
1

More on Paging
Virtualization

Knut Omang
Ifi/Oracle

27 Mar, 2014

(with slides from V. Goebel, C. Griwodz (Ifi/UiO), P. Halvorsen
(Ifi/UiO), K. Li (Princeton), A. Tanenbaum (VU Amsterdam), and

M. van Steen (VU Amsterdam))

2

Today

• More on page replacement algorithms

• Design issues for paging systems

• Segmentation

• Addressing on x86

• Virtualization

2

3

The Working Set Page Replacement Algorithm

• The working set is the set of pages used by
the k most recent memory references

• w(k,t) is the size of the working set at time, t

k

4

Working Set Model

• Working set:
set of pages which a process is currently using

• Working set model:
paging system tries to keep track of each process’ working set and makes
sure that these pages is in memory before letting the process run
→ reduces page fault rate (prepaging)

• Defining the working set:

– set of pages used in the last k memory references (must count backwards)

– approximation is to use all references used in the last XX instructions

3

5

Working Set Page Replacement Algorithm

τ - time period to calculate the WS over

age - virtual time - last reference time

if all pages have R == 1

select one page randomly

Expensive - must search the whole
page table

6

The WSClock Page Replacement Algorithm

• Working set algorithm expensive

– Must scan whole table for each fault

• WSClock

– Has simple implementation

– good performance

– good approximation

• Principle: Virtual timestamp + walk through
circular list of used pages

– If R = 0, evict -> done

– If R = 1, R := 0 (consider scheduling flush)

4

7

The WSClock Page Replacement
Algorithm

8

Review of Page Replacement Algorithms

5

9

Locality and paging

• Reference locality:

– Time:
pages that are referenced in the last few instructions will
probably be referenced again in the next few instructions

– Space:
pages that are located close to the page being referenced
will probably also be referenced

10

Demand Paging Versus Prepaging

• Demand paging:
pages are loaded on demand, i.e., after a process needs it

• Should be used if we have no knowledge about future references

• Each page is loaded separatly from disk, i.e., results in many disk
accesses

• Prepaging:
prefetching data in advance, i.e., before use

• Should be used if we have knowledge about future references

• # page faults is reduced, i.e., page in memory when needed by a
process

• # disk accesses can be reduced by loading several pages in one
I/O-operation

6

11

Allocation Policies

• How should memory be allocated among the
competing runnable processes?

• Equal allocation:
all processes get the same amount of pages

• Proportional allocation:
amount of pages is depending on process size

12

Allocation Policies

• Local page replacement:
consider only pages of own process when replacing a page

• corresponds to equal allocation

• can cause thrashing

• multiple, identical pages in memory

• Global page replacemet:
consider all pages in memory when replacing a page

• corresponds to proportional allocation

• better performance in general

• monitoring of working set size and aging bits

• data sharing

7

13

Local versus Global Allocation Policies (2)

• Page fault rate as a function of the number of
page frames assigned to a process

14

PFF – Page fault frequency algorithm

• Measure page fault rate

• Allocate or reclaim pages to keep page faults
between dotted lines A and B

8

15

Load Control

● Despite good designs, system may still thrash

– When PFF (page fault frequency) algorithm
indicates

● some processes need more memory

● but no processes need less

● Solution :

Reduce number of processes competing for

memory

– swap one or more to disk, divide up pages they
held

– reconsider degree of multiprogramming

16

Page Size (1)

Small page size

• Advantages

– less internal fragmentation

– better fit for various data structures, code sections

– less unused program in memory

• Disadvantages

– programs need many pages, larger page tables

9

17

Page Size (2)

• Overhead due to page table and internal
fragmentation

• Where
– s = average process size in bytes

– p = page size in bytes

– e = page table entry

2

s e p
overhead

p

⋅
= +

page table space

internal
fragmentation

Optimized when

2p se=

18

Separate Instruction and Data Spaces

• One address space

• Separate I and D spaces

10

19

Shared Pages

Two processes sharing same program sharing its page table

20

Cleaning Policy

• Need for a background process, paging daemon

– periodically inspects state of memory

• When too few frames are free

– selects pages to evict using a replacement algorithm

• It can use same circular list (clock)

– as regular page replacement algorithm but with diff
ptr

11

21

Implementation Issues
Operating System Involvement with Paging

1 Process creation
– determine program size

– create page table

2 Process execution
– MMU reset for new process

– TLB flushed

3 Page fault time
– determine virtual address causing fault

– swap target page out, needed page in

4 Process termination time
– release page table, pages

22

Page Fault Handling (1)

1.Hardware traps to kernel

2.General registers saved

3.OS determines which virtual page needed

4.OS checks validity of address, seeks page
frame

5.If selected frame is dirty, write it to disk

12

23

Page Fault Handling (2)

1 OS brings schedules new page in from disk

2 Page tables updated

– Faulting instruction backed up (undone)

– Faulting process scheduled

3 Registers restored

4 Program continues

24

Paging Daemons

• Paging daemons:
Background process which sleeps most of the time, but is for example
awakened periodically or when the CPU is idle

– Taking care that enough free page frames are
available by writing back modified pages before they
are reused

– Prepaging

13

25

Locking Pages in Memory

• Virtual memory and I/O occasionally interact

• Proc issues call for read from device into
buffer

– DMA (Direct Memory Access -from device)

– while waiting for I/O, another processes starts
up

– has a page fault

– buffer for the first proc may be chosen to be
paged out

• Need to specify some pages locked

– exempted from being target pages

26

Backing Store

(a) Paging to static swap area

(b) Backing up pages dynamically

14

27

Separation of Policy and Mechanism

Page fault handling with an external pager

28

Segmentation (1)

– One-dimensional address space with growing tables

– One table may bump into another

15

29

Segmentation (2)

Allows each table to grow or shrink, independently

30

Segmentation (3)

Comparison of paging and segmentation

16

31

Segmentation with Paging: Pentium (1)

• A Pentium segment selector

– CS register stores code segment selector

– DS register stores data segment selector

32

Segmentation with Paging: Pentium (2)

• Pentium code segment descriptor

• Data segments differ slightly

17

33

Segmentation with Paging: Pentium (3)

• Two tables

– LDT (Local Descriptor Table)

– GDT (Global Descriptor Table)

• Each segment up to 1G 32bit words

– maps to 32 bit 'linear' address

• Linear address used to lookup in MMU

34

Segmentation with Paging: Pentium (4)

Conversion of a (selector, offset) pair to a linear
address

18

35

Segmentation with Paging: Pentium (5)

• Mapping of a linear address onto a physical address

• Dir: pointer to the right page table

• Each page table: 1024 entries of 4K = 4M addr.space

36

PAE (Physical Address Extension)

19

Intel x86_64 page tables

Overhead?

• Each entry 64 bit: 4K / 8 = 512 PTEs per page

• > 2M: +1 Page directory pages
• > 1G: + Page pointers directory pages

• > 512G: + 1 PML4 page…

38

Protection on the Pentium

Level

20

39

Virtualization

● Present a machine abstraction to guest
operating systems:

– Host operating system (often called hypervisor)
sees whole computer

– Guest operating system sees only a partition of
the real computer

– Adds another layer of protection

● OS fault only affects part of the system

● What about hardware fault? ...

– Flexibility wrt use of resources

● Imagine 100 services each 99% idle but requiring a

separate computer (Why?...)

40

Virtualization -> isolation!

● Popek and Goldberg,1974:

– Sensitive instructions: Instructions that for
protection reasons must be executed in kernel
mode

– Privileged instructions: Instructions that causes a
trap

– A machine is virtualizable iff the set of sensitive
instructions is a subset of the set of privileged
instructions.

21

41

Virtualization before ca.1995

● IBM CP/CMS -> VM/370, 1979

– Hardware support: Traps sensitive instructions

– Architecture still in use for IBM “mainframes”

● Largely ignored by others

– Taken up by Sun and HP around in 1990's

– x86-world? Difficult because

● Some sensitive instructions are ignored in user

mode!

● Some sensitive instructions are allowed from user
mode!

42

Virtualization in the (limited) x86

● Solutions

– Interpretation (emulating the instruction set)

● Performance penalty of factor 5-10

● Benefit: May emulate any type of CPU

– “Full” virtualization

● Privileged instructions in guest OS'es rewritten by

virtualization software (binary translation)

● Stanford DISCO --> VmWare workstation

● Does not require source code of OS..

– Paravirtualization

● Replacing parts of the guest operating system with

custom code for virtualization

22

43

Virtualization in the (limited) x86

● Problems:

– Performance

● I/O

● Page faults

● Interrupts (when?)

● Virtual Machine perf

● Host resource usage

– Avoidig 'leaking' instructions

● Pentium allows instruction that makes it possible to
determine if it is executed in kernel mode

● Might confuse OS..

x86 virtualization in Xen (Paravirtualization)

● Uses x86 privilege levels differently:

– Rings: 0, 1, 2, 3 (highest to lowest privilege)

– Normally OS executes in ring 0 and applications
execute in ring 3

– With Xen

● 0 – Hypervisor

● 1 – Guest OS

● 2 – unused

● 3 – Applications

● Guest OS modified for privileged instructions

● VMWare ESX: similar approach

23

45

Virtualization models
Special OS as hypervisor

or extensions to “full” OS

46

Virtualization terms

● Type 1 hypervisors:

– Based solely on traps

● requires sensitive � privileged)

● Type 2 hypervisors:

– Based on some amount of binary translation on
the fly

● Both runs unmodified OS'es

24

47

Virtualization with VT/SVM

● VT(Intel) and SVM(AMD):

– Inspired by VM/370

– Set of operations that trap controlled by bitmap
managed by host OS/hypervisor

– Present in most(all?) newer 64 bit versions of
AMD/Intel processors

– Allows type 1 hypervisors

– Effectively privileged mode, guest privileged
mode and user mode..

– A lot of open source activity around this:

● Qemu/KVM, VirtualBox, Xen,...

48

Memory virtualization

● Problem: Naive implementation would cause

contention for physical pages!

– Requires shadow page tables for guests, second
layer of indirection:

● Host physical addresses

● Guest physical addresses

● Guest virtual addresses

● Solution:Multi-level page tables

– Available in newer CPUs

25

49

I/O Virtualization
● Virtual I/O devices:

– Each OS expects it's own disk controllers, USB ports, keyboards, network devices...
– DMA?

● Emulation
– Typical: simple devices emulated

● IDE disk drive, simple PCI bus, simple USB device, old and simple network
card

– Emulation causes performance issues

● Paravirtualization
– “Invent” new devices with special drivers
– I/O Rings (Xen/KVM) – virtio
– Spice (graphics)
– Driver+support optimized for the context of host/guest OS

● Can dedicate devices to Vms
– But how to maintain security? DMA?
– A guest can be viewed as a user level program running on hypervisor

● High end devices with hardware support:
– Multiple logical devices in single physical
– PCI Express extensions for virtualizaton: SR/IOV

