
Knut Omang
 Ifi/Oracle

12 Feb, 2014

(with slides from several people)

More on
Concurrency and Threads

Today:
• Thread implementation

– user/kernel/hybrid
– communication between threads?

• Understanding the hardware
– effect of cache misses
– context switch performance

Why Threads?

• Utilize multiple cores/multiple CPUs
• Few plausible alternatives…

• As an abstraction to simplify
programming
– Separate independent tasks

– GUI vs I/O

– Just simplify programming model

Many names/ways of thinking about
(quasi-)parallelism – not new..

• Co-routines (Simula-67)
– Call/detach

• Event-driven programming
– Inner loop processing events
– Everything becomes events…
– Asynchronous interfaces needed

• Continuations (from functional languages)

• User level threads…

A modern thread API

• Thread manipulation
– create/cancel
– join (wait for child(ren) to terminate)

• Mutual exclusion
– lock (acquire), unlock (release)

• Condition variables/monitors
– wait, signal, broadcast

• Scheduler hints
– yield,exit, sched.policy, signal policy/send…
– thread affinity

Implementing threads in the
kernel

– Threads created/destroyed by kernel calls
• optimization by recycling threads

– Kernel table per process, one entry per
thread

– Kernel does scheduling
• clock interrupts available
• blocking calls and page faults no problem

– But: Performance penalty of thread mgmt
in kernel:
• User/kernel switch overhead

Solution: schemes to collaborate
between user/kernel mode

”Typical” schema:
• Let kernel and user mode

communicate
• Let user mode library code decide

when a full process switch is
needed and when ’fast paths’ can
be taken
– Scheduler Activations
– Futexes – used by Linux NPTL

Hybrid
model (M on
N)

single threaded
kernel
Multithreaded kernel

Implementation of threads

KERNEL

Thread
scheduling

Scheduler Activations - Design

● Combine advantages of kernel space
implementation with performance of user space
implementations

● Scheduler activations provide an interface between
the kernel and the user-level thread package:

– Kernel is responsible for processor allocation and notifying
the user-level of events that affect it.

– User-level is responsible for thread scheduling and notifies
the kernel of events that affect processor allocation
decisions.

– Avoid unnecessary transitions between user and kernel
space

Scheduler Activations -
Implementation

● Kernel assigns virtual processors to each process

● User level runtime system allocates threads to processors

● The kernel informs the process’s runtime system via an
upcall when one of its blocked threads becomes runnable
again

● Upcalls: Implemented similar to signals in UNIX - async
event

● Runtime system can schedule

● Runtime system has to keep track when threads are in or
are not in critical regions

● Example of hybrid solution

● Objection: Upcalls violate the layering principle

Scheduler Activations

User program

(1) (2) (1) (2) (3) (4)

Ready list

OS Kernel

User-level

Runtime

System

(B)(A)

add
processor

add
processor

Scheduler Activations

User program

(1) (2) (3) (4)

Ready list

OS Kernel

User-level

Runtime

System

(A) (B)

(3)

(C)

A’s thread has
blocked

Blocking I/O

Scheduler Activations

User program

(1) (2) (1) (2)(4)

Ready list

OS Kernel

User-level

Runtime

System

(A) (B)

(3)

(C)

I/O Completed

(D)

A’s thread and B’s
thread can
continue

Scheduler Activations

User program

(4) (2)

Ready list

OS Kernel

User-level

Runtime

System

(3)

(C)

(1)

(D)

Futex - fast userspace locking
int futex(int *uaddr, int op, int val, const

struct timespec *timeout, int *uaddr2, int
val3);

op: {FUTEX_WAIT, FUTEX_WAKE}

int stat = 0;

int mutex = 1;

...

void lock(int *mutex)

{

 int gotval =

 atomic_dec_unless(&mutex, -1);

 while (gotval != 0 && !stat)

 {

 stat = futex(&mutex, FUTEX_WAIT,

 gotval, NULL, NULL, 0);

 gotval =

 atomic_dec_unless(&mutex, -1);

 }

}

 (~ how it is done!) Linux >= 2.6

void unlock(int *mutex)

{

 int gotval =

 atomic_inc_return(&mutex);

 if (gotval == 0)

 {

 atomic_set(&mutex, 1);

 stat = futex(&mutex, FUTEX_WAKE,

 1, NULL, NULL, 0);

 }

}

Pop-Up Threads

• Creation of a new thread when message arrives
(a) before message arrives
(b) after message arrives

Pop-Up Threads
• Reacting fast to external events

– Packet processing is meant to last a short
time

– Packets may arrive frequently

• Questions with pop-up threads
– How to guarantee processing order without

loosing efficiency?
– How to manage time slices? (process

accounting)
– How do schedule these threads efficiently?

18

Thread Cancellation
• Terminating a thread before it has

finished
• Reason:–

– Some other thread may have
completed the joint task

– E.g., searching a database

• Issues:
• Other threads may be depending cancelled

thread for resources, synchronization, etc.
• May not be able to cancel one until all can be

cancelled

19

Thread Cancellation
(continued)

• Two general approaches:
– Asynchronous cancellation terminates

the target thread immediately
– Deferred cancellation allows the

target thread to periodically check if it
should cancel itself

• pthreads provides cancellation
points

The simplified memory
system

CPUCPU

MemoryMemory

registers

The reality today (simple machine...)

AMD
Phenom
X4

AMD
Phenom
X4

MemoryMemory

AMD
Phenom
X4

AMD
Phenom
X4

The reality today (cont.)

Architecture of an
AMD Phenom X4

Core 0

The reality today (cont.)

Internals of an AMD Phenom core

Intel Nehalem (i7)

“Shared” memory?
• Processors usually reads/writes caches
• Sharing with another processor/core

requires communication
• Optimal performance when optimal

communication pattern
• write can be non-blocking
• reads are blocking
• Memory are more or less “local”
• Best if write to 'remote' - read 'locally'

What can we assume about
memory accesses?
• “A read from any given address always

returns the value of the latest write to that
address”

• Read and writes are atomic
• What about order of writes?
• And what goes on during a write?

– Depends on consistency model
– Varies between CPUs and memory

architectures and settings..

False Sharing

Int cnt[2];
A: cnt[0]++;
B: cnt[1]++;

cnt[0] cnt[1]

cacheline

A False Sharing test

volatile int count[2];

#ifdef FALSE
worker(void * arg)
{
 int i,index=(int)arg;
 for(i=0;i<100000000; i++)
 count[index]++;
}
#else
worker(void * arg)
{
 int i,index=(int)arg;
 int temp=0;

 for(i=0;i<100000000; i++)
 temp++;

 count[index]+=temp;
}
#endif

main()
{
 pthread_t t;

 pthread_create(&t,NULL,worker,NULL);
 worker((void *)1);

 printf("%d %d\n",count[0],count[1]);

}

False Sharing
13.190u 0.020s 0:06.79 194.5% 0+0k 0+0io 245pf+0w

No False Sharing
 2.690u 0.000s 0:01.36 197.7% 0+0k 0+0io 245pf+0w

Context switch Performance

Operation User level threads Kernel-level threads Processes

Null fork

Signal-wait

34μs

37μs

948μs

441μs

11,300μs

1,840μs

Taken from Anderson et al 1992

Why?
•Thread vs. Process Context
switching

•Cost of crossing protection
boundary

•User level threads less general, but
faster

•Kernel level threads more general,
but slower

•Can combine: Let the kernel
cooperate with the user level
package

Observations
•Look at relative numbers as computers are faster in 2009 vs. 1992

•Fork: 1:30:330

•Time to fork off around 300 user level threads ~time to fork off one
single process

•Fork off 5000 threads/processes: 0.005s:0.15s:1,65s. OK if long
running application. BUT we are now ignoring other overheads when
actually running the application.

•Signal/wait: 1:12:50

•Assume 20M signal/wait operations: 0,3min:4 min:16,6min. Not OK.

Memory subsystem numbers – more
up-to-date (double writes)

CPU 1 level
cache
access
time

Memory
access
time

Linux
bogomips*

cores

'Instr'
per

cache
miss

AMD-K6, 0.5 GHz 12 ns 80 ns ~1000 80

Athlon XP 1600+, 1.4
GHz

2.5 ns 14 ns ~2800 39

AMD Athlon 64 X2, 2.3
GHz

3.0 ns 12 ns ~4000 55

Intel Xeon 2.1 GHz (2
core)

1.0 ns 5 ns ~8400 30

AMD Phenom X4, 2.6 GHz 1.3 ns 2.2 ns ~20800 11

Measuremens using cachebench:
 http://icl.cs.utk.edu/projects/llcbench/cachebench.html

Context switch overhead (newer
hardware)

CPU Context
switch
with

minimal
process

Context
switch
w/16KB
array

(stride
512)

'Instr' per
switch

(stride
512)

AMD-K6, 0.5 GHz 6.1 µs 7.3 µs 7300

Athlon XP 1600+, 1.4 GHz 2.3 µs 3.7 µs 10359

AMD Athlon 64 X2, 2.3 GHz 3.2 µs 5.0 µs 23000

Intel Xeon 2.1 GHz (2 core) 0.8 µs 1.7 µs 10707

AMD Phenom X4, 2.6 GHz 1.5 µs 2.5 µs 19500

Test code from
 http://www.cs.rochester.edu/u/cli/research/switch.htm

Context switch overhead

Interprocess(-thread)
communication
“True” multithreading

– preemptive scheduling of threads/processes
– multiple CPUs

• Introduces non-determinism:
– different executions of the same program

with same input may produce different
results

• Non-determinism wrt. computing results
usually a bad idea
– race conditions!

Safe interprocess communication
using shared memory

Based on trust - no way to stop ill-
behaved threads!

• Contract between participating threads
about usage of memory locations
– mutual exclusion by means of locks or

monitors (condition queues guarded by
locks)

– transactional: do something then rollback if
someone else appeared to do it first

– single writer/single reader schemes:
(efficient message passing in shared memory)

Safe interprocess communication –
some important issues:

● Murphy’s law for parallel programming:
– Anything that can go wrong will eventually go

wrong!

● No assumptions about thread speed (time
independence)
– “Ole-Johan’s semicolons” – the semicolon where it all may go

wrong...

● Forward progress
– All threads must at some point in time be able to continue

● With preemptive scheduling:
– a thread might lose control at any point!

Mutual exclusion principle

1. lock(A);
2. <read/modify state protected by

A>;
3. unlock(A);

No more than 1 process executing
between line 1 and 3 in any case.

– all others must wait

Mutual exclusion

Principle: Serialize access to resource
• self imposed protection
Key issues:
• Protection of data structure rather than

code segments!
• Partial monotonic ordering of locks in a

system must not be violated!
• Interrupts is a source of problems if not

properly implemented!

Mutual exclusion lock usage:
watch out for the implicit partial order between
locks!

lock(A)
 lock(B)
 unlock(B)
unlock(A)
…
lock(A)
 lock(C)
 unlock(C)
unlock(A)

A, B, C part of partial
monotonic ordering

 of all locks

A > B
A > C
means
A must always be grabbed
outside of C (parenthetically)

if they are to be held
simultaneously!

no relation between C
and B yet.

Monotonic ordering of locks –
why?
Process 1:

lock A

lock B

unlock B

unlock A

Process 3:

lock C
if <some rare

case>

 lock A

 unlock A

fi

unlock C

Process 2:

lock B

lock C

unlock C

unlock B

Time independence:
“suppose we have this fast process and this
other slow process…”
process 1: (inc, dec: atomic ops)

if (!o)
 lock(olock)
 if (!o) o = new object;
 unlock(olock);
inc(o.users);
<using o>
…

dec(o.users);
if (o.users == 0)
 lock(olock);
 if (o.users == 0)
 delete o; o = NULL;
 unlock(olock);

Can you see any
problems with this
algorithm??

Forward progress

- spin lock L:

lock L

<use R>

unlock L

Is forward progress
ensured for all
threads calling
this code?

Mutual exclusion:
drawbacks
• Contention for locks: not very

scalable
• Modern architectures:

– fine grained sharing not good for
memory system – cache line ping-
pong/false sharing common!

• serialization – tight synchronization
– critical regions must be kept small to

reduce chance of contention!

Transactional memory –
“non-blocking synchronization”

• Assumes compare&swap
Optimistic approach:

– “usually I am the only one to acquire a
resource, recover if someone else
appeared to be first”

1. <read/modify state “protected” by A>;
2. commit/rollback(A);

Single writer/reader exclusive read pointer

• Contract: only one process/thread have write
access to a particular location:

Real life example:
Process queueing/dequeuing in linux 2.2.x

(From the linux 2.2.16 kernel source:)

/* Note that we only need a read lock for the wait queue (and thus do
 * not have to protect against interrupts), as the actual removal from
 * the queue is handled by the process itself.
 */

Goal: an implementation of monitors (condition queues) in
Linux (kernel level)

Why?
• Linux 2.2 offered low level primitives only (abstracted

and simplified)
 spin_lock/spin_unlock -- mutual exclusion locks based on busy waiting

 spin_lock_irqsave/spin_unlock_irqrestore -- mutual exclusion: interrupt
disabling+spin

 enqueue/dequeue(task,queue) -- add/remove myself to/from a process queue

 schedule() -- invoke scheduler (yield)

 wake_up_next(queue) -- next process in “queue” put back on the run queue

Condition variables
implementation
/* assuming lock is held and

 * interrupts turned off */

void cond_wait(cond c, mutex
lock)

{

 enqueue(current,c.queue);

 spin_unlock_irqrestore(lock);

 schedule();

 dequeue(current, c.queue);

 spin_lock_irqsave(lock);

}

/* assuming lock is held and

 * interrupts turned off */

void cond_signal(cond c)

{

 wake_up_next(c.queue);

}

Example case (implementation)

Usage: resource management

...

spin_lock_irqsave(lock);

if (<my resource not
available>)

 cond_wait(c, lock);

<grab resource>

spin_unlock_irqrestore(lock);

...

spin_lock_irqsave(lock);

<release resource>

cond_signal(c);

spin_unlock_irqrestore(lock);

Linux impl. of enqueue/wake_up

global mutex queue_lock;
void enqueue(task t, queue q)
{
 spin_lock_irqsave(queue_lock);
 < do the queueing of t in q>

spin_unlock_irqrestore(queue_lock);
}

task dequeue(queue t)
{
 task t;
 spin_lock(queue_lock);
 t := pop(queue);
 spin_unlock(queue_lock);
 return t;
}

process B
(processor 2)

<holds lock L,
int.off>

cond_wait

 enqueue(B,res)

 ...spinning on
queue_lock....!

process A
(processor 1)

(inside tcp/ip stack)
....
dequeue(A,tcp)

spin_lock(queue_lock)
 <holds
queue_lock..>
 ...Interrupted!...

Example case: proc.1/proc.2/interrupt,p.1
scenario on dual processor system

interrupt
context
(executing within
A)

(processor 1)

spin_lock_irqsave(L)

 ...spinning on L...

Remember:
Safe interprocess communication...

• Murphy’s law:
– Anything that can go wrong will eventually go wrong!
– There is no limit to the complexity of error scenarios..

• No assumptions about thread speed
(time independence)
– “Ole-Johan’s semicolons” – the semicolon where it all may

go wrong...

• Forward progress (but not necessarily for all
threads)

• With preemptive scheduling:
– a thread might lose control at any point!

Important parallel programming
lesson:
• The lower the probability of something

bad happening, the harder it is to track
down!

• Or: a bug that happens frequently is an
easy one to reproduce (and hopefully
fix..)
– Eg. it is actually a good thing (during

development…)

• Never hide a bug by reducing the
chance for it to happen (unless you can
make the chance 0…)
– Don't blame it on cosmic rays…

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 42
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

