

Track 
Spare 

Cylinders 
Zone Transfer 

Rate Mb/s 
Sectors per 

Zone Efficiency 

Formatted 
Capacity 
(Mbytes) 

0 3544 672 7 890,98 19014912 77,2% 9735,635 
1 3382 652 7 878,43 17604000 76,0% 9013,248 
3 3079 624 6 835,76 15340416 76,5% 7854,293 
4 2939 595 6 801,88 13961080 76,0% 7148,073 
5 2805 576 6 755,29 12897792 78,1% 6603,669 
6 2676 537 5 728,47 11474616 75,5% 5875,003 
7 2554 512 5 687,05 10440704 76,3% 5345,641 
8 2437 480 5 649,41 9338880 75,7% 4781,506 
9 2325 466 5 632,47 8648960 75,5% 4428,268 

10 2342 438 5 596,07 8188848 75,3% 4192,690 

ü  Always place often used data on outermost tracks (zone 0) …!?  

Ä  NO, arm movement is often more important than transfer time  
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Data Placement on Disk 
•  Contiguous placement stores disk blocks contiguously on disk 

 
 
 
minimal disk arm movement reading the whole file (no intra-file seeks) 

 
possible advantage 

head must not move between read operations - no seeks or rotational delays 
can approach theoretical transfer rate  
often WRONG: read other files as well 

 
real advantage 

do not have to pre-determine block (read operation) size  
(whatever amount to read, at most track-to-track seeks are performed) 
 

no inter-operation gain if we have unpredictable disk accesses 

file A file B file C 

Data Placement on Disk 
•  To avoid seek time (and possibly rotational delay), we can store 

data likely to be accessed together on 
 
adjacent sectors  

(similar to using larger blocks) 
 

if the track is full, use another track  
on the same cylinder  
(only use another head) 
 

if the cylinder is full, use  
next (adjacent) cylinder  
(track-to-track seek) 
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Data Placement on Disk 
•  Interleaved placement tries to store blocks from a file with a 

fixed number of other blocks in-between each block  
 
 
 
 
minimal disk arm movement reading the files A, B and C 

(starting at the same time) 
 

fine for predictable workloads reading multiple files 
 

no gain if we have unpredictable disk accesses 
 

•  Non-interleaved (or even random) placement can be used for 
highly unpredictable workloads 

file A 
file B 

file C 

Data Placement on Disk 
•  Organ-pipe placement consider the usual disk head position 

place most popular data where head is most often 
 
 
 
 
 

center of the disk is closest to the head using CAV disks 
but, a bit outward for zoned  CAV disks (modified organ-pipe) 

disk: 
innermost 

outermost 

head 

bl
oc

k 
ac

ce
ss

 p
ro

ba
bi

lit
y 

cylinder number 

bl
oc

k 
ac

ce
ss

 p
ro

ba
bi

lit
y 

cylinder number 

organ-pipe: modified organ-pipe: 
Note: 
skew dependent on     
  tradeoff between  
   zoned transfer time  
    and storage 
     capacity  vs.  
       seek time 
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Concluding Questions 
•  What are the main differences between HDD and 

SDD? 
•  What are the main parameter of HDD performance? 
•  What is the goal of disk scheduling? 
•  Would disk scheduling for SDD be useful? 
•  Why should we not defragment SDDs? 

Additional Material 
•  Prefetching & Buffering 
•  RAID systems 
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Prefetching 
•  If we can predict the access pattern, one might speed up performance  

using prefetching 
a video playout is often linear à easy to predict access pattern 

 
eases disk scheduling 
read larger amounts of data per request 
data in memory when requested – reducing page faults 

 
 

•  One simple (and efficient) way of doing prefetching is read-ahead: 
read more than the requested block into memory 
serve next read requests from buffer cache 

•  Another way of doing prefetching is double (multiple) buffering: 
read data into first buffer 
process data in first  buffer and at the same time read data into second  buffer 
process data in second  buffer and at the same time read data into first  buffer 
etc. 

process  
data 

 
 

Multiple Buffering 
•  Example: 

have a file with block sequence B1, B2, ... 
our program processes data sequentially, i.e., B1, B2, ... 
 
single buffer solution: 

read B1 à buffer 
process data in buffer 
read B2 à buffer 
process data in Buffer  
... 

 
if  P = time to process a block 

 R = time to read in 1 block 
 n = # blocks 

 
single buffer time = n (P+R) 

disk: 

memory: 
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Multiple Buffering 
double buffer solution: 

read B1 à buffer1 
process data in buffer1, read B2 à buffer2 
process data in buffer2, read B3 à buffer1  
process data in buffer1, read B4 à buffer2 
... 

 
 
 

if  P = time to process a block 
 R = time to read in 1 block 
 n = # blocks 

 
if P ≥ R  
double buffer time = R + nP 

 
if P < R, we can try to add buffers (n - buffering)  

process  
data 

 
 

disk: 

memory: 

process  
data 

 
 

Pentium 4 
Processor 

 
 

registers 

cache(s) 

I/O 
controller 

hub 

memory 
controller 

hub 

RDRAM 

RDRAM 

RDRAM 

RDRAM 

PCI slots 

PCI slots 

PCI slots 

network card 

disk 

file system 

communication system 

application 

file system communication  
system 

application 

disk network card 

Data Path (Intel Hub Architecture) 
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Memory Caching 

communication  
system 

application 

disk network card 

expensive 

file system 

cache 

caching possible 

How do we manage a cache? 
ü  how much memory to use? 
ü  how much data to prefetch? 
ü  which data item to replace? 
ü  how do lookups quickly? 
ü  … 

Memory Caching 
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Disk Errors  
•  Disk errors are rare: 

Barracuda 180 Cheetah 36 Cheetah 
X15 

mean time to failure (MTTF) 1.2 x 106 1.2 x 106 1.2 x 106 

recoverable errors 10 per 1012 10 per 1012 10 per 1012 
unrecoverable errors 1 per 1015 1 per 1015 1 per 1015 
seek errors 10 per 108 10 per 108 10 per 108 

MTTF: 
MTTF is the time in hours between 
each time the disk crashes 

Recoverable: 
how often do we read wrong values 
– corrected when re-reading 

Unrecoverable: 
how often do we get permanent errors on 
a sector – data moved to spare tracks 

Seek: 
how often do we move the arm wrong 
(over wrong cylinder) – make another 

Disk Errors 
•  Even though rare, a disk can fail in several ways 

 
intermittent failure –  

temporarily errors corrected by re-reading the block, e.g., 
dust on the platter making a bit value wrong 
 

media decay/write errors –  
permanent errors where the bits are corrupted, e.g.,  
disk head touches the platter and damages the magnetic 
surface 
 

disk crashes –  
the entire disk becomes permanent unreadable  
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Checksums 
•  Disk sectors are stored with some redundant bits, called 

checksums 
 

•  Used to validate a read or written sector: 
read sector and stored checksum 
compute checksum on read sector 
compare read and computed checksum 
 

•  If the validation fails (read and computed checksum differ), the 
read operation is repeated until 
the read operation succeed à return correct content  
the limit of retries is reached à return error “bad disk block” 

 

•  Many ways to compute checksums,  
but (usually) they only detect errors 

Disk Failure Models 

•  Our Seagate disks have a MTTF of ~130 years  
(at this time ~50 % of the disks are damaged), but 
 
many disks fail during the first months (production errors) 

 
if no production errors, disks will probably work many years 

 
old disks have again a larger probability of failure due to 

accumulated effects of dust, etc. 
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Crash Recovery 
•  The most serious type of errors are disk crashes, e.g., 

head have touched platter and is damaged 
platters are out of position 
... 

 

•  Usually, no way to restore data unless we have a backup on 
another medium, e.g., tape, mirrored disk, etc. 
 

•  A number of schemes have been developed to reduce the 
probability of data loss during permanent disk errors 
usually using an extended parity check 
most known are the Redundant Array of Independent Disks (RAID) 

strategies 

Multiple Disks 
•  Disk controllers and busses manage several devices 

 
•  One can  improve total system performance by replacing one 

large disk with many small accessed in parallel 
 

•  Several independent heads can read simultaneously 
(if the other parts of the system can manage the speed) 

Single disk: Two disks: 
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Client1 Client2 Client3 Client4 Client5 

Server 

Striping 
•  Another reason to use multiple disks is when one disk cannot 

deliver requested data rate 
•  In such a scenario, one  

might use several disks  
for striping: 

bandwidth disk: Bdisk 
required bandwidth: Bdisplay 
Bdisplay > Bdisk 
read from n disks in parallel: n Bdisk > Bdisplay 

clients are serviced in rounds 

•  Advantages 
high data rates 
higher transfer rate compared to one disk 

•  Drawbacks 
can’t serve multiple clients in parallel 
positioning time increases  

(i.e., reduced efficiency) 

Interleaving (Compound Striping) 
•  Full striping usually not necessary today:   

faster disks 
better compression algorithms 

 
 

•  Interleaving lets each client may be  
serviced by only a set of the available disks 
make groups  
”stripe” data in a way such that 

a consecutive request arrive at 
next group (here each disk is a group) 

Client1 Client2 Client3 

Server 
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Redundant Array of Inexpensive Disks (RAID) 
•  The various RAID levels define different disk organizations to 

achieve higher performance and more reliability 
RAID 0 - striped disk array without fault tolerance (non-redundant) 

 

RAID 1 - mirroring 

RAID 2 - memory-style error correcting code (Hamming Code ECC) 

RAID 3 - bit-interleaved parity 

RAID 4 - block-interleaved parity  
RAID 5 - block-interleaved distributed-parity 

RAID 6 - independent data disks with two independent distributed parity schemes  
 

RAID 7 
RAID 10 
RAID 53  
RAID 1+0 

RAID  
•  Main idea 

Store the XORs of the content of a 
block to the spare disk 
Upon any failure, one can recover 
the entire block from the spare 
disk (or any disk) using XORs 
 

•  Pros 
Reliability 
High bandwidth 
 

•  Cons 
The controller is complex 

XOR 

1 

0 

0 

1 

0 

1 

0 

1 

1 

1 

0 

0 

1 

1 0 

0 1 

1 

0 0 

0 

1 1 

0 
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RAID 4 
•  RAID 4: independent data disks with shared parity disk 

 
•  Each entire block is written onto one data disk. Parity for 

same rank blocks is generated on writes, recorded on the 
parity disk and checked on reads. 

RAID 5 
•  RAID 5: independent data disks with distributed parity disk 

(read, write, and recovery operations are analogous  
to RAID 4, but parity is distributed) 
 

•  Each entire data block is written on a data disk; parity for 
blocks in the same rank is generated on writes, recorded in a 
distributed location and checked on reads. 
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•  RAID 6: independent data disks with two independent distributed parity 
schemes 
 

•  RAID 6 is essentially an extension of RAID level 5 which allows for 
additional fault tolerance by using a second independent distributed parity 
scheme  
 

•  Data is striped on a block level across a set of drives, just like in RAID 5, 
and a second set of parity is calculated and written across all the drives 

RAID 6 

RAID 6  
•  In general, we can add several redundancy disks to be able do 

deal with several simultaneous disk crashes 
 

•  Many different strategies based on different EECs, e.g.,: 
 
Read-Solomon Code (or derivates):  

corrects n simultaneous disk crashes using n parity disks 
a bit more expensive parity calculations compared to XOR 

 
Hamming Code: 

corrects 2 disk failures using 2K – 1 disks where k disks are parity disks  
and 2K – k – 1  

the parity disks are calculated using the data disks determined by the hamming 
code, i.e., a k x (2K – 1) matrix of 0’s and 1’s representing  
the 2K – 1 numbers written binary except 0  
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RAID 6 
•  Example: 

using a Hamming code matrix, 7 disks, 3 parity disks 

7 0 0 1 

6 0 1 0 
5 1 0 0 
4 0 1 1 
3 1 0 1 
2 1 1 0 
1 1 1 1 

di
sk

 n
um

be
r 

parity 

data 

Note 1: 
the rows represent binary numbers 1 - 7 

Note 2: 
the rows for the parity disks have single 1’s 

Note 3: 
the rows for the data disks have two or more 1’s 

Note 4: 
the idea of each column now is that the parity disk 
having a 1 in this column is generated using the 
data disks having one in this column: 

- parity disk 5 is generated using disk 1, 2, 3 

- parity disk 6 is generated using disk 1, 2, 4 

- parity disk 7 is generated using disk 1, 3, 4 

Note 5: 
the parity blocks are generated using modulo-2 sum 
from the data blocks 

RAID 6  
•  Example (cont.):  

 
calculating parity 
using the hamming 
matrix to find the  
corresponding 
data disks to each 
parity disk 

7 0 0 1 

6 0 1 0 
5 1 0 0 
4 0 1 1 
3 1 0 1 
2 1 1 0 
1 1 1 1 

pa
rit

y 
da

ta
 

7 10001001 

6 00011011 
5 01100010 
4 01000010 
3 00111000 
2 10101010 
1 11110000 

pa
rit

y 
da

ta
 

Hamming code matrix disk block values 

Note 1:  parity disk 5 is generated using disk 1, 2, 3 
 11110000 ⊕ 10101010 ⊕ 00111000 = 01100010 

Note 2:  parity disk 6 is generated using disk 1, 2, 4 
 11110000 ⊕ 10101010 ⊕ 01000010 = 00011011 

Note 3:  parity disk 7 is generated using disk 1, 3, 4 
 11110000 ⊕ 00111000 ⊕ 01000010 = 10001001 
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RAID 6 
•  Read operations is performed from any data disk as a 

normal read operation 
 

•  Write operations are performed as shown on previous 
slide (similar RAID 5), but  
now there are several parity disks 
each parity disk does not use all data disks 

 
•  Update operations are performed as for  

RAID 4 or RAID 5: 
perform XOR of old and new version of the block, and simply 

add the sum (again using XOR) to the parity block 
 

RAID 6 
•  Example update: 

update data disk 2 to 00001111 
parity disks 5 and 6 is using data disk 2 
 

7 10001001 
6 00011011 
5 01100010 
4 01000010 
3 00111000 
2 10101010 
1 11110000 

pa
rit

y 
da

ta
 

disk block values 

Note 1:   
old value is 10101010.  
Difference is 10101010 ⊕ 00001111 = 10100101 

Note 2:   
insert new value in data disk 2: 00001111 

00001111 

Note 3:   
update parity disk 5, take difference between old and new 
block, and perform XOR with parity: 
10100101 ⊕ 01100010 = 11000111 

11000111 

Note 4:   
insert new value in parity disk 5: 11000111 

Note 5:   
parity disk 6 is similarly updated 

10111110 
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RAID 6 
•  Recovery operations is performed using XOR and the 

parity disks 
 
one disk failure is easy – just apply one set of parity and 

recover 
 

two disk failures a bit more tricky 
note that all parity disk computations are different 
we will always find one configuration where only one disk has failed 
use this configuration to recover the failed disk 
now there is only one failed disk, and any configuration can be used 

RAID 6 
•  Example recovery: 

disk 2 and 5 have failed 7 0 0 1 

6 0 1 0 
5 1 0 0 
4 0 1 1 
3 1 0 1 
2 1 1 0 
1 1 1 1 

pa
rit

y 
da

ta
 

7 10001001 

6 00011011 
5 01100001 
4 01000010 
3 00111000 
2 10101001 
1 11110000 

Hamming code matrix disk block values 

??? 

??? 

Note 1: 
there is always a column in the 
hamming code matrix where 
only one of the failed disks 
have a 1- value 

Note 2: 
column 2 use data disk 2, and 
no other disks have crashed, 
i.e., use disk 1, 4, and 6 to 
recover disk 2 

Note 3: 
restoring disk 2: 
11110000 ⊕ 01000010 ⊕ 00011011 = 10101001  

Note 4: 
restoring disk 5 can now be 
done using column 1 
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Challenges Managing Multiple Disks 

•  How large should a stripe group and stripe unit be? 
 
 

•  Can one avoid hot sets of disks (load imbalance)? 
 
 

•  What and when to replicate? 
 
 

•  Heterogeneous disks? 
 

Summary 
•  The main bottleneck is disk I/O performance due to disk 

mechanics: seek time and rotational delays 
 

•  Much work has been performed to optimize disks performance  
Many algorithms trying to minimize seek overhead 

(most existing systems uses a SCAN derivate) 
use large block sizes or read many continuous blocks 
prefetch data from disk to memory 
striping might not be necessary on new disks (at least not on all disks) 
memory caching can save disk I/Os 

 

•  World today more complicated  
(both different access patterns and unknown disk characteristics) 
à new disks are “smart”, we cannot fully control the device 


