
Tore Brox-Larsen

Includes original material by Kai Li, Andrew S.
Tanenbaum, Pål Halvorsen Otto J. Anshus, and

Andy Bavier

I/O

Spring 2014

Input and Output

• A computers job is to process data
– Comptation (CPU. caches, memory)
– Move data in and out of the system (between I/O devices and

memory)

• Challenges with I/O devices
– Different categories: Storage, networking, displays, …
– Large number of device drivers needed
– Device drivers run in kernel mode and may crash systems

• Goals of the OS
– Provide a generic, consistent, convenient and reliable way to access

I/O devices
– Achieve potential system performance

The Mother of all Demos (1968)

• First demo of modern mouse-keyboard, graphical user
interface

• Integrates new development, hardware & software
• Doug Engelbart. Then at Stanford Research Institute (SRI),

now at Doug Engelbart Institute
• Find the video at:

– http://sloan.stanford.edu/MouseSite/1968Demo.html

http://sloan.stanford.edu/MouseSite/1968Demo.html

Yngvar Lundh – Computing Pioneer

• Founder (1960) and
leader of Digital Group
(“Siffergruppen”) at
NDRE

• Implemented early
(1959) video game
(Tic-tac-toe) at MIT on
TX-0

• A lot of other
interesting stuff

• Prof. emer. At Ifi/UiO

http://no.wikipedia.org/wiki/Siffergruppen
http://en.wikipedia.org/wiki/First_video_game%231959:_Mouse_in_the_Maze.2C_Tic-Tac-Toe
http://en.wikipedia.org/wiki/TX-0

Big Picture

Today we talk about I/O

• characteristics

• interconnection

• devices & controllers (disks will be lectured in detail later)

• data transfers

• I/O software

• buffering

• ...

I/O System

I/O: “Bird’s Eye View”

Rest of the
operating
system

Device
driver

Device
driver

...

Device
driver

Device
controller

Device
controller

...
Device

controller

Device

Device

Device

Device

I/O Devices
• Keyboard, mouse, microphone, joystick, magnetic-card reader,

graphic-tablet, scanner, video/photo camera, loudspeaker, microphone,
scanner, printer, display, display-wall, network card, DVD, disk, floppy,
wind-sensor, etc. etc.

• Large diversity:
– many, widely differing device types
– devices within each type also differs

• Speed:
– varying, often slow access & transfer compared to CPU
– some device-types require very fast access & transfer

(e.g., graphic display, high-speed networks)

• Access:
– sequential vs. random
– read, write, read & write

• ...

• Expect to see new types of I/O devices, and new application of old types

I/O Devices

• Block devices: store information in fixed-size blocks, each
one with its own address
– common block sizes: 512 B – 64 KB
– addressable
– it is possible to read or write each block independently of all others
– e.g., disks, floppy, tape, CD, DVD, ...

• Character devices: delivers or accepts a stream of
characters, without regard to any block structure
– it is not addressable and does not have any seek operation
– e.g., keyboards, mice, terminals, line printers, network interfaces,

and most other devices that are not disk-like...

• Does all devices fit in?
– clocks and timers
– memory-mapped screens

Device Controllers

• Piece of HW that controls one or more devices

• Location
– integrated on the host motherboard
– PC-card (e.g., PCI)

– embedded in the device itself
(e.g., disks often have additional embedded controllers)

Device Drivers

• Software that provides interface between
– Single device or class of devices
– Operating system

• Interface between operating system and device drivers may
be:
– Standardized
– Non-standardized

Four Basic Questions

• How are devices connected to CPU/memory?

• How are device controller registers accessed &
protected?

• How are data transmissions controlled?

• Synchronization: interrupts versus polling?

north
bridge

CPU

AGPmemory

PCI ?

south
bridge

ATA

keyboard,
mouse,
floppy

USB, ...

audio

North/South Bridge Architecture: Via P4X266
Chipset

• The north bridge manages traffic from
– CPU & caches
– memory
– advanced graphics ports (AGPs)
– (peripheral component interconnect (PCI)

busses)

• The south bridge manages traffic from
– universal serial bus (USB)
– IEEE 1394
– ATA
– (PCI busses)
– keyboard & mouse
– ...

• Via P4X266
– PCI on south bridge
– Increased south-north link compared to older
– Integrated 10/100 Ethernet on south bridge

• Other chipsets include
– Intel 440MX (BX) (both integrated)

(http://www.intel.com/design/chipsets/440MX/index.htm)

– Via P4 PB Ultra (PB 400)
– Via EPIA

Hub Architecture: Intel 850 Chipset

• The memory controller hub (MCH)
manages traffic from
– CPU & caches
– memory
– AGP

• The I/O controller hub (ICH)
manages traffic from
– all other devices....

• Most of the Intel 8XX chipsets
have the hub architecture

four 8-bit, 66 MHz ; 266 MB/s

Hub Architecture: Intel 875P Chipset

• MCH improvements
– AGP:

4x  8x
– memory interface:

200  400 MHz
– system (front side) bus:

400/533  800 MHz
– Gbps network interface

• But, still only
– four 8-bit, 66 MHz

(266 MBps) hub-to-hub
interface

– 32 bit, 33 MHz PCI bus

• However, some chipsets
(e.g., 840) have a 64-bit,
33/66 MHz PCI Controller
Hub (P64H) connected
directly to the MCH by a
2x (16 bit) wide hub interface

• Server chipsets (e.g., E7500) may
have several P64Hs replacing the ICH

http://en.wikipedia.org/wiki/List_of_Intel_chipsets

http://www.intel.com/design/chipsets/datashts/252525.htm
http://en.wikipedia.org/wiki/List_of_Intel_chipsets

Intel 5520

http://www3.intel.com/Assets/PDF/datasheet/321328.pdf

Intel Z87
Northbridge functionality “migrated” onto Processor Chip

Four Basic Questions

• How are devices connected to CPU/memory?

• How are device controller registers accessed & protected?

• How are data transmissions controlled?

• Synchronization: interrupts versus polling?

Accessing Device Controller Registers

• To communicate with the CPU, each controller have a few
registers where operations are specified

• Additionally, some devices need a memory buffer

• Two alternatives: port I/O and memory mapped I/O

Port I /O

• Devices registers mapped onto “ports”;
ports form a separate address space

• Use special I/O instructions to read/write ports

• Protected by making I/O instructions available only
in kernel/supervisor mode

• Used for example by IBM 360 and successors

memory I/O ports

Memory Mapped I/ O

• Device registers mapped into regular address space

• Use regular move (assignment) instructions to
read/ write registers

• Use memory protection mechanism to protect
device registers

• Used for example by PDP-11

memory
mapped I/O

memory

Memory Mapped I/O vs. Port I/O

• Ports:
– special I/O instructions are CPU dependent

• Memory mapped:
+ memory protection mechanism allows greater flexibility than

protected instructions
+ may use all memory reference instructions for I/O
– Don’t cache device registers

(must be able to selectively disable caching)
– Cannot “drown” I/O device address logic by presenting devices with

every memory address accessed. Bridges are initiated to make sure
only allocated address regions are forwarded onto slow peripheral
buses.

• Intel Pentium use a hybrid
– Address 640K to 1M is used for memory mapped I/O data buffers
– I/O ports 0 to 64K is used for device control registers

Four Basic Questions

• How are devices connected to CPU/memory?

• How are device controller registers accessed & protected?

• How are data transmissions controlled?

• Synchronization: interrupts versus polling?

Performing I/O Data Transmissions

• Programmed I/O (PIO)
– the CPU handles the transfers
– transfers data between registers and device

• Interrupt driven I/O
– use CPU to transfer data, but let an I/O module run concurrently

• Direct Memory Access (DMA)
– an adaptor accesses main memory
– transfers blocks of data between memory and device

• Channel
– simple specialized peripheral processor dedicated to I/O
– handles most transmission, but less control
– shared memory. No private memory.

• Peripheral Processor (PPU)
– general processor dedicated to I/O control and transmission
– shared and private memory. (CDC 6600, 1964)

Pentium 4
Processor

registers

cache(s)

I/O
controller

hub

memory
controller

hub

RDRAM
RDRAM

RDRAM
RDRAM

free PCI slots
free PCI slots
disk controller

PIO

• Device delivers data
to controller

• PIO:
– CPU reads data

from controller
buffer to register

– CPU writes register
to memory location

• CPU is busy moving
data

PIO: Input Device

• Device
– data registers
– status register

• Ready: If the host is done
• Busy: If the controller is done
• Interrupt

• A simple mouse design
– put (X, Y) in data registers on a move
– interrupt

• Input on interrupt
– reads values in X, Y registers
– set ready bit
– wake up a process/thread or execute a

piece of code

CPU

Memory L2
Cache

I/O Bus

Interface
X Y

PIO: Output Device

• Device
– Data registers
– Status registers (ready, busy, …)

• Perform an output
– Wait until ready bit is clear
– Poll the busy bit
– Write the data to data register(s)
– Set the ready bit
– Controller sets busy bit and transfers data
– Controller clears the busy bit

Interrupt-Driven I/O

• Writing a string to the printer using interrupt-
driven I/O
a) code executed when print system call is made
b) interrupt service procedure

Pentium 4
Processor

registers

cache(s)

I/O
controller

hub

memory
controller

hub

RDRAM
RDRAM

RDRAM
RDRAM

free PCI slots
free PCI slots
disk controller

DMA

• Device delivers data to
controller

• DMA:
1. set up DMA controller
2. DMA controller initiates transfer
3. data is moved (increasing

address, reducing count)
4. disk controller notifies

DMA controller when finished
(count = 0)

5. DMA controller interrupts

• CPU is free
• Cycle stealing on memory bus

DMA
controller

address
count

....

DMA
• DMA controller or adaptor

– Status register (ready, busy, interrupt)
– DMA command register
– DMA-register (address, size)
– DMA buffer

• Host CPU Initiates DMA
– device driver call (kernel mode)
– wait until DMA device is free
– initiate a DMA transaction

(command, memory address, size)
– Block

• Controller performs DMA
– Transfers (size--,address++)

• Interrupt handler (on completion)
– wakeup the blocked process

• Scedule

CPU

Memory L2
Cache

I/O Bus
DMA

Interface

Free to move
data during

DMA

PIO vs. DMA

• DMA:
+ supports large transfers, latency of requiring bus is amortized over

hundreds/thousands of bytes
– may be expensive for small transfers
– overhead to handle virtual memory and cache consistence
o is common practice

• PIO:
– uses the CPU
– loads data into registers and cache
+ potentially faster for small transfers with carefully designed software

Four Basic Questions

• How are devices connected to CPU/memory?

• How are device controller registers accessed & protected?

• How are data transmissions controlled?

• Synchronization: interrupts versus polling?

Synchronization: interrupts vs. polling

• Polling:
– processor polls the device while waiting for I/O to complete
– wastes cycles – inefficient

• Interrupt:
– device asserts interrupt when I/O completed
– frees processor to move on to other tasks
– interrupt processing is costly and introduces latency penalty

• Possible strategy:
– apply interrupts, but reduce interrupts frequency through careful

driver/controller interaction

I/O Software Stack

Interrupts Revisited

Interrupts Revisited
• Steps performed

1. Check that interrupts are enabled, and check that no other interrupt is being
processed, no interrupt pending, and no higher priority simultaneous interrupt

2. Interrupt controller puts a index number identifying the device on the address lines
and asserts CPUs interrupt signal

3. Save registers not already saved by interrupt hardware
4. Mask interrupts

5. Set up context for interrupt service procedure

6. Set up stack for interrupt service procedure

7. Acknowledge interrupt controller, re-enable interrupts

8. Copy registers from where saved (stack)

9. Run service procedure
10. Unmask interrupts if needed

11. Set up MMU context for process to run next

12. Load new process' registers

13. Start running the new process

• Details of interrupt handling varies among different processors/computers

Device Driver Design Issues

• Operating system and driver communication
– Commands and data between OS and device drivers

• Driver and hardware communication
– Commands and data between driver and hardware

• Driver operations
– Initialize devices
– Interpreting commands from OS
– Schedule multiple outstanding requests
– Manage data transfers
– Accept and process interrupts
– Maintain the integrity of driver and kernel data structures

Device Driver Interface

• Open(deviceNumber)
– Initialization and allocate resources (buffers)

• Close(deviceNumber)
– Cleanup, deallocate, and possibly turnoff

• Device driver types
– Block: fixed sized block data transfer
– Character: variable sized data transfer
– Terminal: character driver with terminal control
– Network: streams for networking

Device Driver Interface

• Block devices:
– read(deviceNumber, deviceAddr, bufferAddr)

• transfer a block of data from “deviceAddr” to “bufferAddr”
– write(deviceNumber, deviceAddr, bufferAddr)

• transfer a block of data from “bufferAddr” to “deviceAddr”
– seek(deviceNumber, deviceAddress)

• move the head to the correct position
• usually not necessary

• Character devices:
– read(deviceNumber, bufferAddr, size)

• reads “size” bytes from a byte stream device to “bufferAddr”
– write(deviceNumber, bufferAddr, size)

• write “size” bytes from “bufferSize” to a byte stream device

Some Unix Device Driver Interface Entry Points

• init(): Initialize hardware

• start(): Boot time initialization (require system services)

• open(dev, flag, id): initialization for read or write

• close/release(dev, flag, id): release resources after read and write

• halt(): call before the system is shutdown

• intr(vector): called by the kernel on a hardware interrupt

• read()/write(): data transfer

• poll(pri): called by the kernel 25 to 100 times a second

• ioctl(dev, cmd, arg, mode): special request processing

Device-Independent I/O Software

Uniform interfacing for device drivers

Buffering

Error reporting

Allocating and releasing dedicate devices

Providing a device-independent block size

...

• Functions of the device-independent I/O software:

Why Buffering

• Speed mismatch between the producer and consumer
– Character device and block device, for example

• Adapt different data transfer sizes
– Packets vs. streams

• Support copy semantics

• Deal with address translation
– I/O devices see physical memory, but programs use virtual memory

• Spooling
– Avoid deadlock problems

• Caching
– Avoid I/O operations

Buffering

a) No buffer
– interrupt per character/block

b) User buffering
– user blocks until buffer full or

I/O complete
– paging problems!?

c) Kernel buffer, copying to user
– what if buffer is full/busy when

new data arrives?

d) Double kernel buffering
– alternate buffers, read from one,

write to the other

Detailed Steps of Blocked Read
1. A process issues a read call which executes a system call

2. System call code checks for correctness and cache

3. If it needs to perform I/O, it will issues a device driver call

4. Device driver allocates a buffer for read and schedules I/O

5. Controller performs DMA data transfer, blocks the process

6. Device generates an interrupt on completion

7. Interrupt handler stores any data and notifies completion

8. Move data from kernel buffer to user buffer and wakeup blocked process

9. User process continues

Asynchronous I/O

• Why do we want asynchronous I/O?
– Life is simple if all I/O is synchronous

• How to implement asynchronous I/O?
– On a read

• copy data from a system buffer if the data is there
• otherwise, block the current process

– On a write
• copy to a system buffer, initiate the write and return

Summary

• A large fraction of the OS is concerned with I/O

• Several ways to do I/O

• Several layers of software

Example: Clocks

• Old, simple clocks used power lines and caused an interrupt at every
voltage pulse (50 - 60 Hz)

• New clocks use
– quartz crystal oscillators generating periodic signals at a very high frequency
– counter which is decremented each pulse - if zero, it causes an interrupt
– register to load the counter

• May have several outputs
• Different modes

– one-shot - counter is restored only by software
– square-wave - counter is reset immediately (e.g., for clock ticks)

xtal
oscillator

fr
eq

ue
nc

y
ad

ju
st

er

interrupt

default
value

Examples: Clocks

• HW only generates clock interrupts

• It is up to the clock software (driver) to make use of this
– Maintaining time-of-day

– Preventing processes from running longer than allowed

– Accounting for CPU usage

– Handling ALARM system call

– Providing watchdog timers

– Doing profiling, monitoring, and statistics gathering

Example: Keyboard

• Keyboards provide input as a
sequence of bits

• Example - coded with IRA -
(international reference alph.):
“K” = b7b6b5b4b3b2b1 = 1001011

• Raw mode vs. Cooked mode

• Buffering

Intel 82C55A

Example: Keyboard

Intel 82C55A

Example: Keyboard

interrupt

Pentium
Processor

registers

cache(s)

I/O
controller

hub

memory
controller

hub

RDRAM
RDRAM

RDRAM
RDRAM

PCI slots
PCI slots
PCI slots

keyboard, mouse, ...

	Slide Number 1
	Input and Output
	The Mother of all Demos (1968)
	Yngvar Lundh – Computing Pioneer
	Big Picture
	Today we talk about I/O
	I/O: “Bird’s Eye View”
	I/O Devices
	I/O Devices
	Device Controllers
	Device Drivers
	Four Basic Questions
	North/South Bridge Architecture: Via P4X266 Chipset
	Hub Architecture: Intel 850 Chipset
	Hub Architecture: Intel 875P Chipset
	Intel 5520
	Intel Z87�Northbridge functionality “migrated” onto Processor Chip
	Four Basic Questions
	Accessing Device Controller Registers
	Port I /O
	Memory Mapped I/ O
	Memory Mapped I/O vs. Port I/O
	Four Basic Questions
	Performing I/O Data Transmissions
	PIO
	PIO: Input Device
	PIO: Output Device
	Interrupt-Driven I/O
	DMA
	DMA
	PIO vs. DMA
	Four Basic Questions
	Synchronization: interrupts vs. polling
	I/O Software Stack
	Interrupts Revisited
	Interrupts Revisited
	Device Driver Design Issues
	Device Driver Interface
	Device Driver Interface
	Some Unix Device Driver Interface Entry Points
	Device-Independent I/O Software
	Why Buffering
	Buffering
	Detailed Steps of Blocked Read
	Asynchronous I/O
	Summary
	Example: Clocks
	Examples: Clocks
	Example: Keyboard
	Example: Keyboard
	Example: Keyboard

