
1

Disks

Vera Goebel
Thomas Plagemann

2014

Department of Informatics

University of Oslo

Storage Technology

[Source: http://www-03.ibm.com/ibm/history/exhibits/storage/storage_photo.html]

2

Filesystems & Disks

Contents
•  Non-volatile storage
•  Solid State Disks
•  Disks

- Mechanics, properties, and performance
•  Disk scheduling
•  Additional Material:

Data placement
Prefetching and buffering
Memory caching
Disk errors
Multiple disks (RAID)

3

Storage Properties
•  Volatile and non-volatile

•  ROM

•  Access (sequential, random)

•  Mechanical issues

•  “Wear out”

Storage Hierarchy
•  L1 cache
•  L2 cache
•  RAM
•  ROM
•  EPROM & flash memory (SSD)
•  Hard disks

•  (CD & DVD)

•  … and what about Floppy disks?

4

Storage Metrics
•  Maximum/sustained read bandwidth
•  Maximum/sustained write bandwidth
•  Read latency
•  Write latency

Interfaces
•  Parallel ATA or simply ATA

•  Parallel Small Computer Interface (SCSI)

•  Fiber Channel (FC)

•  Serial ATA 1.0 (SATA)

•  Serial ATA II (SATA II)

•  Serial Attached SCSI (SAS)

5

Interfaces

[Source: http://www.intel.com/technology/serialata/pdf/np2108.pdf]

Interfaces

•  USB

USB 1.0/1.1: max 12 Mb/s
USB 2.0: max 480 Mb/s, sustained 10 – 30 MB/s
USB 3.0: max 4.8 Gb/s, sustained 100 – 300 MB/s

•  FireWire
FireWire 400: max 400 Mb/s
FireWire 800: max 800 Mb/s

•  eSATA: max 6 Gb/s

[from: http://www.wdc.com/en/library/2579-001151.pdf]

6

Solid State Drives (SSD)
•  From the “outside” the look like hard disks

Interface
Physical formats

•  Inside very different to disks:
NAND Flash
Transistor arrays implemented by floating gate MOSFET
Every cell that is written to retains its charge until it is

intentionally released through a “flash” of current
Erasing NAND flash needs to be done in 64, 128, or 256 KB

SSD
•  2 technologies

Single Level Cell (SLC)
Multi-Level Cell (MLC)

•  Wear and tear
Toshiba 128GB: write capacity 80 Terabytes
Wear leveling: spread out the data
Do not defragment a SSD!!

•  TRIM: for delete
OSes that are not aware of SSD -> flagged as not in use
TRIM -> push delete to the SSD controller (e.g. in Windows 7)

7

SSD Architecture

[Source: http://www.storagereview.com/ssd_architecture]

SSD vs. HDD
•  SSD:

Faster
Quieter
More reliable
Less power

•  HDD:
Cheaper

8

SSD Performance

[Source: http://ssd.toshiba.com/benchmark-scores.html]

SSD Performance

[Source: http://ssd.toshiba.com/benchmark-scores.html]

9

Disks
•  Disks ...

are used to have a persistent system
are orders of magnitude slower than main memory
are cheaper
have more capacity

•  Two resources of importance

storage space
I/O bandwidth

•  Because...

...there is a large speed mismatch (ms vs. ns) compared to main
 memory (this gap will increase according to Moore’s law),

...disk I/O is often the main performance bottleneck

...we need to minimize the number of accesses,

...

...we must look closer on how to manage disks

Hard Disk Drive (HDD) Components
•  Electromechanical

Rotating disks
Arm assembly

•  Electronics
Disk controller
Cache
Interface controller

10

Drive Electronics
•  Common blocks found:

Host Interface
Buffer Controller
Disk Sequencer
ECC
Servo Control
CPU
Buffer Memory
CPU Memory
Data Channel

Mechanics of Disks
Platters
circular platters covered with
magnetic material to provide
nonvolatile storage of bits

Tracks
concentric circles on a
single platter

Sectors
segments of the track circle
separated by non-magnetic gaps.
The gaps are often used to identify
beginning of a sector

Cylinders
corresponding tracks on the different
platters are said to form a cylinder

Spindle
of which the platters
rotate around

Disk heads
read or alter the
magnetism (bits) passing
under it. The heads are
attached to an arm
enabling it to move
across the platter surface

11

Disk Specifications
•  Disk technology develops “fast”
•  Seagate disks from 2002:

Note 1:
disk manufacturers usually
denote GB as 109 whereas
computer quantities often are
powers of 2, i.e., GB is 230

Note 3:
there is usually a
trade off between
speed and capacity

Note 2:
there is a difference between internal and formatted transfer rate. Internal
is only between platter. Formatted is after the signals interfere with the
electronics (cabling loss, interference, retransmissions, checksums, etc.)

Barracuda 180 Cheetah 36 Cheetah
X15

Capacity (GB) 181.6 36.4 36.7
Spindle speed (RPM) 7200 10.000 15.000
#cylinders (and tracks) 24.247 9.772 18.479
average seek time (ms) 7.4 5.7 3.6
min (track-to-track) seek (ms) 0.8 0.6 0.3
max (full stroke) seek (ms) 16 12 7
average latency (ms) 4.17 3 2
internal transfer rate (Mbps) 282 – 508 520 – 682 522 – 709
disk buffer cache 16 MB 4 MB 8 MB

Disk Specification
Seagate Barracuda ES.2 Seagte Cheetah 15K.6

Specifications from www.seagate.com on 4. 11. 2008

12

Disk Specification

Specifications from www.seagate.com on 15. 10. 2012

Seagate Barracuda 7200.14

Disk Capacity
•  The size (storage space) of the disk is dependent on

the number of platters
whether the platters use one or both sides
number of tracks per surface
(average) number of sectors per track
number of bytes per sector

•  Example (Cheetah X15):
4 platters using both sides: 8 surfaces
18497 tracks per surface
617 sectors per track (average)
512 bytes per sector
Total capacity = 8 x 18497 x 617 x 512 ≈ 4.6 x 1010 = 42.8 GB
Formatted capacity = 36.7 GB

Note:
there is a difference between
formatted and total capacity. Some
of the capacity is used for storing
checksums, spare tracks, gaps, etc.

13

Disk Access Time

•  How do we retrieve data from disk?
- position head over the cylinder (track) on which the block

(consisting of one or more sectors) are located
- read or write the data block as the sectors move under the

head when the platters rotate

•  The time between the moment issuing a disk request
and the time the block is resident in memory is called
disk latency or disk access time

 + Rotational delay

 + Transfer time

 Seek time

Disk access time =

 + Other delays

Disk platter

Disk arm

Disk head

block x
in memory

I want
block X

Disk Access Time

14

Disk Access Time: Seek Time
•  Seek time is the time to position the head

- the heads require a minimum amount of time to start and stop moving the
head

- some time is used for actually moving the head –
roughly proportional to the number of cylinders traveled

Time to move head:

~ 3x - 20x

x

1 N
Cylinders Traveled

Time

“Typical” average:
 10 ms → 40 ms
 7.4 ms (Barracuda 180)
 5.7 ms (Cheetah 36)
 3.6 ms (Cheetah X15)

nβα + number of tracks
seek time constant
fixed overhead

Disk Access Time: Rotational Delay
•  Time for the disk platters to rotate so the first of the

required sectors are under the disk head

head here

block I want

Average delay is 1/2 revolution

“Typical” average:

 8.33 ms (3.600 RPM)
 5.56 ms (5.400 RPM)

 4.17 ms (7.200 RPM)
 3.00 ms (10.000 RPM)
 2.00 ms (15.000 RPM)

15

Disk Access Time: Transfer Time
•  Time for data to be read by the disk head, i.e., time it takes the

sectors of the requested block to rotate under the head

•  Transfer rate =

•  Transfer time = amount of data to read / transfer rate

•  Example – Barracuda 180:
406 KB per track x 7.200 RPM ≈ 47.58 MB/s

•  Example – Cheetah X15:
316 KB per track x 15.000 RPM ≈ 77.15 MB/s

•  Transfer time is dependent on data density and rotation speed
•  If we have to change track, time must also be added for moving

the head

amount of data per track
time per rotation

Note:
one might achieve these
transfer rates reading
continuously on disk,
but time must be added
for seeks, etc.

Disk Access Time: Other Delays
•  There are several other factors which might introduce

additional delays:
CPU time to issue and process I/O
contention for controller
contention for bus
contention for memory
verifying block correctness with checksums (retransmissions)
waiting in scheduling queue
...

•  Typical values: “0”

(maybe except from waiting in the queue)

16

Disk Throughput
•  How much data can we retrieve per second?

•  Throughput =

•  Example:
for each operation we have
 - average seek - average rotational delay
 - transfer time - no gaps, etc.

Cheetah X15 (max 77.15 MB/s)

4 KB blocks à 0.71 MB/s
64 KB blocks à 11.42 MB/s

Barracuda 180 (max 47.58 MB/s)
4 KB blocks à 0.35 MB/s
64 KB blocks à 5.53 MB/s

data size
 transfer time (including all)

Block Size
•  The block size may have large effects on performance
•  Example:

assume random block placement on disk and sequential file access
doubling block size will halve the number of disk accesses

each access take some more time to transfer the data, but the total
transfer time is the same (i.e., more data per request)

halve the seek times
halve rotational delays are omitted

e.g., when increasing block size from 2 KB to 4 KB (no gaps,...)

for Cheetah X15 typically an average of:
 3.6 ms is saved for seek time
 2 ms is saved in rotational delays
 0.026 ms is added per transfer time

increasing from 2 KB to 64 KB saves ~96,4 % when reading 64 KB

} saving a total of 5.6 ms
when reading 4 KB (49,8 %)

17

Block Size
•  Thus, increasing block size

can increase performance
by reducing seek times and
rotational delays

•  However, a large block size
is not always best
blocks spanning several tracks

still introduce latencies
small data elements may

occupy only a fraction of the
block

•  Which block size to use therefore
depends on data size and data reference patterns

•  The trend, however, is to use large block sizes as new technologies appear
with increased performance – at least in high data rate systems

Disk Access Time: Complicating Issues
•  There are several complicating factors:

the “other delays” described earlier like
consumed CPU time, resource contention, etc.

unknown data placement on modern disks
zoned disks, i.e., outer tracks are longer and therefore usually have

more sectors than inner - transfer rates are higher on outer tracks
gaps between each sector
checksums are also stored with each the sectors

read for each track and used to validate the track
usually calculated using Reed-Solomon interleaved with CRC
for older drives the checksum is 16 bytes

(SCSI disks sector sizes may be changed by user!!??)

inner:

outer:

18

Writing and Modifying Blocks
•  A write operation is analogous to read operations

must add time for block allocation
a complication occurs if the write operation has to be verified –

must wait another rotation and then read the block to see if it
is the block we wanted to write

Total write time ≈ read time + time for one rotation

•  Cannot modify a block directly:
read block into main memory
modify the block
write new content back to disk
(verify the write operation)
Total modify time ≈ read time + time to modify +

 write time

Disk Controllers
•  To manage the different parts of the disk, we use a

disk controller, which is a small processor capable of:
controlling the actuator moving the head to the desired track
selecting which platter and surface to use
knowing when right sector is under the head
transferring data between main memory and disk

•  New controllers acts like small computers themselves

both disk and controller now has an own buffer reducing disk
access time

data on damaged disk blocks/sectors are just moved to spare
room at the disk – the system above (OS) does not know
this, i.e., a block may lie elsewhere than the OS thinks

19

Efficient Secondary Storage Usage
•  Must take into account the use of secondary storage

there are large access time gaps, i.e., a disk access will probably dominate
the total execution time

there may be huge performance improvements if we reduce the number of
disk accesses

a “slow” algorithm with few disk accesses will probably outperform a “fast”
algorithm with many disk accesses

•  Several ways to optimize
block size
disk scheduling
multiple disks
prefetching
file management / data placement
memory caching / replacement algorithms
…

Disk Scheduling
•  Seek time is a dominant factor of total disk I/O time

•  Let operating system or disk controller choose which request

to serve next depending on the head’s current position and
requested block’s position on disk (disk scheduling)

•  Note that disk scheduling ≠ CPU scheduling
a mechanical device – hard to determine (accurate) access times
disk accesses cannot be preempted – runs until it finishes
disk I/O often the main performance bottleneck

•  General goals

short response time
high overall throughput
fairness (equal probability for all blocks to be accessed in the same time)

•  Tradeoff: seek and rotational delay vs. maximum response time

Is (or should) disk scheduling be
preemptive or non-preemptive?

20

Disk Scheduling
•  Several traditional algorithms

First-Come-First-Serve (FCFS)
Shortest Seek Time First (SSTF)
SCAN (and variations)
Look (and variations)
…

First–Come–First–Serve (FCFS)
FCFS serves the first arriving request first:
•  Long seeks
•  “Short” average response time

tim
e

cylinder number
1 5 10 15 20 25

12

incoming requests (in order of arrival):

14 2 7 21 8 24

scheduling
queue

24

8

21

7

2

14

12

21

Shortest Seek Time First (SSTF)
SSTF serves closest request first:
•  short seek times
•  longer maximum response times – may even lead to starvation

tim
e

cylinder number
1 5 10 15 20 25

12

incoming requests (in order of arrival):

14 2 7 21 8 24

scheduling
queue

SCAN
SCAN (elevator) moves head edge to edge and serves requests on the way:
•  bi-directional
•  compromise between response time and seek time optimizations

tim
e

cylinder number
1 5 10 15 20 25

12

incoming requests (in order of arrival):

14 2 7 21 8 24

scheduling
queue

22

LOOK
LOOK is a variation of SCAN:
•  same schedule as SCAN
•  does not run to the edges
•  stops and returns at outer- and innermost request
•  increased efficiency
•  SCAN vs. LOOK example:

tim
e

cylinder number
1 5 10 15 20 25

12

incoming requests (in order of arrival):

14 2 7 21 8 24

scheduling
queue

24

8

21

7

2

14

12

Data Placement on Disk
•  Disk blocks can be assigned to files many ways, and

several schemes are designed for

optimized latency
increased throughput

access pattern dependent

23

Disk Layout

•  Constant angular velocity (CAV) disks
equal amount of data in each track
(and thus constant transfer time)
constant rotation speed

•  Zoned CAV disks
zones are ranges of tracks
typical few zones
the different zones have

different amount of data
different bandwidth
i.e., better on outer tracks

Disk Layout
•  Cheetah X15.3 is a zoned CAV disk:

Zone
Cylinders per

Zone
Sectors per

Track
Spare

Cylinders
Zone Transfer

Rate Mb/s
Sectors per

Zone Efficiency

Formatted
Capacity
(Mbytes)

0 3544 672 7 890,98 19014912 77,2% 9735,635
1 3382 652 7 878,43 17604000 76,0% 9013,248
3 3079 624 6 835,76 15340416 76,5% 7854,293
4 2939 595 6 801,88 13961080 76,0% 7148,073
5 2805 576 6 755,29 12897792 78,1% 6603,669
6 2676 537 5 728,47 11474616 75,5% 5875,003
7 2554 512 5 687,05 10440704 76,3% 5345,641
8 2437 480 5 649,41 9338880 75,7% 4781,506
9 2325 466 5 632,47 8648960 75,5% 4428,268

10 2342 438 5 596,07 8188848 75,3% 4192,690

ü  Always place often used data on outermost tracks (zone 0) …!?

Ä  NO, arm movement is often more important than transfer time

24

Data Placement on Disk
•  Contiguous placement stores disk blocks contiguously on disk

minimal disk arm movement reading the whole file (no intra-file seeks)

possible advantage

head must not move between read operations - no seeks or rotational delays
can approach theoretical transfer rate
often WRONG: read other files as well

real advantage

do not have to pre-determine block (read operation) size
(whatever amount to read, at most track-to-track seeks are performed)

no inter-operation gain if we have unpredictable disk accesses

file A file B file C

Data Placement on Disk
•  To avoid seek time (and possibly rotational delay), we can store

data likely to be accessed together on

adjacent sectors

(similar to using larger blocks)

if the track is full, use another track
on the same cylinder
(only use another head)

if the cylinder is full, use
next (adjacent) cylinder
(track-to-track seek)

25

Data Placement on Disk
•  Interleaved placement tries to store blocks from a file with a

fixed number of other blocks in-between each block

minimal disk arm movement reading the files A, B and C

(starting at the same time)

fine for predictable workloads reading multiple files

no gain if we have unpredictable disk accesses

•  Non-interleaved (or even random) placement can be used for
highly unpredictable workloads

file A
file B

file C

Data Placement on Disk
•  Organ-pipe placement consider the usual disk head position

place most popular data where head is most often

center of the disk is closest to the head using CAV disks
but, a bit outward for zoned CAV disks (modified organ-pipe)

disk:
innermost

outermost

head

bl
oc

k
ac

ce
ss

 p
ro

ba
bi

lit
y

cylinder number

bl
oc

k
ac

ce
ss

 p
ro

ba
bi

lit
y

cylinder number

organ-pipe: modified organ-pipe:
Note:
skew dependent on
 tradeoff between
 zoned transfer time
 and storage
 capacity vs.
 seek time

26

Concluding Questions
•  What are the main differences between HDD and

SDD?
•  What are the main parameter of HDD performance?
•  What is the goal of disk scheduling?
•  Would disk scheduling for SDD be useful?
•  Why should we not defragment SDDs?

Additional Material
•  Prefetching & Buffering
•  RAID systems

27

Prefetching
•  If we can predict the access pattern, one might speed up performance

using prefetching
a video playout is often linear à easy to predict access pattern

eases disk scheduling
read larger amounts of data per request
data in memory when requested – reducing page faults

•  One simple (and efficient) way of doing prefetching is read-ahead:
read more than the requested block into memory
serve next read requests from buffer cache

•  Another way of doing prefetching is double (multiple) buffering:
read data into first buffer
process data in first buffer and at the same time read data into second buffer
process data in second buffer and at the same time read data into first buffer
etc.

process
data

Multiple Buffering
•  Example:

have a file with block sequence B1, B2, ...
our program processes data sequentially, i.e., B1, B2, ...

single buffer solution:

read B1 à buffer
process data in buffer
read B2 à buffer
process data in Buffer
...

if P = time to process a block

 R = time to read in 1 block
 n = # blocks

single buffer time = n (P+R)

disk:

memory:

28

Multiple Buffering
double buffer solution:

read B1 à buffer1
process data in buffer1, read B2 à buffer2
process data in buffer2, read B3 à buffer1
process data in buffer1, read B4 à buffer2
...

if P = time to process a block
 R = time to read in 1 block
 n = # blocks

if P ≥ R
double buffer time = R + nP

if P < R, we can try to add buffers (n - buffering)

process
data

disk:

memory:

process
data

Pentium 4
Processor

registers

cache(s)

I/O
controller

hub

memory
controller

hub

RDRAM

RDRAM

RDRAM

RDRAM

PCI slots

PCI slots

PCI slots

network card

disk

file system

communication system

application

file system communication
system

application

disk network card

Data Path (Intel Hub Architecture)

29

Memory Caching

communication
system

application

disk network card

expensive

file system

cache

caching possible

How do we manage a cache?
ü  how much memory to use?
ü  how much data to prefetch?
ü  which data item to replace?
ü  how do lookups quickly?
ü  …

Memory Caching

30

Disk Errors
•  Disk errors are rare:

Barracuda 180 Cheetah 36 Cheetah
X15

mean time to failure (MTTF) 1.2 x 106 1.2 x 106 1.2 x 106

recoverable errors 10 per 1012 10 per 1012 10 per 1012
unrecoverable errors 1 per 1015 1 per 1015 1 per 1015
seek errors 10 per 108 10 per 108 10 per 108

MTTF:
MTTF is the time in hours between
each time the disk crashes

Recoverable:
how often do we read wrong values
– corrected when re-reading

Unrecoverable:
how often do we get permanent errors on
a sector – data moved to spare tracks

Seek:
how often do we move the arm wrong
(over wrong cylinder) – make another

Disk Errors
•  Even though rare, a disk can fail in several ways

intermittent failure –

temporarily errors corrected by re-reading the block, e.g.,
dust on the platter making a bit value wrong

media decay/write errors –
permanent errors where the bits are corrupted, e.g.,
disk head touches the platter and damages the magnetic
surface

disk crashes –
the entire disk becomes permanent unreadable

31

Checksums
•  Disk sectors are stored with some redundant bits, called

checksums

•  Used to validate a read or written sector:
read sector and stored checksum
compute checksum on read sector
compare read and computed checksum

•  If the validation fails (read and computed checksum differ), the
read operation is repeated until
the read operation succeed à return correct content
the limit of retries is reached à return error “bad disk block”

•  Many ways to compute checksums,
but (usually) they only detect errors

Disk Failure Models

•  Our Seagate disks have a MTTF of ~130 years
(at this time ~50 % of the disks are damaged), but

many disks fail during the first months (production errors)

if no production errors, disks will probably work many years

old disks have again a larger probability of failure due to

accumulated effects of dust, etc.

32

Crash Recovery
•  The most serious type of errors are disk crashes, e.g.,

head have touched platter and is damaged
platters are out of position
...

•  Usually, no way to restore data unless we have a backup on
another medium, e.g., tape, mirrored disk, etc.

•  A number of schemes have been developed to reduce the
probability of data loss during permanent disk errors
usually using an extended parity check
most known are the Redundant Array of Independent Disks (RAID)

strategies

Multiple Disks
•  Disk controllers and busses manage several devices

•  One can improve total system performance by replacing one

large disk with many small accessed in parallel

•  Several independent heads can read simultaneously
(if the other parts of the system can manage the speed)

Single disk: Two disks:

33

Client1 Client2 Client3 Client4 Client5

Server

Striping
•  Another reason to use multiple disks is when one disk cannot

deliver requested data rate
•  In such a scenario, one

might use several disks
for striping:

bandwidth disk: Bdisk
required bandwidth: Bdisplay
Bdisplay > Bdisk
read from n disks in parallel: n Bdisk > Bdisplay

clients are serviced in rounds

•  Advantages
high data rates
higher transfer rate compared to one disk

•  Drawbacks
can’t serve multiple clients in parallel
positioning time increases

(i.e., reduced efficiency)

Interleaving (Compound Striping)
•  Full striping usually not necessary today:

faster disks
better compression algorithms

•  Interleaving lets each client may be
serviced by only a set of the available disks
make groups
”stripe” data in a way such that

a consecutive request arrive at
next group (here each disk is a group)

Client1 Client2 Client3

Server

34

Redundant Array of Inexpensive Disks (RAID)
•  The various RAID levels define different disk organizations to

achieve higher performance and more reliability
RAID 0 - striped disk array without fault tolerance (non-redundant)

RAID 1 - mirroring

RAID 2 - memory-style error correcting code (Hamming Code ECC)

RAID 3 - bit-interleaved parity

RAID 4 - block-interleaved parity
RAID 5 - block-interleaved distributed-parity

RAID 6 - independent data disks with two independent distributed parity schemes

RAID 7
RAID 10
RAID 53
RAID 1+0

RAID
•  Main idea

Store the XORs of the content of a
block to the spare disk
Upon any failure, one can recover
the entire block from the spare
disk (or any disk) using XORs

•  Pros
Reliability
High bandwidth

•  Cons
The controller is complex

XOR

1

0

0

1

0

1

0

1

1

1

0

0

1

1 0

0 1

1

0 0

0

1 1

0

35

RAID 4
•  RAID 4: independent data disks with shared parity disk

•  Each entire block is written onto one data disk. Parity for

same rank blocks is generated on writes, recorded on the
parity disk and checked on reads.

RAID 5
•  RAID 5: independent data disks with distributed parity disk

(read, write, and recovery operations are analogous
to RAID 4, but parity is distributed)

•  Each entire data block is written on a data disk; parity for
blocks in the same rank is generated on writes, recorded in a
distributed location and checked on reads.

36

•  RAID 6: independent data disks with two independent distributed parity
schemes

•  RAID 6 is essentially an extension of RAID level 5 which allows for
additional fault tolerance by using a second independent distributed parity
scheme

•  Data is striped on a block level across a set of drives, just like in RAID 5,
and a second set of parity is calculated and written across all the drives

RAID 6

RAID 6
•  In general, we can add several redundancy disks to be able do

deal with several simultaneous disk crashes

•  Many different strategies based on different EECs, e.g.,:

Read-Solomon Code (or derivates):

corrects n simultaneous disk crashes using n parity disks
a bit more expensive parity calculations compared to XOR

Hamming Code:

corrects 2 disk failures using 2K – 1 disks where k disks are parity disks
and 2K – k – 1

the parity disks are calculated using the data disks determined by the hamming
code, i.e., a k x (2K – 1) matrix of 0’s and 1’s representing
the 2K – 1 numbers written binary except 0

37

RAID 6
•  Example:

using a Hamming code matrix, 7 disks, 3 parity disks

7 0 0 1

6 0 1 0
5 1 0 0
4 0 1 1
3 1 0 1
2 1 1 0
1 1 1 1

di
sk

 n
um

be
r

parity

data

Note 1:
the rows represent binary numbers 1 - 7

Note 2:
the rows for the parity disks have single 1’s

Note 3:
the rows for the data disks have two or more 1’s

Note 4:
the idea of each column now is that the parity disk
having a 1 in this column is generated using the
data disks having one in this column:

- parity disk 5 is generated using disk 1, 2, 3

- parity disk 6 is generated using disk 1, 2, 4

- parity disk 7 is generated using disk 1, 3, 4

Note 5:
the parity blocks are generated using modulo-2 sum
from the data blocks

RAID 6
•  Example (cont.):

calculating parity
using the hamming
matrix to find the
corresponding
data disks to each
parity disk

7 0 0 1

6 0 1 0
5 1 0 0
4 0 1 1
3 1 0 1
2 1 1 0
1 1 1 1

pa
rit

y
da

ta

7 10001001

6 00011011
5 01100010
4 01000010
3 00111000
2 10101010
1 11110000

pa
rit

y
da

ta

Hamming code matrix disk block values

Note 1: parity disk 5 is generated using disk 1, 2, 3
 11110000 ⊕ 10101010 ⊕ 00111000 = 01100010

Note 2: parity disk 6 is generated using disk 1, 2, 4
 11110000 ⊕ 10101010 ⊕ 01000010 = 00011011

Note 3: parity disk 7 is generated using disk 1, 3, 4
 11110000 ⊕ 00111000 ⊕ 01000010 = 10001001

38

RAID 6
•  Read operations is performed from any data disk as a

normal read operation

•  Write operations are performed as shown on previous
slide (similar RAID 5), but
now there are several parity disks
each parity disk does not use all data disks

•  Update operations are performed as for

RAID 4 or RAID 5:
perform XOR of old and new version of the block, and simply

add the sum (again using XOR) to the parity block

RAID 6
•  Example update:

update data disk 2 to 00001111
parity disks 5 and 6 is using data disk 2

7 10001001
6 00011011
5 01100010
4 01000010
3 00111000
2 10101010
1 11110000

pa
rit

y
da

ta

disk block values

Note 1:
old value is 10101010.
Difference is 10101010 ⊕ 00001111 = 10100101

Note 2:
insert new value in data disk 2: 00001111

00001111

Note 3:
update parity disk 5, take difference between old and new
block, and perform XOR with parity:
10100101 ⊕ 01100010 = 11000111

11000111

Note 4:
insert new value in parity disk 5: 11000111

Note 5:
parity disk 6 is similarly updated

10111110

39

RAID 6
•  Recovery operations is performed using XOR and the

parity disks

one disk failure is easy – just apply one set of parity and

recover

two disk failures a bit more tricky
note that all parity disk computations are different
we will always find one configuration where only one disk has failed
use this configuration to recover the failed disk
now there is only one failed disk, and any configuration can be used

RAID 6
•  Example recovery:

disk 2 and 5 have failed 7 0 0 1

6 0 1 0
5 1 0 0
4 0 1 1
3 1 0 1
2 1 1 0
1 1 1 1

pa
rit

y
da

ta

7 10001001

6 00011011
5 01100001
4 01000010
3 00111000
2 10101001
1 11110000

Hamming code matrix disk block values

???

???

Note 1:
there is always a column in the
hamming code matrix where
only one of the failed disks
have a 1- value

Note 2:
column 2 use data disk 2, and
no other disks have crashed,
i.e., use disk 1, 4, and 6 to
recover disk 2

Note 3:
restoring disk 2:
11110000 ⊕ 01000010 ⊕ 00011011 = 10101001

Note 4:
restoring disk 5 can now be
done using column 1

40

Challenges Managing Multiple Disks

•  How large should a stripe group and stripe unit be?

•  Can one avoid hot sets of disks (load imbalance)?

•  What and when to replicate?

•  Heterogeneous disks?

Summary
•  The main bottleneck is disk I/O performance due to disk

mechanics: seek time and rotational delays

•  Much work has been performed to optimize disks performance
Many algorithms trying to minimize seek overhead

(most existing systems uses a SCAN derivate)
use large block sizes or read many continuous blocks
prefetch data from disk to memory
striping might not be necessary on new disks (at least not on all disks)
memory caching can save disk I/Os

•  World today more complicated
(both different access patterns and unknown disk characteristics)
à new disks are “smart”, we cannot fully control the device

