
1!

File Systems

Vera Goebel
Thomas Plagemann

2014

Department of Informatics

University of Oslo

Todays Plan

2

2!

3

Long-term Information Storage

1.  Must store large amounts of data

2.  Information stored must survive the
termination of the process using it

3.  Multiple processes must be able to access
the information concurrently

Why Files?

•  Physical reality
– Block oriented
– Physical sector

numbers
– No protection among

users of the system
– Data might be

corrupted if machine
crashes

•  File system abstraction
– Byte oriented
– Named files
– Users protected from

each other
– Robust to machine

failures

3!

5

File Naming

Typical file extensions.

6

File Structure

•  Three kinds of files
–  byte sequence
–  record sequence
–  tree

4!

7

File Types

(a) An executable file (b) An archive

8

File Access
•  Sequential access

–  read all bytes/records from the beginning
–  cannot jump around, could rewind or back up
–  convenient when medium was mag tape

•  Random access
–  bytes/records read in any order
–  essential for data base systems
–  read can be …

•  move file marker (seek), then read or …
•  read and then move file marker

5!

9

File Attributes

Possible file attributes

10

File Operations

1. Create
2. Delete
3. Open
4. Close
5. Read
6. Write

7. Append
8. Seek
9. Get attributes
10. Set Attributes
11. Rename

6!

11

An Example Program Using File System Calls (1/2)

12

An Example Program Using File System Calls (2/2)

7!

13

Directories
Single-Level Directory Systems

•  A single level directory system
–  contains 4 files
–  owned by 3 different people, A, B, and C

14

Two-level Directory Systems

Letters indicate owners of the directories and files

8!

15

Hierarchical Directory Systems

A hierarchical directory system

16
A UNIX directory tree

Path Names

9!

17

Directory Operations

1.  Create
2.  Delete
3.  Opendir
4.  Closedir

5. Readdir
6. Rename
7. Link
8. Unlink

Now we are opening the box

18

Inodes!

Bit map!

FS layout!

10!

File System Components
•  Disk management

–  Arrange collection of disk blocks
into files

•  Naming
–  User gives file name, not track or

sector number, to locate data

•  Security
–  Keep information secure

•  Reliability/durability
–  When system crashes, lose stuff in

memory, but want files to be
durable

User

File
Naming

File
access

Disk
management

Disk
drivers

20

File System Implementation

A possible file system layout

11!

21

Implementing Files (1)

(a) Contiguous allocation of disk space for 7 files
(b) State of the disk after files D and E have been removed

22

Implementing Files (2)

Storing a file as a linked list of disk blocks

12!

23

Implementing Files (3)

Linked list allocation using a file allocation table in RAM

File Allocation Table (FAT)
•  Approach

–  A section of disk for each
partition is reserved

–  One entry for each block
–  A file is a linked list of blocks
–  A directory entry points to the

1st block of the file

•  Pros
–  Simple

•  Cons
–  Always go to FAT
–  Wasting space

619

399

foo 217

EOF

FAT

0

217

399

619

13!

25

Implementing Files (4)

An example i-node

26

Implementing Directories (1)

(a) A simple directory
fixed size entries
disk addresses and attributes in directory entry

(b) Directory in which each entry just refers to an i-node

14!

27

Implementing Directories (2)

•  Two ways of handling long file names in directory
–  (a) In-line
–  (b) In a heap

28

The UNIX V7 File System (1)

A UNIX V7 directory entry

15!

29

The UNIX V7 File System (2)

A UNIX i-node

30

The UNIX V7 File System (3)

The steps in looking up /usr/ast/mbox

16!

31

Shared Files (1)

File system containing a shared file

32

Shared Files (2)

(a) Situation prior to linking
(b) After the link is created
(c)After the original owner removes the file

17!

Block Size

33

34

Disk Space Management (1)

•  Dark line (left hand scale) gives data rate of a disk
•  Dotted line (right hand scale) gives disk space efficiency
•  All files 2KB

Block size

18!

35

Disk Space Management (2)

(a) Storing the free list on a linked list
(b) A bit map

36

Disk Space Management (3)

(a) Almost-full block of pointers to free disk blocks in RAM
- three blocks of pointers on disk

(b) Result of freeing a 3-block file
(c) Alternative strategy for handling 3 free blocks

- shaded entries are pointers to free disk blocks

19!

37

Disk Space Management (4)

Quotas for keeping track of each user’s disk use

How many FSs do we have on one PC?

38

20!

Virtual File System

39

Creating a VFS

•  Boot time of OS: register root FS with VFS
•  Mounting of others FSs (boot time or later):

register with VFS
•  Registering: provide function pointers to the

FS specific calls

40

21!

Using a FS via VFS

•  Open(“/usr/include/unistd.h”, O_RDONLY)!

41

VFS Structure

42

22!

Network File System (NFS)

43

NFS Architecture

44

23!

A Look into Linux-like “Mechanics”

45

File System Data Structures

Process
control
block

. . .

Open
file
pointer
array

Open file
table
(systemwide)

File descriptors
(Metadata)

File
descriptors

File system
info

Directories

File data

24!

Open File

•  File name lookup and
authenticate

•  Copy the file descriptors into the
in memory data structure, if it is
not in yet

•  Create an entry in the open file
table (system wide) if there isn’t
one

•  Create an entry in PCB
•  Link up the data structures
•  Return a pointer to user

PCB

fd = open(FileName, access)

Open
file
table

Metadata

Allocate & link up
data structures

File name lookup
& authenticate

File system on disk

Open

O
p

er
at

in
g

 S
ys

te
m

open(name, mode)

sys_open() à vn_open():
1.  Check if valid call

2.  Allocate file descriptor

3.  If file exists, open for read. Otherwise, create a new file.

Must get directory i-node. May require disk I/O.

4.  Set access rights, flags and pointer to v-node

5.  Return index to file descriptor table

fd

25!

From User to System View
•  What happens if user wants to read 10 bytes from

a file starting at byte 2?
–  seek byte 2
–  fetch the block
–  read 10 bytes

•  What happens if user wants to write 10 bytes to a
file starting at byte 2?
–  seek byte 2
–  fetch the block
–  write 10 bytes
–  write out the block

Read Block
PCB

Open
file
table

Metadata

read(fd, userBuf, size)

Find open file
descriptor

read(fileDesc, userBuf, size)

Logical → phyiscal

read(device, phyBlock, size)
Get physical block to sysBuf
copy to userBuf

Disk device driver

Buffer
cache

26!

Read
O

p
er

at
in

g
 S

ys
te

m

buffer read(fd, buf*, len)

sys_read() à dofileread() à (*fp_read==vn_read)():
1.  Check if valid call and mark file as used

2.  Use file descriptor as index in file table

to find corresponding file pointer

3.  Use data pointer in file structure to find v-node

4.  Find current offset in file

5.  Call local file system
VOP_READ(vp,len,offset,..)

Read

O
p

er
at

in
g

 S
ys

te
m

VOP_READ(...) is a pointer to a read function in the
corresponding file system, e.g., Fast File System (FFS)

READ():

1.  Find corresponding inode

2.  Check if valid call - file size vs. len + offset

3.  Loop and find corresponding blocks

•  find logical blocks from inode, offset, length

•  do block I/O, fill buffer structure

e.g., bread(...) à bio_doread(...) à getblk()

•  return and copy block to user

VOP_READ(vp,len,offset,..)

getblk(vp,blkno,size,...)

27!

Read
O

p
er

at
in

g
 S

ys
te

m

A B C D E F G H I J K L

M

getblk(vp,blkno,size,...)

1.  Search for block in buffer cache, return if found
(hash vp and blkno and follow linked hash list)

2.  Get a new buffer (LRU, age)

3.  Call disk driver - sleep or do something else

4.  Return buffer

VOP_STRATEGY(bp)

Read

O
p

er
at

in
g

 S
ys

te
m

VOP_STRATEGY(bp)

VOP_STRATEGY(...) is a pointer to the corresponding
driver depending on the hardware,

e.g., SCSI - sdstrategy(...) à sdstart(...)

1.  Check buffer parameters, size, blocks, etc.

2.  Convert to raw block numbers

3.  Sort requests according to SCAN - disksort_blkno(...)

4.  Start device and send request

28!

Read
file attributes

...

data pointer

data pointer

data pointer

data pointer

data pointer

...

...

O
p

er
at

in
g

 S
ys

te
m

M

Read

O
p

er
at

in
g

 S
ys

te
m

A B C D E F G H I J K L

1.  Search for block in buffer cache, return if found
(hash vp and blkno and follow linked hash list)

2.  Get a new buffer (LRU, age)

3.  Call disk driver - sleep or do something else

4.  Return buffer M

M

Interrupt to notify end of disk IO
Kernel may awaken sleeping process

29!

Read
O

p
er

at
in

g
 S

ys
te

m

READ():
1.  Find corresponding inode

2.  Check if valid call - file size vs. len + offset

3.  Loop and find corresponding blocks

•  find logical blocks from inode, offset, length

•  do block I/O,

e.g., bread(...) à bio_doread(...) à getblk()

•  return and copy block to user

buffer

M

Outlook to Research Issues

58

30!

Outlook to Research Issues (cont.)

•  Energy aware OS
•  Impact of memory speed on performance
•  Video streaming on small devices
•  Sensor data processing on very small

devices

59

Concluding Questions

•  What is the basic layout of FS on disk?
•  What is the relationship between a directory

and an i-node?
•  How can we manage free blocks?
•  What is the difference between i-node and

v-node?

60

