File Systems

Vera Goebel
Thomas Plagemann

2014

Department of Informatics
University of Oslo

Todays Plan

Long-term Information Storage

1. Must store large amounts of data

2. Information stored must survive the
termination of the process using it

3. Multiple processes must be able to access
the information concurrently

Why Files?
 Physical reality * File system abstraction

— Block oriented — Byte oriented
— Physical sector — Named files

numbers — Users protected from
— No protection among each other

users of the system — Robust to machine
— Data might be failures

corrupted if machine
crashes

File Naming

Extension Meaning

file.bak Backup file

file.c C source program

file.gif Compuserve Graphical Interchange Format image
file.hlp Help file

file.html World Wide Web HyperText Markup Language document
file.jpg Still picture encoded with the JPEG standard
file.mp3 Music encoded in MPEG layer 3 audio format
file.mpg Movie encoded with the MPEG standard

file.o Object file (compiler output, not yet linked)

file.pdf Portable Document Format file

file.ps PostScript file

file.tex Input for the TEX formatting program

file.txt General text file

file.zip Compressed archive

Typical file extensions.

1 Byte

File Structure

1 Record

e

|| Cat " Cow " Dog || " Goat " Lion " Owl " “ Pony " Rat "Worm"

(b) ()

 Three kinds of files
— byte sequence
— record sequence
— tree

File Types

Magic number

Text size

Data size

BSS size

Date

Symbol table size O:J EC; Owner

Entry point Protection

V77777772 s

Flags

r‘i Header *»1

Object
module

Header

Object
module
Symbol

—
g
g

L—

(@ (b)

(a) An executable file (b) An archive

File Access

* Sequential access
— read all bytes/records from the beginning
— cannot jump around, could rewind or back up

— convenient when medium was mag tape

* Random access
— bytes/records read in any order
— essential for data base systems

—read can be ...
* move file marker (seek), then read or ...
¢ read and then move file marker

File Attributes

Attribute Meaning
Protection Who can access the file and in what way
Password Password needed to access the file
Creator ID of the person who created the file
Owner Current owner
Read-only flag 0 for read/write; 1 for read only
Hidden flag 0 for normal; 1 for do not display in listings
System flag 0 for normal files; 1 for system file
Archive flag 0 for has been backed up; 1 for needs to be backed up

ASCll/binary flag

0 for ASCII file; 1 for binary file

Random access flag | 0 for sequential access only; 1 for random access

Temporary flag

0 for normal; 1 for delete file on process exit

Lock flags 0 for unlocked; nonzero for locked
Record length Number of bytes in a record

Key position Offset of the key within each record
Key length Number of bytes in the key field

Creation time

Date and time the file was created

Time of last access Date and time the file was last accessed

Time of last change | Date and time the file has last changed

Current size

Number of bytes in the file

Maximum size

Number of bytes the file may grow to

Possible file attributes

File Operations

I. Create
2. Delete
3. Open
4. Close
5. Read
6. Write

7. Append

8. Seek

9. Get attributes
10.Set Attributes

11.Rename

An Example Program Using File System Calls (1/2)

/* File copy program. Error checking and reporting is minimal. */

#include <sys/types.h> /* include necessary header files */
#include <fentl.h>

#include <stdlib.h>

#include <unistd.h>

int main(int argc, char *argv[]); /* ANSI prototype */
#define BUF _SIZE 4096 /* use a buffer size of 4096 bytes */
#define OUTPUT_MODE 0700 /* protection bits for output file */

int main(int argc, char *argv[])

int in_fd, out_fd, rd_count, wt_count;
char buffer[BUF _SIZE];

if (argc != 3) exit(1); /* syntax error if argc is not 3 */

An Example Program Using File System Calls (2/2)

/* Open the input file and create the output file */
in_fd = open(argv[1], O_RDONLY); /* open the source file */

if (in_fd < 0) exit(2); /* if it cannot be opened, exit */
out_fd = creat(argv[2], OUTPUT _MODE); /* create the destination file */
if (out_fd < 0) exit(3); /* if it cannot be created, exit */

/* Copy loop */
while (TRUE) {
rd_count = read(in_fd, buffer, BUF _SIZE); /* read a block of data */

if (rd_count <= 0) break; /* if end of file or error, exit loop */
wt_count = write(out_fd, buffer, rd_count); /* write data */
if (wt_count <= 0) exit(4); /* wt_count <= 0 is an error */

1

/* Close the files */

close(in_fd);

close(out_fd);

if (rd_count == 0) /* no error on last read */
exit(0);

else
exit(5); /* error on last read */

Directories
Single-Level Directory Systems

—~—Root directory

» A single level directory system
— contains 4 files
— owned by 3 different people, A, B, and C

Two-level Directory Systems

[~—Root directory

User
directory

A B

B b

Files

Letters indicate owners of the directories and files

Hierarchical Directory Systems

<—Root directory

A hierarchical directory system

Path Names

A UNIX directory tree

Directory Operations

1. Create 5. Readdir
2. Delete 6. Rename
3. Opendir 7. Link

4. Closedir 8. Unlink

Now we are opening the box

o=

<

J FS layout
v L .

File System Components

Disk management

— Arrange collection of disk blocks User
into files

File File
Naming access

Naming

— User gives file name, not track or
sector number, to locate data
Security

— Keep information secure

Reliability/durability

— When system crashes, lose stuff in
memory, but want files to be
durable

File System Implementation

Entire disk

Partition table Disk partition \
[ver] I | []

| Boot block | Super block| Free space mgmt | |-nodes | Root dir | Files and directories

A possible file system layout

20

10

Implementing Files (1)

File A File C File E File G
(4 blocks) (6 blocks) (12 blocks) (3 blocks)
—)l - —
I T T T I T I T T T T T T T T T T T T 107
[E— [-
File B File D File F
(3 blocks) (5 blocks) (6 blocks)
(a)
(File A) (File C) (File E) (File G)
— N s —
T T T I T T T TTTITITTT TTITTTTTTTTTTTT].
[E— - -
File B 5 Free blocks 6 Free blocks
(b)

(a) Contiguous allocation of disk space for 7 files
(b) State of the disk after files D and £ have been removed

21

Implementing Files (2)

File A

File File File File File
block block block block block
0 1 2 3 4

Physical 4 7 2 10 12
block

File B

File File File File
block block block block
0 1 2 3

Physical 6 3 1 14
block

Storing a file as a linked list of disk blocks

22

11

Implementing Files (3)

Physical
block

0

10
11
7 |<— File A starts here

3 |~— File B starts here

0o N o o B~ 0NN =

©

—_
o

12
14

-

-
n
-

-
w

-
'
-

—_
o

[=—— Unused block

Linked list allocation using a file allocation table in RAM
23

File Allocation Table (FAT)

» Approach

A section of disk for each [foo | [217] 0
partition is reserved

One entry for each block

A file is a linked list of blocks 217 —1619

A directory entry points to the
1st block of the file 399

EOF

* Pros
— Simple

» Cons 619 1399

— Always go to FAT
— Wasting space

FAT

Implementing Files (4)

File Attributes

Address of disk block 0 >

Address of disk block 1 >

Address of disk block 2 >

Address of disk block 3 —

Address of disk block 4 —

Address of disk block 5 —

Address of disk block 6 —

Address of disk block 7 —

Address of block of pointers

Disk block

containing

additional
disk addresses

An example i-node

25

Implementing Directories (1)

| P

games | attributes games E ’/:l
mail | attributes mail 1 -
1 N I
news i attributes news ? —\III
work | attributes work ! \\
(a) (b) 1 Data structure
containing the

attributes

(a) A simple directory
fixed size entries
disk addresses and attributes in directory entry

(b) Directory in which each entry just refers to an i-node
26

13

Implementing Directories (2)

File 1 entry length L Pointer to file 1's name Entry
for one
File 1 attributes File 1 attributes file
Entry - - -
for one [d 9) Pointer to file 2's name N
file s e t -))
b m 3 9 File 2 attributes
e t X |, Pointer to file 3's name
File 2 entry length
File 3 attributes
File 2 attributes
P e r s
o n n e
T X P [r [o [
File 3 entry length 8 € t -
b u d ¢]
File 3 attributes e 1 X [
» Heap
§ I o | o | X e r s o
n e |
- f o o
X

(a) (b)

* Two ways of handling long file names in directory
— (a) In-line
— (b) In a heap .

The UNIX V7 File System (1)

Bytes 2 14

File name

T

I-node
number

A UNIX V7 directory entry

28

14

Disk addresses

The UNIX V7 File System (2)

I-node

Attributes

el

1

P gl

Single
indirect
block

:; Double

indirect

block /

A UNIX i-node

N\

Addresses of
data blocks

=4

Triple

indirect

_/

block

29
Block 132 I-node 26 Block 406
I-node 6 is /usr is for is /usr/ast
Root directory is for /usr directory /usr/ast directory
1 6 . 26 o
Mode Mode
1 size 1 ee size 6| -
- times - times
4 | bin 19 | dick 64 | grants
7 | dev 132 30 | erik 406 92 | books
14 | lib 51 | jim 60 | mbox
9 | etc 26 | ast 81 | minix
6 | usr 45 | bal 17 | src
8 | tmp
I-node 6 I-node 26
Looking up says that /usr/ast says that /usr/ast/mbox
usr yields Jusr is in is i-node /usr/astis in is i-node
i-node 6 block 132 26 block 406 60
The steps in looking up /usr/ast/mbox
30

15

Shared Files (1)

. Root directory

Shared file

File system containing a shared file

31

Shared Files (2)

C's directory B's directory C's directory B's directory
\ A
/ \\ // \\
Owner=C Owner=C Owner=C
Count = 1 Count =2 Count =1

! ! f
O O O

(a) (b) (c)
(a) Situation prior to linking
(b) After the link is created

(c)After the original owner removes the file

32

16

Block Size

Length | VU 1984 | VU 2005 | Web Length VU 1984 | VU 2005 | Web
1 1.79 1.38 6.67 16,384 92.53 78.92 86.79
2 1.88 1.53 7.67 32,768 97.21 85.87 91.65
4 2.01 1.65 8.33 65,536 99.18 90.84 94.80
8 2.31 1.80 11.30 131,072 99.84 93.73 96.93
16 3.32 2.15 11.46 262,144 99.96 96.12 98.48
32 5.13 3.15 12.33 524,288 100.00 97.73 98.99
64 8.71 4.98 26.10 1,048,576 100.00 98.87 99.62
128 14.73 8.03 28.49 2,097,162 100.00 99.44 99.80
256 23.09 13.29 32.10 4,194,304 100.00 99.71 99.87
512 34.44 20.62 39.94 8,388,608 100.00 99.86 99.94
1024 48.05 30.91 47.82 16,777,216 100.00 99.94 99.97
2048 60.87 46.09 59.44 33,554,432 100.00 99.97 99.99
4096 73.51 59.13 70.64 67,108,864 100.00 99.99 99.99
8192 84.97 69.96 79.69 134,217,728 100.00 99.99 100.00
33
1000 — O O G = = = = — — =0 — 1000
Disk space utilization \\
5 800 [80 &
3 8
Ioa) =<
X 600 [—~60 5§
2 89
1] g 3
S 400 - 40 g=
5 %
200 |- 20 B
Data rate Se
0 Py Py | | |)
0 128 256 512 1K 2K 4K 8K 16K 0
Block size

» Dark line (left hand scale) gives data rate of a disk
» Dotted line (right hand scale) gives disk space efficiency
« All files 2KB

34

17

Disk Space Management (2)

Free disk blocks: 16, 17, 18

42 s 230 1 86

136 162 234
210 612 897
97 342 422
41 214 140
63 160 223
21 664 223
48 216 160
262 320 126
310 180 142
516 /) 482 / 141

A 1 KB disk block can hold 256
32-bit disk block numbers
@

1001101101101100

0110110111110111

1010110110110110

0110110110111011

1110111011101

1101101010001111

0000111011010111

1011101101101111

1100100011101111

0111011101110111

1101111101110111

A bit map

®)

(a) Storing the free list on a linked list

(b) A bit map

35

Disk Space Management (3)

Main
memory

|

Disk

/
>

-

(a)

1

(b)

1

(c)

(a) Almost-full block of pointers to free disk blocks in RAM

- three blocks of pointers on disk

(b) Result of freeing a 3-block file
(c) Alternative strategy for handling 3 free blocks

- shaded entries are pointers to free disk blocks

36

18

Disk Space Management (4)

Open file table Quota table
=
Attributes Soft block limit
disk addresses Hard block limit
User =3 Current # of blocks
Quota pointer — # Block warnings left st
> record
Soft file limit for user 8
Hard file limit

Current # of files

T T # File warnings left J

Quotas for keeping track of each user’s disk use

37

How many FSs do we have on one PC?

38

19

Virtual File System
s () O

VFS interface

Buffer cache

Figure 4-18. Position of the virtual file system.

39

Creating a VFS

* Boot time of OS: register root FS with VFS

* Mounting of others FSs (boot time or later):
register with VFS

» Registering: provide function pointers to the
FS specific calls

40

20

Using a FS via VFS

e Open(“/usr/include/unistd.h”, O RDONLY)

41
File
Process descriptors
table
Function
pointers
Call from
<~— VFSinto
FS1
Read FS1
function
Figure 4-19. A simplified view of the data structures and code used by the VFS
and concrete file system to do a read. 0

21

Network File System (NFS)

Client 1

/bin

/usr/ast/work

1.

Client 2

— Mount

/bin

cat cp Is mv sh

Server 1

Server 2

Figure 10-35. Examples of remote mounted file systems. Directories are shown

as squares and files are shown as circles.

43
client server
system-calls interface I
VFS interface —>| VFS interface I
other types of UNIX 4.2 file I . I UNIX 4.2 file I
file systems systems NFS client NFS server systems
A
I b,
v RPC/XDR I RPC/XDR I v
[— [—
3
network
44

22

A Look into Linux-like “Mechanics”

@Ll ! &

45

File System Data Structures

Process Open file

control table File descriptors
block (systemwide) (Metadata) File system
info
File
/ descriptors
—
Open | Directories
file
pointer
array
File data

23

Open File

File name lookup and
authenticate

Copy the file descriptors into the
in memory data structure, if it is
not in yet

Create an entry in the open file

table (system wide) if there isn’t
one

Create an entry in PCB
Link up the data structures
Return a pointer to user

fd = open(FileName, access)

] Allocate & link up
/| data structures

/ File name lookup
/| & authenticate

File system on disk

Operating System

Open

open (name,

iy V!

sys_open() > vn_open():

1. Check if valid call

2. Allocate file descriptor

3. If file exists, open for read. Otherwise, create a new file.
Must get directory i-node. May require disk I/O.
Set access rights, flags and pointer to v-node

5. Return index to file descriptor table

24

From User to System View

* What happens if user wants to read 10 bytes from
a file starting at byte 2?
— seek byte 2
— fetch the block
— read 10 bytes
* What happens if user wants to write 10 bytes to a
file starting at byte 2?
— seek byte 2
— fetch the block
— write 10 bytes
— write out the block

Read Block

read(fd, userBuf, size)

Find open file
descriptor

read(fileDesc, userBuf, size)

Logical — phyiscal

read(device, phyBlock, size)

Get physical block to sysBuf]

Buffer / copy to userBuf

cache l

Disk device driver

25

Read

read(£d, buf*, len) @ % buffer
£ \/'
]
2
)
o
_E sys_read() - dofileread() > (*fp_read==vn_read)():
g 1. Check if valid call and mark file as used
8- 2. Use file descriptor as index in file table
to find corresponding file pointer

3. Use data pointer in file structure to find v-node

4. Find current offset in file

5. Call local file system

VOP_READ (vp,len,offset,..)

VOP_READ(...) is a pointer to a read function in the

g corresponding file system, e.g., Fast File System (FFS)
[}
1]
& READ():
@ 1. Find corresponding inode
'ﬁ 2. Check if valid call - file size vs. len + offset
= |VOP AD (vp,len,offset,..) X i
g - 3. Loop and find corresponding blocks
(o]

» find logical blocks from inode, offset, length
e do block I/O, fill buffer structure
e.g., bread(...) = bio_doread(...) > getblk()

getblk (vp,blkno,size,...)

e return and copy block to user

26

Operating System

getblk{vp,blkno,

size,...)

1. Search for block in buffer cache, return if found
(hash vp and blkno and follow linked hash list)

2. Get a new buffer (LRU, age)

3. Call disk driver - sleep or do something else
VOP_STRATEGY (bp)

Operating System

VOP_$TRATEGY (bp)

Read

VOP_STRATEGY(...)¥ ointer to the corresponding

driver depending on the hardware,

e.g., SCSI - sdstrategy(...) 2> Sdstart(...)
D

1. Check buffer parameters,

ize, blocks, etc.
lers
CAN - disksort_blkno(...)

27

Read

file attributes

4. Return buffer

£ > -
% data pointer
- .
5. data pointer
g\ data pointer
-lé data pointer
g_ data pointer
© “
/]
Interrupt to notify end of disk IO _,‘
Kernel may awaken sleeping process

£
2
[7d
>
o
o
c
£
o
[}
o
(]

- sleep or do something else

28

Operating System

B Read @ -

e return and copy block to user

¢

Outlook to Research Issues

58

29

Outlook to Research Issues (cont.)

Energy aware OS
Impact of memory speed on performance
Video streaming on small devices

Sensor data processing on very small
devices

59

Concluding Questions

What is the basic layout of FS on disk?

What is the relationship between a directory
and an 1-node?

How can we manage free blocks?

What is the difference between 1-node and
v-node?

60

30

