
Operating Systems
Introduction and Overview

Otto J. Anshus

Monday, 13.January, 2014

How To Deal with Complexity
(a.k.a. Best Advice You Will Ever Get)

?

2

Monday, 13.January, 2014

How To Deal with Complexity
(a.k.a. Best Advice You Will Ever Get)

?
(L3 - Low Latency Learning)

2

Do Early - Fail Early

Monday, 13.January, 2014

What is an Operating System?

• Magic to provide infinite CPUs, memory, devices, and
networked computing.

• Software between applications and hardware
• Control Freak

– Must never ever loose control of the hardware
• Resource Manager

– Give resources to applications
– Take resources from applications
– Protection and Security

• Great Pretender
Monday, 13.January, 2014

Typical Unix OS Structure

Application

Libraries

Portable OS Layer

Machine-dependent layer

•Low-level system initialization and
bootstrap

•Fault, trap, interrupt and exception
handling

•Memory management: hardware
address translation

•Low-level kernel/user-mode process
context switching

•I/O device driver and device
initialization code

C

Assembler

System Call Interface

•...have to

•Performance

User Level
Kernel Level

Monday, 13.January, 2014

60’s vs. 00’s

• Today is like in the late 60s. OS's are large
– small OS: 100K lines
– Real OS is huge and very expensive to build

• big OS: 10M lines (and more), 100-1000 people years
• Win/NT: 8 years, 1000s of people

• But ~90% is device drivers
• We don’t do device drivers (well, just a few)

– Project 5 (“post files”): ~6500 lines J

Monday, 13.January, 2014

Why Study Operating Systems
• OS is a key part of a computer system

– it makes our lives better (and worse)
– it is “magic” and we want to understand how
– it has “power” and we want to have the power

• OS is complex
– “You need to understand the system at all abstraction levels” (Yale Patt)
– “The devil is in the details” (https://books.google.com/ngrams)
– How many instructions and procedures does a keystroke invoke?
– What happens when your running application program (let’s call it an

application level process) dereferences a null pointer? (run-time error,
immediate program crash, something else)

• Tradeoffs between performance and functionality, division of
labor between HW and SW

• Combine language, hardware, data structures, algorithms,
money, art, luck, and hate/love

Monday, 13.January, 2014

https://books.google.com/ngrams
https://books.google.com/ngrams

Is it challenging to write an OS?
• Yes

– Don’t panic, you’ll manage employing your own efforts,
and the assistance of fellow students, Teaching Assistants
(TAs), and professors.

• Must
– understand a few new abstractions
– figure out how a computer works in some detail

• This is serious stuff so don’t sweat it
– enjoy the crashes (frustration is anyhow unavoidable)
– destructive testing works (what can possibly go wrong?)

Remember Best Advice Ever
Monday, 13.January, 2014

“Yes”??
From Tony Hoare’s Biography

http://research.microsoft.com/~thoare/

• First, Success
– He led a team (including his later wife Jill) in the design

and delivery of the first commercial compiler for the
programming language Algol 60. (1960)

• Second, Failure
– He then led a larger team on a disastrous project to

implement an operating system
• Then, Consequence

– His research goal was to understand why operating
systems were so much more difficult than compilers, and
to see if advances in programming theory and languages
could help with the problems of concurrency. (Queens
Univ. 1968)

Monday, 13.January, 2014

http://research.microsoft.com/~thoare/
http://research.microsoft.com/~thoare/

Why OS is not Trivial
• Obvious Idea: KISS-OS

– Keep It Simple, Stupid-OS: “Do one thing at a time”
• Obvious drawback: It is simply stupid

– Inefficient: If the single thing is waiting for something, whole computer sits idle
– Costly: Need multiple computers per user to run multiple applications

• Obvious Improvement
– Run more than one thing “at the same time” (interleaved or overlapped), when one thing is delayed, switch

to another thing to do
• Obvious Potential Problems

– Performance: N users, M things per computer
• A thing experiences a slow down of N*M?
• N, M becomes (too) large (not enough memory, long time until a thing gets to do things)?

– Protection: (against evil/friendly users and things)
• a thing runs an infinite loop: processor starvation of other things unless the OS can get control

back again
• a thing starts to randomly access memory: Can destroy other things’ things, unless the OS

prevents it
• Obvious lesson learned

– OS must carefully share resources while protecting resources, users and applications (from
each other)

– This can become complicated, and complicated can be the devil

Monday, 13.January, 2014

Why OS is not Trivial
• Obvious Idea: KISS-OS

– Keep It Simple, Stupid-OS: “Do one thing at a time”
• Obvious drawback: It is simply stupid

– Inefficient: If the single thing is waiting for something, whole computer sits idle
– Costly: Need multiple computers per user to run multiple applications

• Obvious Improvement
– Run more than one thing “at the same time” (interleaved or overlapped), when one thing is delayed, switch

to another thing to do
• Obvious Potential Problems

– Performance: N users, M things per computer
• A thing experiences a slow down of N*M?
• N, M becomes (too) large (not enough memory, long time until a thing gets to do things)?

– Protection: (against evil/friendly users and things)
• a thing runs an infinite loop: processor starvation of other things unless the OS can get control

back again
• a thing starts to randomly access memory: Can destroy other things’ things, unless the OS

prevents it
• Obvious lesson learned

– OS must carefully share resources while protecting resources, users and applications (from
each other)

– This can become complicated, and complicated can be the devil

We will soon call a “thing” for a process
(and then refine it further with threads)

Monday, 13.January, 2014

How To Deal with Complexity

10

Monday, 13.January, 2014

How To Deal with Complexity

10

I don’t know

Monday, 13.January, 2014

How To Deal with Complexity

10

I don’t know

I do believe that the Best Advice You’ll Ever Get is to

Do early, fail early,
and learn how to make things work

Monday, 13.January, 2014

Some of What You Will Learn
• Operating System Structure

– structures, processes, threads, and system calls
• Synchronization

– locks, mutex, semaphores, monitors
• Processor

– time slices, scheduling
• Virtual memory

– address spaces, demand paging
• Communication and I/O subsystems

– device drivers, inter process and inter thread communication,
networking

• Storage systems
– disks and file systems

Monday, 13.January, 2014

A Simple Computer

CPU

ChipsetMemory
I/O bus

CPU. . .

Network
Keyboard

ROM

USB Mem Stick

Monday, 13.January, 2014

Approaches to Teaching Operating Systems

• Paper: read about it, do exercises on paper
• Smaller exercises using existing operating

systems
• Modifications to existing systems

– Emulator
• NachOS

– ”Metal”, bare machine
• Unix, BSD, Linux, …
• Original Minix & Latest Minix

• Do your own
Monday, 13.January, 2014

Why Do a “Real” OS Kernel?

• Hear and forget (Paper approach)
• See and remember (Exercise and Modification

approaches)
• Do and understand (Do your own approach)

– Overcome the barrier, dive into the system
– Gain confidence: you have the power instead of

only SW, OS and computer vendors

Monday, 13.January, 2014

Project OS History
• LurOS

– Stein Krogdahl, OS course, Dept. of computer science, University of Tromsø, 1978
– Paper, no metal, but detailed and small enough to be understandable

• Mymux (Mycron Multiplexer)
– Stein Gjessing (1979), later implemented and reworked obfuscated by Otto Anshus (1981), Peter

Jensen (initialization code), Sigurd Sjursen (incl. initial debugging of interrupt software/hardware),
OS course, Dept. of computer science, UiTø, around 1981-82-83

– Mycron 1 (64KILObyte RAM, no disk, 16 bit address space, Intel 8080/Zilog 80, Hoare monitors,
multiple computers (3, UART, 300 bits/sec, transparent process and monitor location, process and
monitor migration between machines)

• POS (Project Operating System), a.k.a. TeachOS, a.k.a. LearnOS
– 1994: Otto Anshus, Tore Larsen, first working code by Åge Kvalnes (& Brian Vinter), OS course,

Dept. of computer science, UiTø, 1994-1998, LAPTOPS Intel 486/Pentium
– 1998: Princeton University, USA, Kai Li, adopts and enhances the projects (adding P6: File

System), Pentium desktop PCs
– 1999: Tromsø & Princeton: Common code platform
– 2001: Tromsø & Oslo: Vera Goebel, Thomas Plageman, Otto Anshus
– 2006: Tromsø/Princeton/Oslo/Auburn
– 2007: Tromsø/Princeton/Oslo/Auburn/Yale (Yale is now on a multi-core version)
– 2008: Humboldt-Universität zu Berlin
– Later: TBD

Monday, 13.January, 2014

Course Approach
• You will do your own operating system

– with all the fundamentals. However (Fall 2011), we don’t do:
• windows manager and desktop
• multi-touch human-computer interfaces
• multi-core

• You/we will do it in steps. For each step:
– We’ll define what your OS should achieve for this step
– We’ll provide you with a starting point (pre code files)

• You can choose to use your own starting point, but we strongly recommend
using ours to get better help and land on your feet

– You will contemplate a design and present a design report indicating
design issues, discussions, and decisions. The design report is presented,
discussed, and reviewed by staff/TA’s

– You then develop, implement, and debug your own solution.
• Discussions are OK, but don’t cheat - including no copying of other’s

code (just don’t do it!)
• For each step you will sweat (swear?)
• By end of semester you will be ”King of the Hill” (Konge på

Haugen)

Monday, 13.January, 2014

Projects
• 6 projects, all mandatory

– From boot to a useful OS kernel w/demand paging
– We hand out templates (pre files), but never the finished

source (post files)
• Lectures and Projects are (somewhat) synchronized
• 2-3 weeks/project
• Design Review during first week of each project
• Linux, C, assembler
• Close to the computer,

– but emulator (Vmware/Bochs/Virtual PC) is useful to reduce
the number of reboots

– Or have an extra PC to try your code on

Monday, 13.January, 2014

Projects
• P1: Bootup

– Bootblock, createimage, boot first ”kernel”

• P2: Non-preemptive kernel
– Non-preemptive scheduling, simple syscalls, simple locks

• P3: Preemptive kernel
– Preemptive scheduling, syscalls, interrupts, timer, Mesa style monitor (practical version of

the original Hoare monitor), semaphores (Dijkstra)
• P4: Interprocess communication and driver

– P3 functionality+keyboard interrupt & driver, message passing, simple memory
management, user level shell

• P5: Virtual memory
– P4 + demand paging memory management

• P6: File system

Monday, 13.January, 2014

Platform

• PC with Intel Pentium or better
• USB memory stick (used to be floppy drive)
• Linux (we know the projects will work on

whatever version is installed for you in the lab)
• Language C (gcc) and assembler (gas from gnu)
• PC emulators

– VMware (we have not tested, projects may work)
– Bochs (we have tested, projects should work)

• The projects must at least work on the bare PCs in the lab

Monday, 13.January, 2014

Literature
• Modern Operating Systems, by Andrew (Andy) Tanenbaum, Prentice-Hall
• All information given on the course web pages. The links provided are

mandatory readings to the extent they are relevant to the projects
• We will also provide additional readings. Please, check the syllabus
• All lectures, lecture notes, precept notes and topics notes
• All projects
• Other books that may help you are:

– Protected Mode Software Architecture, by Tom Shanley, MindShare, Inc. 1996.
This book rehashes several on-line manuals by Intel

– Undocumented PC, 2nd Edition, by Frank Van Gilluwe, Addison-Wesley
Developers Press, 1997

– The C Programming Language, Brian W. Kerningham, Dennis M. Ritchie

Monday, 13.January, 2014

http://www.cs.vu.nl/~ast/books/mos2/
http://www.cs.vu.nl/~ast/books/mos2/
http://www.x86.org/intel.doc/IntelDocs.html
http://www.x86.org/intel.doc/IntelDocs.html
http://plan9.bell-labs.com/cm/cs/cbook/index.html
http://plan9.bell-labs.com/cm/cs/cbook/index.html

The Best Advice etc.

21

?

Monday, 13.January, 2014

The Best Advice etc.

21

?Do Early - Fail Early

Monday, 13.January, 2014

