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Today
• Goals of scheduling

• Scheduling algorithms:

– FCFS/FIFO, RR, STCF/SRTCF
– Priority (CTSS, UNIX, Windows, Linux)
– Lottery
– Fair share

– Real-time: RM and EDF



Why Spend Time on Scheduling?

• Bursts of CPU usage alternate with periods of I/O wait
– a CPU-bound process
– an I/O bound process

• Optimize the system to the given goals 
• Example: CPU-Bound vs. I/O-Bound Processes:



Scheduling Performance Criteria
• CPU (resource) utilization 

• 100%, but 40-90% normal

• Throughput
• Number of “jobs” per time unit
• Minimize overhead of context switches
• Efficient utilization (CPU, memory, disk etc)

• Turnaround time
• = time process arrives - time process exits

• = sum of all waiting times (memory, R_Q, execution, I/O, etc)
• How fast a single job got through

• Response time
• = time request starts - time response starts 
• Having low variance in Response Time is good (predictability)
• Short response time: type on a keyboard, click on GUI

• Waiting time
• in the Ready_Queue, for memory, for I/O, etc.

• Fairness
• no starvation



Scheduling Algorithm Goals



Non-Preemptive: FIFO (FCFS) Policy

• Run 
– to completion (old days)
– until blocked, yield, or 

exit

• Advantages?

• Disadvantage

Insert_last (p, R_Q)

current until 
block, yield, exit

R_Q

Average Turnaround Time for CPU bursts:

Process Burst time
1 24
2 3
3 3

Arrival order: 1 - 2 - 3
0 24 27 30

P1 P2 P3

TT average = (24+27+30)/3=27

Arrival order: 2 - 3 - 1
0 3 6 30

P1P2 P3

TT average = (3+6+30)/3=13



Discussion topic FCFS
How well will FCFS handle:

•Many processes doing I/O arrives

•One CPU-bound process arrives

I/O 
interrupts

CPU-bound process starts executing.

All I/O-bound processes enter the back of the Ready_Queue

Block

All the I/O-bound processes execute their I/O instructions

Block

Block

.  .  .

CPU-bound does I/O

Block

All I/O devices 
are now IDLE

All the I/O-bound processes execute their I/O instructions

Block

Block

.  .  .

I/O interrupt
CPU-bound starts executing again

“CONVOY” effect
- Low CPU utilization

- Low device utilization

CPU is IDLE



Round Robin
• FIFO queue
• n processes, each runs a time slice or quantum, q

– each process gets 1/n of the CPU in max q time units at a time

• Max waiting time in Ready_Queue per process: (n-1) * 
q

• How do you choose the time slice?
– Overhead vs. throughputs
– Overhead is typically about 1% or less

• interrupt handler + scheduler + dispatch
• 2 context switches: going down, and up into new process

– CPU vs. I/O bound processes

Current
process

Ready queue



FIFO vs. Round Robin
• 10 jobs and each takes 100 seconds

– 10 seconds of this is I/O wait

• FIFO

• Round Robin
– time slice 1s and no overhead

• Comparisons



Case: Time Slice Size
• Resource utilization example

– A and B each uses 100% CPU
– C loops forever (1ms CPU and 10ms disk)

• Large or small time slices?
– nearly 100% of CPU utilization regardless of size
– Time slice 100ms: nearly 5% of disk utilization with Round Robin
– Time slice 1ms: nearly 85% of disk utilization with Round Robin 

• What do we learn from this example?
– The right (shorter) time slice can improve overall utilization
– CPU bound: benefits from having longer time slices (>100 ms)
– I/O bound: benefits from having shorter time slices (≤ 10ms)

• [But what about memory bound?]



Shortest Time to Completion First 
(STCF) (a.k.a. Shortest Job First)

• Non-preemptive
• Run the process having smallest service time
• Random, FCFS, … for “equal” processes
• Problems 

– establish what the running time of a job is
• Suggestions on how to do this?

– Length of next CPU-burst
• Assuming next burst = previous burst
• Can integrate over time using a formula taking into 

account old and new history of CPU burst lengths
– But mix of CPU and I/O, so be careful



Shortest Remaining Time to Completion First (SRTCF)
 (a.k.a. Shortest Remaining Time First)

• Preemptive, dynamic version of STCF
• If a shorter job arrives, PREEMPT current, 

and do STCF again

• Advantage: 
– high throughput, low average turnaround

(Running a short job before a long decreases the waiting 
time MORE for the short than it increases for the long!)

– Memory/cache benefits

• Disadvantage: 
– starvation possible, must know execution time



Priority Scheduling

• Assign each process a priority
• Run the process with highest priority in the ready 

queue first

• Multiple queues

• Advantage
– Different priorities according 

to importance
• Disadvantage

– Users can hit keyboard frequently
– Starvation (should use dynamic priorities)

• Special cases (RR in each queue)
– FCFS (all equal priorities, non-preemptive)
– STCF/SRTCF (the shortest jobs are assigned the highest 

priority)



Interactivity
• Dynamically scale a tasks priority based on it‘s 

'interactivity' 
• Interactive tasks receive a prio bonus [ -5 ]

– Hence a larger timeslice
• CPU bound tasks receive a prio penalty [ +5 ]
• Interactivity estimated using a running sleep average.

– Interactive tasks are I/O bound. They wait for 
events to occur.

– Sleeping tasks are I/O bound or interactive
– Actual bonus/penalty is determined by comparing 

the sleep average against a constant maximum 
sleep average.

• But problem: this is heuristics – can be fooled can 
make mistakes..



Multiple Queues

• Good for classes of jobs
– real-time vs. system jobs vs. user jobs vs. batch jobs

• Multi level feedback queues
– Adjust priority dynamically 

• Aging
• I/O wait raises the priority
• Memory demands, 

#open files, CPU:I/O bursts

– Scheduling between the queues
• Time slice (and cycle through the queues)
• Priority typical: 

– Jobs start at highest priority queue
– If timeout expires (used current time slices), drop one level
– If timeout doesn’t expires, stay or pushup one level

– Can use different scheduling per queue
– A job doing much I/O is moved to an “I/O bound queue”



Compatible Time-Sharing System (CTSS)

• One of the first (1962) priority schedulers using multiple 
queues 

• One process in memory at a time (high switch costs)
– Memory sz: Users: 27K of total 32K, 5K reserved for monitor

• Large slices vs. response time  priority classes
• Each time the quantum was 

used, 
the process dropped one 
priority class (larger slice, less 
frequent)

• Interaction  back to highest 
priority class

• Short, interactive should run 
more often

• Proved viability of time sharing

“Priority”
0
1
2
3

Time slices
1
2
4
8



Scheduling in UNIX
• Many versions 

• User processes have positive 
priorities, kernel negative

• Schedule lowest priority first
• If a process uses the whole 

time 
slice, it is put back at the end 
of 
the queue (RR [round robin])

• Each second the priorities are 
recalculated:
priority = 
CPU_usage (average #ticks)
+ nice (+- 20)
+ base (priority of last corresponding 

kernel process)



Scheduling in UNIX (4.4BSD)

• Similar to last slide

• Time slices of 100 ms

• Priorities is updated every 4th tick (40 ms)

p_usrpri = PUSER + [p_estcpu x ¼] + 2 x p_nice

– PUSER defaults to 50 (min), may be changed but here one 
uses only values between 50 and 127

– p_estcpu = 
• running process: [(2 x load)/(2 x load + 1)] x p_estcpu + p_nice

 

• blocked process: [(2 x load)/(2 x load + 1)]p_sleeptime x p_estcpu 

– p_nice defaults to 0 



Scheduling in Windows 2000
• Preemptive kernel
• 32 priority levels - Round Robin (RR) in each
• Schedules threads individually

• Processor affinity

• Default time slices (3 quantums = 10 ms) of
– 120 ms – Win2000 server
– 20 ms – Win2000 professional/workstation
– may vary between threads

• Interactive and throughput-oriented: 
– “Real time” – 16 system levels 

• fixed priority
• may run forever

– Variable – 15 user levels
• priority may change –  thread priority = process 

priority ± 2
• uses much CPU cycles  drops
• user interactions, I/O completions  increase

– Idle/zero-page thread – 1 system level
• runs whenever there are no other processes to run
• clears memory pages for memory manager

31

30

... 

17

16

15

14

... 

2

1

0

Real Time (system thread)

Variable (user thread)

Idle (system thread)



Scheduling in Linux <= 2.6.23
• Linux <= 2.4.x: Threads ~ processes
• Linux 2.6.x: thread scheduling

• SHED_FIFO
– may run forever, no timeslices
– may use it’s own scheduling algorithm

• SHED_RR
– each priority in RR
– timeslices of 10 ms (quantums)

• SHED_OTHER
– ordinary user processes
– uses “nice”-values: 1≤ priority≤40 
– timeslices of 10 ms (quantums)

• Threads with highest goodness are selected 
first:

– realtime (FIFO and RR):
goodness = 1000 + priority

– timesharing (OTHER): 
goodness = (quantum > 0 ? quantum + priority : 
0)

• Quantums are reset when no ready 
process has quantums left:
quantum = (quantum/2) + priority

• O(1) from 2.6.1

1

2

... 

126

127

1

2

... 

126

127

default (20)

-20

-19

... 

18

19

SHED_FIFO

SHED_RR

SHED_OTHER

nice



Linux CFS Scheduler (kernel >= 2.6.23)

• Used for SCHED_OTHER
• Waiting processes added to time ordered tree of all 

waiters
– red/black binary search tree

• Remove 'smallest' = O(1), insert is O(log n) for n 
waiters

• Tasks can be scheduled at fine granularity
– 'liberated' from timer interrupt frequency

• Simplifies logic
– no need to 'switch between queues'

– no interactivity heuristics

• Tuned with single parameter:
/proc/sys/kernel/sched_min_granularity_ns



Lottery Scheduling
• Motivations

– SRTCF does well with average response time, but 
unfair

– Guaranteed scheduling may be hard to implement
– Adjust priority is a bit ad hoc.  For example, at what 

rate?

• Lottery method
– Give each job a number of tickets
– Randomly pick a winning tickets
– To approximate SRTCF, short jobs gets more tickets
– To avoid starvation, give each job at least one ticket
– Allows ticket exchange

C.A. Waldspurger and W.E. Weihl, “Lottery Scheduling: Flexible Proportional-Share 
Resource Management.”
Proc. of the 1st USENIX Symp. on Operating System Design and Implementation (OSDI). 
Nov 1994.



Fair Share
• Each PROCESS should have an equal share of 

the CPU
• History of recent CPU usage for each process
• Process with least recently used CPU time := 

highest priority
  an editor gets a high priority
  a compiler gets a low priority

• Each USER should have an equal share of the 
CPU

• Take into account the owner of a process 
• History of recent CPU usage for each user



Real-Time Scheduling

process 1 process 2 process 3 process 4 process N RT process…

RT process

request

round-robin

process 1 process 2 process 3 process 4 process N…

RT process

request
priority,
non-preemtive

delay

RT process

delay

process 1 process 2 process 3 process 4 process N…

request
priority,
preemtive p 1 p 1 process 2 process 3 process 4 process N…

RT process

RT process p 1 process 2 process 3 process 4 process N…

only delay switching and interrupts

NOTE: preemption may also be limited to preemption points (fixed 
points where the scheduler is allowed to interrupt a running process) 
 giving larger delays



• Real-time tasks are often periodic 
(e.g., fixed frame rates and audio sample 
frequencies)

• Time constraints for a periodic task:
– s – starting point

(first time the task require processing)
– e – processing time
– d – deadline 
– p – period
– r – rate (r = 1/p)

– 0 ≤ e ≤ d 
(often d ≤ p: we’ll use d = p – end of period, but Σd ≤ Σp is 
enough)

– the kth processing of the task
• is ready at time s + (k – 1) p
• must be finished at time s + (k – 1) p + d

– the scheduling algorithm must account for these properties

Real-Time Scheduling 

s time

e
d

p



Schedulable Real-Time Systems

• Given
– m periodic events
– event i occurs within period Pi and requires Ci seconds

• Then the load can only be handled if

• Can we process 3 video streams, 25 fps, 
each frame require 10 ms CPU time?

– 3 * (10ms/40ms) = 3 * 25 * 0.010 = 0.75 < 1  YES

1

1
m

i

i i

C

P=

≤∑



Rate Monotonic (RM) Scheduling 
• Classic algorithm for hard real-time systems with one 

CPU 
[Liu & Layland ‘73]

• Pre-emptive scheduling based on static task priorities

• Optimal: no other algorithms with static task priorities 
can schedule tasks that cannot be scheduled by RM

• Assumptions:
– requests for all tasks with deadlines are periodic
– the deadline of a task is equal to the end on its period 

(starting of next)
– independent tasks (no precedence)
– run-time for each task is known and constant
– context switches can be ignored
– any non-periodic task has no deadline



• Process priority based on task periods
– task with shortest period gets 

highest static priority
– task with longest period gets 

lowest static priority
– dispatcher always selects task requests with highest 

priority

• Example:

Rate Monotonic (RM) Scheduling

p
rio

rity

period length

shortest period, 
highest priority

longest period, 
lowest priority

Task 1

p1

Dispatching

Task 2

p2 P1 < P2 

 P1 highest 
prioritypreemption



Earliest Deadline First (EDF)  
• Preemptive scheduling based on dynamic task 

priorities

• Task with closest deadline has highest priority
 priorities vary with time

• Dispatcher selects the highest priority task

• Assumptions:
– requests for all tasks with deadlines are periodic
– the deadline of a task is equal to the end on its period 

(starting of next)
– independent tasks (no precedence)
– run-time for each task is known and constant
– context switches can be ignored



Earliest Deadline First 
(EDF)

• Example:

Task A

Task B
time

Dispatching

deadlines

priority A > priority B

priority A < priority B



EDF Versus RM – I 

Task A

Task B

Rate monotonic

time

deadline miss

Earliest deadline first

deadlines

Rate monotonic

deadline miss

RM may give some
deadline violations
which is avoided by EDF



EDF Versus RM – II

• EDF
– dynamic priorities changing in time
– overhead in priority switching
– QoS calculation – maximal throughput:

 Σ  Ri x Pi ≤ 1,  R – rate, P – processing time 

• RM
– static priorities based on periods
– may map priority onto fixed OS priorities (like Linux)
– QoS calculation:

 Σ  Ri x Pi ≤ ln(2),  R – rate, P – processing 
time 

all streams i

all streams i



Summary
• Scheduling performance criteria and 

goals are dependent on environment

• There exists several different algorithms 
targeted for various systems

• Traditional OSes like Windows, Unix, 
Linux, ... usually uses a priority-based 
algorithm

• The right time slice can improve overall 
utilization
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