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More on 
Concurrency and  Threads



Today:
• Thread implementation

– user/kernel/hybrid
– communication between threads?

• Understanding the hardware
– effect of cache misses
– context switch performance



Why Threads?

• Utilize multiple cores/multiple CPUs
• Few plausible alternatives…

• As an abstraction to simplify 
programming
– Separate independent tasks 

– GUI vs I/O

– Just simplify programming model



Many names/ways of thinking about 
(quasi-)parallelism – not new..

• Co-routines (Simula-67)
– Call/detach

• Event-driven programming
– Inner loop processing events
– Everything becomes events…
– Asynchronous interfaces needed

• Continuations (from functional languages)

• User level threads…



A modern thread API

• Thread manipulation
– create/cancel
– join (wait for child(ren) to terminate)

• Mutual exclusion
– lock (acquire), unlock (release)

• Condition variables/monitors
– wait, signal, broadcast

• Scheduler hints
– yield,exit, sched.policy, signal policy/send…
– thread affinity



Implementing threads in the 
kernel

– Threads created/destroyed by kernel calls 
• optimization by recycling threads

– Kernel table per process, one entry per 
thread

– Kernel does scheduling
• clock interrupts available
• blocking calls and page faults no problem

– But: Performance penalty of thread mgmt 
in kernel:
• User/kernel switch overhead



Solution: schemes to collaborate 
between user/kernel mode

”Typical” schema:
• Let kernel and user mode 

communicate
• Let user mode library code decide 

when a full process switch is 
needed and when ’fast paths’ can 
be taken
– Scheduler Activations
– Futexes – used by Linux NPTL



Hybrid 
model (M on 
N)

single threaded 
kernel
Multithreaded kernel

Implementation of threads

KERNEL

Thread 
scheduling



Scheduler Activations - Design

● Combine advantages of kernel space 
implementation with performance of user space 
implementations

● Scheduler activations provide an interface between 
the kernel and the user-level thread package:

– Kernel is responsible for processor allocation and notifying 
the user-level of events that affect it.

– User-level is responsible for thread scheduling and notifies 
the kernel of events that affect processor allocation 
decisions.

– Avoid unnecessary transitions between user and kernel 
space



Scheduler Activations - 
Implementation

● Kernel assigns virtual processors to each process

● User level runtime system allocates threads to processors

● The kernel informs the process’s runtime system via an 
upcall when one of its blocked threads becomes runnable 
again

● Upcalls: Implemented similar to signals in UNIX - async 
event

● Runtime system can schedule

● Runtime system has to keep track when threads are in or 
are not in critical regions

● Example of hybrid solution

● Objection: Upcalls violate the layering principle
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Scheduler Activations

User program

(1) (2) (1) (2)(4)

Ready list

OS Kernel

User-level

Runtime

System

(A) (B)

(3)

(C)

I/O Completed

(D)

A’s thread and B’s
thread can
continue



Scheduler Activations

User program

(4) (2)

Ready list

OS Kernel

User-level

Runtime

System

(3)

(C)

(1)

(D)



Futex - fast userspace locking
int futex(int *uaddr, int op, int val, const 

struct timespec *timeout, int *uaddr2, int 
val3);

op: {FUTEX_WAIT, FUTEX_WAKE}

int stat = 0;

int mutex = 1;

...

void lock(int *mutex)

{

    int gotval = 

       atomic_dec_unless(&mutex, -1);

    while (gotval != 0 && !stat) 

    {

         stat = futex(&mutex, FUTEX_WAIT,

                            gotval, NULL, NULL, 0);

         gotval = 

             atomic_dec_unless(&mutex, -1);

    }

}

    (~ how it is done!)   Linux >= 2.6

void unlock(int *mutex)

{

    int gotval = 

       atomic_inc_return(&mutex);

    if (gotval == 0) 

    {

         atomic_set(&mutex, 1);

         stat = futex(&mutex, FUTEX_WAKE,

                            1, NULL, NULL, 0);

     }

}



Pop-Up Threads

• Creation of a new thread when message arrives
(a) before message arrives
(b) after message arrives



Pop-Up Threads
• Reacting fast to external events

– Packet processing is meant to last a short 
time

– Packets may arrive frequently

• Questions with pop-up threads
– How to guarantee processing order without 

loosing efficiency?
– How to manage time slices? (process 

accounting)
– How do schedule these threads efficiently?
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Thread Cancellation
• Terminating a thread before it has 

finished
• Reason:–

– Some other thread may have 
completed the joint task

– E.g., searching a database

• Issues:
• Other threads may be depending cancelled 

thread for resources, synchronization, etc.
• May not be able to cancel one until all can be 

cancelled
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Thread Cancellation 
(continued)

• Two general approaches:
– Asynchronous cancellation terminates 

the target thread  immediately
– Deferred cancellation allows the 

target thread to periodically check if it 
should cancel itself

• pthreads provides cancellation 
points 



The simplified memory 
system

CPUCPU

MemoryMemory

registers



The reality today (simple machine...)

AMD 
Phenom 
X4

AMD 
Phenom 
X4

MemoryMemory

AMD 
Phenom 
X4

AMD 
Phenom 
X4



The reality today (cont.)

Architecture of an 
AMD Phenom X4

Core 0



The reality today (cont.)

Internals of an AMD Phenom core



Intel Nehalem (i7)



“Shared” memory?
• Processors usually reads/writes caches
• Sharing with another processor/core 

requires communication
• Optimal performance when optimal 

communication pattern
• write can be non-blocking
• reads are blocking
• Memory are more or less “local”
• Best if write to 'remote' - read 'locally'



What can we assume about 
memory accesses?
• “A read from any given address always 

returns the value of the latest write to that 
address”

• Read and writes are atomic
• What about order of writes?
• And what goes on during a write?

– Depends on consistency model
– Varies between CPUs and memory 

architectures and settings..



False Sharing

Int cnt[2];
A: cnt[0]++;
B: cnt[1]++;

cnt[0] cnt[1]

cacheline



A False Sharing test

volatile int count[2];

#ifdef FALSE
worker(void * arg)
{
  int i,index=(int)arg;
  for(i=0;i<100000000; i++)
    count[index]++;
}
#else
worker(void * arg)
{
  int i,index=(int)arg;
  int temp=0;

  for(i=0;i<100000000; i++)
    temp++;
    
    count[index]+=temp;
}
#endif

main()
{
  pthread_t t;

  pthread_create(&t,NULL,worker,NULL);
  worker((void *)1);

  printf("%d %d\n",count[0],count[1]);

}

False Sharing
13.190u 0.020s 0:06.79 194.5%   0+0k 0+0io 245pf+0w

No False Sharing
  2.690u 0.000s 0:01.36 197.7%    0+0k 0+0io 245pf+0w



Context switch Performance

Operation User level threads Kernel-level threads Processes

Null fork

Signal-wait

34μs

37μs

948μs

441μs

11,300μs

1,840μs

Taken from Anderson et al 1992

Why?
•Thread vs. Process Context 
switching

•Cost of crossing protection 
boundary

•User level threads less general, but 
faster

•Kernel level threads more general, 
but slower

•Can combine: Let the kernel 
cooperate with the user level 
package

Observations
•Look at relative numbers as computers are faster in 2009 vs. 1992

•Fork: 1:30:330

•Time to fork off around 300 user level threads ~time to fork off one 
single process

•Fork off 5000 threads/processes: 0.005s:0.15s:1,65s.  OK if long 
running application. BUT we are now ignoring other overheads when 
actually running the application.

•Signal/wait: 1:12:50

•Assume 20M signal/wait operations: 0,3min:4 min:16,6min. Not OK.



Memory subsystem numbers – more 
up-to-date (double writes)

CPU 1 level 
cache 
access 
time

Memory 
access 
time

Linux 
bogomips* 

cores

'Instr' 
per

cache 
miss

AMD-K6, 0.5 GHz 12 ns 80 ns ~1000 80

Athlon XP 1600+, 1.4 
GHz

2.5 ns 14 ns ~2800 39

AMD Athlon 64 X2, 2.3 
GHz

3.0 ns 12 ns ~4000 55

Intel Xeon 2.1 GHz (2 
core)

1.0 ns 5 ns ~8400 30

AMD Phenom X4, 2.6 GHz 1.3 ns 2.2 ns ~20800 11

Measuremens using cachebench:
 http://icl.cs.utk.edu/projects/llcbench/cachebench.html



Context switch overhead (newer 
hardware)

CPU Context 
switch 
with 

minimal 
process

Context 
switch 
w/16KB 
array

(stride 
512)

'Instr' per 
switch

(stride 
512)

AMD-K6, 0.5 GHz 6.1 µs 7.3 µs 7300

Athlon XP 1600+, 1.4 GHz 2.3 µs 3.7 µs 10359

AMD Athlon 64 X2, 2.3 GHz 3.2 µs 5.0 µs 23000

Intel Xeon 2.1 GHz (2 core) 0.8 µs 1.7 µs 10707

AMD Phenom X4, 2.6 GHz 1.5 µs 2.5 µs 19500

Test code from
 http://www.cs.rochester.edu/u/cli/research/switch.htm



Context switch overhead



Interprocess(-thread) 
communication
“True” multithreading 

– preemptive scheduling of threads/processes 
– multiple CPUs

• Introduces non-determinism:
– different executions of the same program 

with same input may produce different 
results

• Non-determinism wrt. computing results 
usually a bad idea
– race conditions!



Safe interprocess communication 
using shared memory

Based on trust - no way to stop ill-
behaved threads!

• Contract between participating threads 
about usage of memory locations
– mutual exclusion by means of locks or 

monitors (condition queues guarded by 
locks)

– transactional: do something then rollback if 
someone else appeared to do it first

– single writer/single reader schemes:
(efficient message passing in shared memory)



Safe interprocess communication – 
some important issues:

● Murphy’s law for parallel programming:
– Anything that can go wrong will eventually go 

wrong!

● No assumptions about thread speed (time 
independence)
– “Ole-Johan’s semicolons” – the semicolon where it all may go 

wrong...

● Forward progress
– All threads must at some point in time be able to continue

● With preemptive scheduling:
– a thread might lose control at any point!



Mutual exclusion principle

1. lock(A);
2. <read/modify state protected by 

A>;
3. unlock(A);

No more than 1 process executing
between line 1 and 3 in any case. 

– all others must wait



Mutual exclusion

Principle: Serialize access to resource
• self imposed protection
Key issues:
• Protection of data structure rather than 

code segments!
• Partial monotonic ordering of locks in a 

system must not be violated!
• Interrupts is a source of problems if not 

properly implemented! 



Mutual exclusion lock usage: 
watch out for the implicit partial order between 
locks!

lock(A)
  lock(B)
  unlock(B)
unlock(A)
…
lock(A)
   lock(C)
   unlock(C)
unlock(A)

A, B, C part of partial 
monotonic ordering

   of all locks

A > B
A > C
means
A must always be grabbed 
outside of C (parenthetically) 

if they are to be held 
simultaneously!

no relation between C
and B yet. 



Monotonic ordering of locks – 
why?
Process 1:

lock A

lock B

unlock B

unlock A

Process 3:

lock C
if <some rare 

case>

  lock A

  unlock A

fi

unlock C

Process 2:   

lock B

lock C

unlock C

unlock B



Time independence:
“suppose we have this fast process and this 
other slow process…”
process 1: (inc, dec: atomic ops)

if (!o)
   lock(olock) 
   if (!o) o = new object;
   unlock(olock);
inc(o.users);
<using o> 
…

dec(o.users);
if (o.users == 0)
   lock(olock);
   if (o.users == 0) 
      delete o; o = NULL;
   unlock(olock);

Can you see any 
problems with this 
algorithm??



Forward progress

- spin lock L:

lock L

<use R>

unlock L

Is forward progress 
ensured for all 
threads calling 
this code?



Mutual exclusion: 
drawbacks
• Contention for locks: not very 

scalable
• Modern architectures:

– fine grained sharing not good for 
memory system – cache line ping-
pong/false sharing common!

• serialization – tight synchronization
– critical regions must  be kept small to 

reduce chance of contention!



Transactional memory – 
“non-blocking synchronization”

• Assumes compare&swap
Optimistic approach:

– “usually I am the only one to acquire a 
resource, recover if someone else 
appeared to be first”

1. <read/modify state “protected” by A>;
2. commit/rollback(A);



Single writer/reader exclusive read pointer

• Contract: only one process/thread have write 
access to a particular location:



Real life example: 
Process queueing/dequeuing in linux 2.2.x

(From the linux 2.2.16 kernel source:)

/* Note that we only need a read lock for the wait queue (and thus do
 * not have to protect against interrupts), as the actual removal from
 * the queue is handled by the process itself.
 */

Goal: an implementation of monitors (condition queues) in 
Linux (kernel level)

Why? 
• Linux 2.2 offered low level primitives only (abstracted 

and simplified)
 spin_lock/spin_unlock -- mutual exclusion locks based on busy waiting

  spin_lock_irqsave/spin_unlock_irqrestore  -- mutual exclusion: interrupt 
disabling+spin

  enqueue/dequeue(task,queue)    -- add/remove myself to/from a process queue

  schedule()     -- invoke scheduler (yield)

  wake_up_next(queue) -- next process in “queue” put back on the run queue



Condition variables 
implementation
/* assuming lock is held and 

 * interrupts turned off */

void cond_wait(cond c, mutex 
lock)

{

   enqueue(current,c.queue);

   spin_unlock_irqrestore(lock);

   schedule();

   dequeue(current, c.queue);

   spin_lock_irqsave(lock);

}

/* assuming lock is held and 

 * interrupts turned off */

void cond_signal(cond c)

{

   wake_up_next(c.queue);

}



Example case (implementation)

Usage: resource management

...

spin_lock_irqsave(lock);

if (<my resource not 
available>) 

    cond_wait(c, lock);

<grab resource>

spin_unlock_irqrestore(lock);

...

spin_lock_irqsave(lock);

<release resource>

cond_signal(c);

spin_unlock_irqrestore(lock);

Linux impl. of enqueue/wake_up

global mutex queue_lock; 
void enqueue(task t, queue q) 
{
   spin_lock_irqsave(queue_lock);
   < do the queueing of t in q>
   
spin_unlock_irqrestore(queue_lock);
}

task dequeue(queue t)
{  
    task t;
    spin_lock(queue_lock);
    t := pop(queue);
    spin_unlock(queue_lock);
    return t;
}



process B
(processor 2)

<holds lock L, 
int.off>

cond_wait

   enqueue(B,res)

      ...spinning on 
queue_lock....!

process A
(processor 1)

(inside tcp/ip stack)
....
dequeue(A,tcp)
  
spin_lock(queue_lock)
    <holds 
queue_lock..>
     ...Interrupted!...
      
         

   
       

Example case: proc.1/proc.2/interrupt,p.1
scenario on dual processor system

interrupt 
context
(executing within 
A)

(processor 1)

spin_lock_irqsave(L)

  ...spinning on L...   

    



Remember: 
Safe interprocess communication...

• Murphy’s law: 
– Anything that can go wrong will eventually go wrong!
– There is no limit to the complexity of error scenarios..

• No assumptions about thread speed 
(time independence)
– “Ole-Johan’s semicolons” – the semicolon where it all may 

go wrong...

• Forward progress (but not necessarily for all 
threads)

• With preemptive scheduling: 
– a thread might lose control at any point!



Important parallel programming 
lesson:
• The lower the probability of something 

bad happening, the harder it is to track 
down!

• Or: a bug that happens frequently is an 
easy one to reproduce (and hopefully 
fix..) 
– Eg. it is actually a good thing (during 

development…)

• Never hide a bug by reducing the 
chance for it to happen (unless you can 
make the chance 0…)
– Don't blame it on cosmic rays… 
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