
CPU Scheduling

Knut Omang
Ifi/Oracle

13 Feb, 2014

(with slides from several people)

Today
• Goals of scheduling

• Scheduling algorithms:

– FCFS/FIFO, RR, STCF/SRTCF
– Priority (CTSS, UNIX, Windows, Linux)
– Lottery
– Fair share

– Real-time: RM and EDF

Why Spend Time on Scheduling?

• Bursts of CPU usage alternate with periods of I/O wait
– a CPU-bound process
– an I/O bound process

• Optimize the system to the given goals
• Example: CPU-Bound vs. I/O-Bound Processes:

Scheduling Performance Criteria
• CPU (resource) utilization

• 100%, but 40-90% normal

• Throughput
• Number of “jobs” per time unit
• Minimize overhead of context switches
• Efficient utilization (CPU, memory, disk etc)

• Turnaround time
• = time process arrives - time process exits

• = sum of all waiting times (memory, R_Q, execution, I/O, etc)
• How fast a single job got through

• Response time
• = time request starts - time response starts
• Having low variance in Response Time is good (predictability)
• Short response time: type on a keyboard, click on GUI

• Waiting time
• in the Ready_Queue, for memory, for I/O, etc.

• Fairness
• no starvation

Scheduling Algorithm Goals

Non-Preemptive: FIFO (FCFS) Policy

• Run
– to completion (old days)
– until blocked, yield, or

exit

• Advantages?

• Disadvantage

Insert_last (p, R_Q)

current until
block, yield, exit

R_Q

Average Turnaround Time for CPU bursts:

Process Burst time
1 24
2 3
3 3

Arrival order: 1 - 2 - 3
0 24 27 30

P1 P2 P3

TT average = (24+27+30)/3=27

Arrival order: 2 - 3 - 1
0 3 6 30

P1P2 P3

TT average = (3+6+30)/3=13

Discussion topic FCFS
How well will FCFS handle:

•Many processes doing I/O arrives

•One CPU-bound process arrives

I/O
interrupts

CPU-bound process starts executing.

All I/O-bound processes enter the back of the Ready_Queue

Block

All the I/O-bound processes execute their I/O instructions

Block

Block

. . .

CPU-bound does I/O

Block

All I/O devices
are now IDLE

All the I/O-bound processes execute their I/O instructions

Block

Block

. . .

I/O interrupt
CPU-bound starts executing again

“CONVOY” effect
- Low CPU utilization

- Low device utilization

CPU is IDLE

Round Robin
• FIFO queue
• n processes, each runs a time slice or quantum, q

– each process gets 1/n of the CPU in max q time units at a time

• Max waiting time in Ready_Queue per process: (n-1) *
q

• How do you choose the time slice?
– Overhead vs. throughputs
– Overhead is typically about 1% or less

• interrupt handler + scheduler + dispatch
• 2 context switches: going down, and up into new process

– CPU vs. I/O bound processes

Current
process

Ready queue

FIFO vs. Round Robin
• 10 jobs and each takes 100 seconds

– 10 seconds of this is I/O wait

• FIFO

• Round Robin
– time slice 1s and no overhead

• Comparisons

Case: Time Slice Size
• Resource utilization example

– A and B each uses 100% CPU
– C loops forever (1ms CPU and 10ms disk)

• Large or small time slices?
– nearly 100% of CPU utilization regardless of size
– Time slice 100ms: nearly 5% of disk utilization with Round Robin
– Time slice 1ms: nearly 85% of disk utilization with Round Robin

• What do we learn from this example?
– The right (shorter) time slice can improve overall utilization
– CPU bound: benefits from having longer time slices (>100 ms)
– I/O bound: benefits from having shorter time slices (≤ 10ms)

• [But what about memory bound?]

Shortest Time to Completion First
(STCF) (a.k.a. Shortest Job First)

• Non-preemptive
• Run the process having smallest service time
• Random, FCFS, … for “equal” processes
• Problems

– establish what the running time of a job is
• Suggestions on how to do this?

– Length of next CPU-burst
• Assuming next burst = previous burst
• Can integrate over time using a formula taking into

account old and new history of CPU burst lengths
– But mix of CPU and I/O, so be careful

Shortest Remaining Time to Completion First (SRTCF)
 (a.k.a. Shortest Remaining Time First)

• Preemptive, dynamic version of STCF
• If a shorter job arrives, PREEMPT current,

and do STCF again

• Advantage:
– high throughput, low average turnaround

(Running a short job before a long decreases the waiting
time MORE for the short than it increases for the long!)

– Memory/cache benefits

• Disadvantage:
– starvation possible, must know execution time

Priority Scheduling

• Assign each process a priority
• Run the process with highest priority in the ready

queue first

• Multiple queues

• Advantage
– Different priorities according

to importance
• Disadvantage

– Users can hit keyboard frequently
– Starvation (should use dynamic priorities)

• Special cases (RR in each queue)
– FCFS (all equal priorities, non-preemptive)
– STCF/SRTCF (the shortest jobs are assigned the highest

priority)

Interactivity
• Dynamically scale a tasks priority based on it‘s

'interactivity'
• Interactive tasks receive a prio bonus [-5]

– Hence a larger timeslice
• CPU bound tasks receive a prio penalty [+5]
• Interactivity estimated using a running sleep average.

– Interactive tasks are I/O bound. They wait for
events to occur.

– Sleeping tasks are I/O bound or interactive
– Actual bonus/penalty is determined by comparing

the sleep average against a constant maximum
sleep average.

• But problem: this is heuristics – can be fooled can
make mistakes..

Multiple Queues

• Good for classes of jobs
– real-time vs. system jobs vs. user jobs vs. batch jobs

• Multi level feedback queues
– Adjust priority dynamically

• Aging
• I/O wait raises the priority
• Memory demands,

#open files, CPU:I/O bursts

– Scheduling between the queues
• Time slice (and cycle through the queues)
• Priority typical:

– Jobs start at highest priority queue
– If timeout expires (used current time slices), drop one level
– If timeout doesn’t expires, stay or pushup one level

– Can use different scheduling per queue
– A job doing much I/O is moved to an “I/O bound queue”

Compatible Time-Sharing System (CTSS)

• One of the first (1962) priority schedulers using multiple
queues

• One process in memory at a time (high switch costs)
– Memory sz: Users: 27K of total 32K, 5K reserved for monitor

• Large slices vs. response time  priority classes
• Each time the quantum was

used,
the process dropped one
priority class (larger slice, less
frequent)

• Interaction  back to highest
priority class

• Short, interactive should run
more often

• Proved viability of time sharing

“Priority”
0
1
2
3

Time slices
1
2
4
8

Scheduling in UNIX
• Many versions

• User processes have positive
priorities, kernel negative

• Schedule lowest priority first
• If a process uses the whole

time
slice, it is put back at the end
of
the queue (RR [round robin])

• Each second the priorities are
recalculated:
priority =
CPU_usage (average #ticks)
+ nice (+- 20)
+ base (priority of last corresponding

kernel process)

Scheduling in UNIX (4.4BSD)

• Similar to last slide

• Time slices of 100 ms

• Priorities is updated every 4th tick (40 ms)

p_usrpri = PUSER + [p_estcpu x ¼] + 2 x p_nice

– PUSER defaults to 50 (min), may be changed but here one
uses only values between 50 and 127

– p_estcpu =
• running process: [(2 x load)/(2 x load + 1)] x p_estcpu + p_nice

• blocked process: [(2 x load)/(2 x load + 1)]p_sleeptime x p_estcpu

– p_nice defaults to 0

Scheduling in Windows 2000
• Preemptive kernel
• 32 priority levels - Round Robin (RR) in each
• Schedules threads individually

• Processor affinity

• Default time slices (3 quantums = 10 ms) of
– 120 ms – Win2000 server
– 20 ms – Win2000 professional/workstation
– may vary between threads

• Interactive and throughput-oriented:
– “Real time” – 16 system levels

• fixed priority
• may run forever

– Variable – 15 user levels
• priority may change – thread priority = process

priority ± 2
• uses much CPU cycles  drops
• user interactions, I/O completions  increase

– Idle/zero-page thread – 1 system level
• runs whenever there are no other processes to run
• clears memory pages for memory manager

31

30

...

17

16

15

14

...

2

1

0

Real Time (system thread)

Variable (user thread)

Idle (system thread)

Scheduling in Linux <= 2.6.23
• Linux <= 2.4.x: Threads ~ processes
• Linux 2.6.x: thread scheduling

• SHED_FIFO
– may run forever, no timeslices
– may use it’s own scheduling algorithm

• SHED_RR
– each priority in RR
– timeslices of 10 ms (quantums)

• SHED_OTHER
– ordinary user processes
– uses “nice”-values: 1≤ priority≤40
– timeslices of 10 ms (quantums)

• Threads with highest goodness are selected
first:

– realtime (FIFO and RR):
goodness = 1000 + priority

– timesharing (OTHER):
goodness = (quantum > 0 ? quantum + priority :
0)

• Quantums are reset when no ready
process has quantums left:
quantum = (quantum/2) + priority

• O(1) from 2.6.1

1

2

...

126

127

1

2

...

126

127

default (20)

-20

-19

...

18

19

SHED_FIFO

SHED_RR

SHED_OTHER

nice

Linux CFS Scheduler (kernel >= 2.6.23)

• Used for SCHED_OTHER
• Waiting processes added to time ordered tree of all

waiters
– red/black binary search tree

• Remove 'smallest' = O(1), insert is O(log n) for n
waiters

• Tasks can be scheduled at fine granularity
– 'liberated' from timer interrupt frequency

• Simplifies logic
– no need to 'switch between queues'

– no interactivity heuristics

• Tuned with single parameter:
/proc/sys/kernel/sched_min_granularity_ns

Lottery Scheduling
• Motivations

– SRTCF does well with average response time, but
unfair

– Guaranteed scheduling may be hard to implement
– Adjust priority is a bit ad hoc. For example, at what

rate?

• Lottery method
– Give each job a number of tickets
– Randomly pick a winning tickets
– To approximate SRTCF, short jobs gets more tickets
– To avoid starvation, give each job at least one ticket
– Allows ticket exchange

C.A. Waldspurger and W.E. Weihl, “Lottery Scheduling: Flexible Proportional-Share
Resource Management.”
Proc. of the 1st USENIX Symp. on Operating System Design and Implementation (OSDI).
Nov 1994.

Fair Share
• Each PROCESS should have an equal share of

the CPU
• History of recent CPU usage for each process
• Process with least recently used CPU time :=

highest priority
  an editor gets a high priority
  a compiler gets a low priority

• Each USER should have an equal share of the
CPU

• Take into account the owner of a process
• History of recent CPU usage for each user

Real-Time Scheduling

process 1 process 2 process 3 process 4 process N RT process…

RT process

request

round-robin

process 1 process 2 process 3 process 4 process N…

RT process

request
priority,
non-preemtive

delay

RT process

delay

process 1 process 2 process 3 process 4 process N…

request
priority,
preemtive p 1 p 1 process 2 process 3 process 4 process N…

RT process

RT process p 1 process 2 process 3 process 4 process N…

only delay switching and interrupts

NOTE: preemption may also be limited to preemption points (fixed
points where the scheduler is allowed to interrupt a running process)
 giving larger delays

• Real-time tasks are often periodic
(e.g., fixed frame rates and audio sample
frequencies)

• Time constraints for a periodic task:
– s – starting point

(first time the task require processing)
– e – processing time
– d – deadline
– p – period
– r – rate (r = 1/p)

– 0 ≤ e ≤ d
(often d ≤ p: we’ll use d = p – end of period, but Σd ≤ Σp is
enough)

– the kth processing of the task
• is ready at time s + (k – 1) p
• must be finished at time s + (k – 1) p + d

– the scheduling algorithm must account for these properties

Real-Time Scheduling

s time

e
d

p

Schedulable Real-Time Systems

• Given
– m periodic events
– event i occurs within period Pi and requires Ci seconds

• Then the load can only be handled if

• Can we process 3 video streams, 25 fps,
each frame require 10 ms CPU time?

– 3 * (10ms/40ms) = 3 * 25 * 0.010 = 0.75 < 1  YES

1

1
m

i

i i

C

P=

≤∑

Rate Monotonic (RM) Scheduling
• Classic algorithm for hard real-time systems with one

CPU
[Liu & Layland ‘73]

• Pre-emptive scheduling based on static task priorities

• Optimal: no other algorithms with static task priorities
can schedule tasks that cannot be scheduled by RM

• Assumptions:
– requests for all tasks with deadlines are periodic
– the deadline of a task is equal to the end on its period

(starting of next)
– independent tasks (no precedence)
– run-time for each task is known and constant
– context switches can be ignored
– any non-periodic task has no deadline

• Process priority based on task periods
– task with shortest period gets

highest static priority
– task with longest period gets

lowest static priority
– dispatcher always selects task requests with highest

priority

• Example:

Rate Monotonic (RM) Scheduling

p
rio

rity

period length

shortest period,
highest priority

longest period,
lowest priority

Task 1

p1

Dispatching

Task 2

p2 P1 < P2

 P1 highest
prioritypreemption

Earliest Deadline First (EDF)
• Preemptive scheduling based on dynamic task

priorities

• Task with closest deadline has highest priority
 priorities vary with time

• Dispatcher selects the highest priority task

• Assumptions:
– requests for all tasks with deadlines are periodic
– the deadline of a task is equal to the end on its period

(starting of next)
– independent tasks (no precedence)
– run-time for each task is known and constant
– context switches can be ignored

Earliest Deadline First
(EDF)

• Example:

Task A

Task B
time

Dispatching

deadlines

priority A > priority B

priority A < priority B

EDF Versus RM – I

Task A

Task B

Rate monotonic

time

deadline miss

Earliest deadline first

deadlines

Rate monotonic

deadline miss

RM may give some
deadline violations
which is avoided by EDF

EDF Versus RM – II

• EDF
– dynamic priorities changing in time
– overhead in priority switching
– QoS calculation – maximal throughput:

 Σ Ri x Pi ≤ 1, R – rate, P – processing time

• RM
– static priorities based on periods
– may map priority onto fixed OS priorities (like Linux)
– QoS calculation:

 Σ Ri x Pi ≤ ln(2), R – rate, P – processing
time

all streams i

all streams i

Summary
• Scheduling performance criteria and

goals are dependent on environment

• There exists several different algorithms
targeted for various systems

• Traditional OSes like Windows, Unix,
Linux, ... usually uses a priority-based
algorithm

• The right time slice can improve overall
utilization

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

