
1

Memory management

Knut Omang
Ifi/Oracle

26 Mar, 2014

(with slides from V. Goebel, C. Griwodz (Ifi/UiO), P. Halvorsen
(Ifi/UiO), K. Li (Princeton), A. Tanenbaum (VU Amsterdam), and

M. van Steen (VU Amsterdam))

Today

● Basic memory management

● Swapping

● Page as memory unit

● Segmentation

● Virtual memory

● Page/segment allocation implementation

● Paging

● Page replacement algorithms

2

3

Memory Management

• Ideally programmers want memory that is

– large

– fast

– non volatile

• Memory hierarchy

– small amount of fast, expensive memory – cache

– some medium-speed, medium price main memory

– gigabytes of slow, cheap disk storage

• Memory manager handles the memory hierarchy

4

Computer Hardware Review

• Typical memory hierarchy
– numbers shown are rough approximations

< 1 KB

4 MB

2-64 GB

1-2 TB

3

5

Models for Memory Management with no
memory abstraction support

- Physical addresses used directly

- still need to organize

6

No memory abstraction - implications

● Only one program can easily be present at

a time!

● If another program needs to run, the entire

state must be saved to disk

● No protection...

4

7

Multiprogramming

• Processes have to wait for I/O

• Goal

– Do other work while a process waits

– Give CPU to another process

• Processes may be concurrently ready

• So assuming n processes:

– If I/O waiting probability for any process is p

– Probable CPU utilization can be estimated as

CPU utilization = 1 – pn

8

Multiprogramming

• CPU utilization as a function of number of
processes in memory

Degree of multiprogramming

5

9

Multiprogramming

• Several programs
– Concurrently loaded into memory

– OS must arrange memory sharing

– Memory partitioning

• Memory
– Needed for different tasks within a process

– Shared among processes

– Process memory demand may change over time

• Use of secondary storage
– Move (parts of) blocking processes from memory

– Higher degree of multiprogramming possible

– Makes sense if processes block for long times

10

Memory Management for
Multiprogramming
• Process may not be entirely in memory

• Reasons

– Other processes use memory

• Their turn

• Higher priority

• Process is waiting for I/O

– Too big

• For its share

• For entire available memory

• Approaches

– Swapping

– Paging

– Overlays

DRAM

Disk

Registers

Cache(s) 2x

100x

109x

Paging
Swapping
Overlays

6

11

Memory Management for
Multiprogramming

• Swapping
– Remove a process from memory

• With all of its state and data
• Store it on a secondary medium

– Disk, Flash RAM, other slow RAM, historically also Tape

• Paging
– Remove part of a process from memory

• Store it on a secondary medium
• Sizes of such parts are fixed
• Page size

• Overlays
– Manually replace parts of code and data

• Programmer’s rather than OS’s work
• Only for very old and memory-scarce systems

12

Memory Management Techniques
- How to assign memory to processes

• Memory partitioning:

– Fixed partitioning

– Dynamic partitioning

– Simple paging

– Simple segmentation

– Virtual memory paging

– Virtual memory segmentation

7

13

Fixed Partitioning

• Divide memory

– Into static partitions

– At system initialization time (boot or earlier)

• Advantages

– Very easy to implement

– Can support swapping process in and out

14

Fixed Partitioning

• Two fixed partitioning
schemes

– Equal-size partitions

– Unequal-size partitions

• Equal-size partitions

– Big programs can not be
executed

• Unless program parts
are loaded from disk

– Small programs use
entire partition

• A problem called
“internal fragmentation”

Operating system
8MB

8MB

8MB

8MB

8MB

8MB

8MB

8MB

0x0

0x…fff

8

15

Fixed Partitioning

• Two fixed partitioning
schemes

– Equal-size partitions

– Unequal-size partitions

• Unequal-size partitions

– Bigger programs can be
loaded at once

– Smaller programs can
lead to less internal
fragmentation

– Advantages require
assignment of jobs to
partitions

Operating system
8MB

8MB

8MB

8MB

8MB

8MB

8MB

8MB

Operating system
8MB

8MB

8MB

2MB
4MB

6MB

12MB

16MB

16

Fixed Partitioning

• Approach
– Has been used in mainframes

– Uses the term job for a running
program

– Jobs run as batch jobs

– Jobs are taken from a queue of
pending jobs

• Problem with unequal
partitions
– Choosing a job for a partition

Operating system
8MB

8MB

8MB

2MB
4MB

6MB

12MB

16MB

9

17

Fixed Partitioning

• One queue per
partition

– Internal
fragmentation is
minimal

– Jobs wait although
sufficiently large
partitions are
available

Operating system
8MB

8MB

8MB

2MB
4MB

6MB

12MB

16MB

18

Fixed Partitioning
• Single queue

– Jobs are put into next
sufficiently large partition

– Waiting time is reduced

– Internal fragmentation is
bigger

– A swapping mechanism
can reduce internal
fragmentation

• Move a job to another
partition

Operating system
8MB

8MB

8MB

2MB
4MB

6MB

12MB

16MB

10

19

Problems: Relocation and Protection

• Cannot be sure where program will be loaded in
memory

– address locations of variables, code routines cannot be
absolute

– must keep a program out of other processes’ partitions

• Base and limit values: Simplest form of virtual
memory (translate: virt --> phys)

– address locations added to base value to map to phys. addr

– address locations larger than limit value is an error

2 Registers: Base and Bound

• Built in Cray-1

• A program can only access
physical memory in [base,
base+bound]

• On a context switch:
save/restore base, bound
registers

• Pros: Simple

• Cons: fragmentation, hard to
share, and difficult to use
disks

virtual address

base

bound

error

+

>

physical address

11

21

Dynamic Partitioning
• Divide memory

– Partitions are created
dynamically for jobs

– Removed after jobs
are finished

• External
fragmentation
– Problem increases

with system running
time

– Occurs with
swapping as well

– Addresses of process
2 changed

Operating system

8MB

56MB free

Process 1
20MB

36MB free

22MB free

Process 2
14MB

4MB free

Process 3
18MB

14MB free

Process 4
8MB

6MB free

20MB free

Process 5
14MB

6MB

External
fragmentation

Swapped in

Process 2
14MB

6MB free

Solutions to address
change:

Address Translation

22

Operating system

8MB

Dynamic Partitioning

• Reduce external
fragmentation
– Compaction

• Compaction
– Takes time

– Consumes processing
resources

• Reduce compaction need
– Placement algorithms

4MB free

Process 3
18MB

Process 4
8MB

6MB free

Swapped in
Process 2

14MB

6MBProcess 4
8MB

6MB free

Process 3
18MB

6MB free

6MB free

16MB free

12

23

Dynamic Partitioning: Placement
Algorithms

• Use most suitable
partition for
process

• Typical algorithms

– First fit

– Next fit

– Best fit

128MB 128MB 128MB

16MB 16MB16MB

4MB 4MB 4MB
8MB 8MB 8MB

6MB 6MB 6MB

16MB 16MB 16MB

8MB 8MB 8MB

4MB

4MB

4MB

8MB
8MB

8MB

6MB

6MB

6MB

8MB

8MB

8MB

16MB

16MB

16MB

32MB 32MB

32MB

First Next Best

24

Dynamic Partitioning: Placement
Algorithms

• Use most suitable
partition for
process

• Typical algorithms

– First fit

– Next fit

– Best fit

128MB 128MB

4MB 4MB

16MB 16MB

4MB

4MB

8MB

6MB

6MB

8MB

32MB 32MB

12MB

12MB

12MB

12MB

10MB

10MB

16MB 16MB

8MB
8MB

First Best

13

25

Dynamic Partitioning: Placement
Algorithms

• Comparison of First fit, Next fit and Best fit

• Example is naturally artificial

– First fit

• Simplest, fastest of the three

• Typically the best of the three

– Next fit

• Typically slightly worse than first fit

• Problems with large segments

– Best fit

• Slowest

• Creates lots of small free blocks

• Therefore typically worst

26

Memory management: bookkeeping

Two main strategies:

• Bitmaps

– Bit indicate free/allocated

• Using linked lists

– Keep list(s) of free/allocated segments

14

27

Memory Management: bitmaps/lists

• Part of memory with 5 processes, 3 holes
– tick marks show allocation units

– shaded regions are free

• b) corresponding bit map

• c) same information as a list

28

Buddy System

• Mix of fixed and
dynamic partitioning
– Partitions have sizes 2k,

L ≤ k ≤ U

• Maintain a list of holes
with sizes

• Assign a process
– Find smallest k so that

process fits into 2k

– Find a hole of size 2k

– If not available, split
smallest hole larger than
2k

• Split recursively into
halves until two holes
have size 2k

1MB

512kB

512kB

256kB

256kB

128kB

128kB

Process

128kB

256kB

Process
256kB

256kB
Process

256kB

Process
128kBProcess
256kB

Process 32kB

64kB

64kB
32kB
32kBProcess 32kB

15

29

Memory use within a process
• Memory needs of

known size

– Program code

– Global variables

• Memory needs of
unknown size

– Dynamically allocated
memory

– Stack

• Several in multithreaded
programs

program

Initialized global

variables (data)
Uninitialized global vars

PCB

Uninitialized global
variablesdata

stack

Possibly stacks for more threads

Process

30

Memory Addressing

• Addressing in memory

– Addressing needs are
determined during
programming

– Must work
independently of
position in memory

– Actual physical address
are not known

– Leave enough room for
growth (but not too
much!)

program

PCB

data

stack

16

31

Paging
• Paging

– Equal lengths

– Determined by processor

– One page moved into one
memory frame

• Process is loaded into
several frames

– Not necessarily
consecutive

• No external
fragmentation

• Little internal
fragmentation

– Depends on frame size

Process 1Process 2Process 3Process 4Process 5Process 1

Paging

• Use a page table to
translate

• Various bits in each entry

• Context switch: similar to
the segmentation scheme

• What should be the page
size?

• Pros: simple allocation,
easy to share

• Cons: big page table and
cannot deal with holes
easily

VPage # offset

Virtual address

...

>
error

PPage# ...

PPage# ...

...

PPage # offset

Physical address

Page table

page table size

17

33

Segmentation

• Segmentation
– Different lengths

– Determined by programmer

– Memory frames

• Programmer (or compiler toolchain) organizes
program in parts
– Move control

– Needs awareness of possible segment size limits

• Pros and Cons
– Principle as in dynamic partitioning

– No internal fragmentation

– Less external fragmentation because on average smaller
segments

Segmentation

• Have a table of (seg, size)

• Protection: each entry has

– (nil, read, write)

• On a context switch:
save/restore the table or a
pointer to the table in
kernel memory

• Pros: Efficient, easy to
share

• Cons: Complex
management and
fragmentation within a
segment

physical address

+

segment offset

Virtual address

seg size

...

>
error

18

35

Paging

• Typical for paging
and swapping

– Address translation

– At execution time

– With processor
support

Simple paging and segmentation
Without virtual memory and

protection

Can be implemented

by address rewriting at load time

by jump tables setup at load time

Code part 1

Code part 2

(“part 2”,

offset in part 2)Lookup

table

+
Simplified

Address translation

Segmentation with paging and
virtual address space

VPage # offset

Virtual address

...

>

PPage# ...

PPage# ...

...

PPage # offset

Physical address

Page table
seg size

...

Vseg #

error

19

37

Other needs (protection)

• Protection of process
from itself

– (stack grows into
heap)

• Protection of
processes from each
other

– (write to other
process)

program

PCB

data

stack

program

data

stack

program

data

stack
Solutions to protection:

Address Translation

38

Why Address Translation and
Virtual Memory?
• Use secondary storage

– Extend expensive DRAM with reasonable

performance

• Protection

– Programs do not step over each other and
communicate with each other require explicit IPC
operations

• Convenience

– Flat address space

– Programs share same view of the world

– Programs/program parts can be moved

20

39

Page Replacement Algorithms

• Page fault forces choice

– which page must be removed

– make room for incoming page

• Modified page must first be saved

– unmodified just overwritten

• Better not to choose an often used page

– will probably need to be brought back in soon

40

Optimal Page Replacement Algorithm

• Replace page needed at the farthest point in future

– Optimal but unrealizable

• Estimate by …

– logging page use on previous runs of process

– although this is impractical

21

41

Not Recently Used (NRU)

● Two status bits associated with each page:

R page referenced (read or written)

M page modified (written)

● Pages belong to one of four set of pages according

to the status bits:

● Class 0: not referenced, not modified (R=0, M=0)

● Class 1: not referenced, modified (R=0, M=1)

● Class 2: referenced, not modified (R=1, M=0)

● Class 3: referenced, modified (R=1, M=1)

● NRU removes a page at random

– from lowest numbered, non-empty class

● Low overhead

42

FIFO Page Replacement Algorithm

• Maintain a linked list of all pages

– in order they came into memory

• Page at beginning of list replaced

• Disadvantage

– page in memory the longest may be often used

22

43

Page most
recently loaded

Page first
loaded

R-bit

Second Chance

• Modification of FIFO

• R bit: when a page is referenced again, the R bit is set,
and the page will be treated as a newly loaded page

Reference string: A B C D A E F G H I

E

0

D

0

C

0

B

0

A

1

F

0

E

0

D

0

C

0

B

0

A

1

G

0

F

0

E

0

D

0

C

0

B

0

A

1

D

0

C

0

B

0

A

0

D

0

C

0

B

0

A

1

The R-bit for page A is set

H

0

G

0

F

0

E

0

D

0

C

0

B

0

A

1

Now the buffer is full, next page fault results in a
replacement

H

0

G

0

F

0

E

0

D

0

C

0

B

0

A

1

Page I will be inserted, find a page to page out by looking at the first page loaded:

-if R-bit = 0 → replace

-if R-bit = 1 → clear R-bit, move page last, and finally look at the new first page

A

0

H

0

G

0

F

0

E

0

D

0

C

0

B

0

Page A’s R-bit = 1 → move last in chain and clear R-bit, look at new first page (B)

I

0

A

0

H

0

G

0

F

0

E

0

D

0

C

0

Page B’s R-bit = 0 → page out, shift chain left, and insert I last in the chain

Second chance is a reasonable algorithm, but inefficient
because it is moving pages around the list

44

Reference string: A B C D A E F G H I

Clock
• More efficient way to implement Second Chance

• Circular list in form of a clock

• Pointer to the oldest page:

– R-bit = 0 replace and advance pointer

– R-bit = 1 set R-bit to 0, advance pointer until R-bit = 0, replace
and advance pointer

A

0

D

0

B

0

C

0

A

1

E

0

F

0

G

0

H

0

I

0

23

45

Least Recently Used (LRU)

• Replace the page that has the longest time since last
reference

• Based on observation:

– pages that are heavily used in the last few
instructions will probably be used again in the next

few instructions

• Several ways to implement this algorithm

46

Least Recently Used (LRU)

• LRU as a linked list:

Page most
recently used

Page least
recently used

Reference string: A B C D A E F G H A C I

E A D C BF E A D C BG F E A D C BD C B AA D B C

Move A last in the chain

(most recently used)

H G F E A D C B

Now the buffer is full, next page fault results in a replacement

I C A H G F E D

Page fault, replace LRU (B) with I

A H G F E D C B

Move A last in the chain

(most recently used)

C A H G F E D B

Move C last in the chain

(most recently used)

• Expensive - maintaining an ordered list of all pages in
memory:

• most recently used at front, least at rear

• update this list every memory reference !!

24

47

Implementing LRU

0 1 2 3

0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

0 1 2 3

0 1 1 1 1

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

0 1 2 3

0 0 1 1 1

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

0 1 2 3

0 0 0 1 1

1 1 0 1 1

2 0 0 0 0

3 0 0 0 0

0 1 2 3

0 0 0 0 1

1 1 0 0 1

2 1 1 0 0

3 0 0 0 0

Page ref: 012

Least recently used: Read binary value across

• Smallest value = LRU

Update algorithm:

When access occurs

hardware sets row bits

then resets column bits

48

Implementing LRU

LRU using a matrix – pages referenced in order
0,1,2,3,2,1,0,3,2,3

25

49

Implementing LRU

• Problem: Requires special hardware

• Lots of bits to update

• Software approximation?

– NFU (not frequently used)

• Scan R (referenced) bit of page table every clock
interrupt

– “aging” by bit shift

50

Least Recently Used (LRU)

Simulating LRU by using aging:
– ”reference counter” for each page
– after a clock tick:

• shift bits in the reference counter to the right
(rightmost bit is deleted)

• add a page’s referece bit in front of the reference counter (left)

– page with lowest counter is replaced

1 00000000

2 00000000

3 00000000

4 00000000

5 00000000

6 00000000

1 10000000

2 00000000

3 10000000

4 00000000

5 10000000

6 10000000

1 11000000

2 10000000

3 01000000

4 10000000

5 01000000

6 01000000

Clock tick 0
1 0 1 0 1 1

Clock tick 1
1 1 0 1 0 0

Clock tick 2
1 1 0 1 0 1

Clock tick 3
1 0 0 0 1 0

Clock tick 4
0 1 1 0 0 0

1 11100000

2 11000000

3 00100000

4 11000000

5 00100000

6 10100000

1 11110000

2 01100000

3 00010000

4 01100000

5 10010000

6 01010000

1 01111000

2 10110000

3 10001000

4 00110000

5 01001000

6 00101000

26

51

LRU-K & 2Q

• LRU-K: bases page replacement in the last K
references on a page [O’Neil et al.

93]

• 2Q: uses 3 queues to hold much referenced and

popular pages in memory [Johnson et al. 94]

• 2 FIFO queues for seldom referenced pages

• 1 LRU queue for much referenced pages

FIFO LRU FIFO

Retrieved from disk Reused, move to LRU queue NOT Reused, move to FIFO queue

NOT reused, page out

NOT reused, page out

Reused, re-arrange LRU queue Reused, move back

to LRU queue

52

Summary: Memory Management
• Algorithms

– Paging and segmentation
• Extended in address translation and virtual memory lectures

– Placement algorithms for partitioning strategies
• Mostly obsolete for system memory management

– since hardware address translation is available

• But still necessary for managing
– kernel memory
– memory within a process
– memory of specialized systems (esp. database systems)

• Address translation solves
– Solves addressing in a loaded program

• Hardware address translation
– Supports protection from data access
– Supports new physical memory position after swapping in

• Virtual memory provides
– Provide larger logical (virtual) than physical memory
– Selects process, page or segment for removal from physical

memory

