
Monitors
Condition Variables

Otto J. Anshus

Monday, 3.February, 2014

Monitor (Hoare 1974)

• Idea by Brinch-Hansen 1973 in the textbook “Operating
System Principles”

• Structure an OS into a set of modules each implementing a
resource scheduler

• Tony Hoare
– Combine together in each module

– Mutex
– Shared data
– Access methods to shared data
– Condition synchronization
– Local code and data

Monday, 3.February, 2014

Basic Components
• Monitor procedures (are mutually exclusive)

– code written by application programmer
– called/executed by threads

• monitor procedures are implemented by all threads, data variables are shared
– (called (“...”) by processes (without shared address space) is also possible (HOW?))

• Condition variable on which threads are delayed
– “declared” by application programmer implementing a monitor’s procedures.

• Appl. programmer sometimes use meaningful name like nonbusy, nonempty, nonfull,.... to describe the
condition to wait for

– the ABSTRACTION “condition variable” is implemented by/in the OS Kernel
– Just a name. No “value” as such. Behind the scene, inside the OS kernel, there is a wait queue where threads

having called wait() are waiting to be resumed by signal()

• Primitives on condition variables (implemented by the monitor abstraction)
– Wait (cond_var_name) (called inside a monitor procedures)

• called when a thread discovers that a condition is such (say, FALSE) that it should wait for the condition
to change (say, to TRUE)

• calling thread will unconditionally be removed as current and from R_Q, and inserted into the waiting
queue associated with the condition variable

– then the OS kernel scheduler must select another process from the R_Q to become the new current

– Signal (cond_var_name) (called inside a monitor procedures)
• resume (wakeup) a blocked thread (immediately for Hoare Monitors, eventually for Mesa Monitors)
• if no threads in wait queue, signal() has no effect (NB: no memory of the number of signals as we had

with semaphores)

Monday, 3.February, 2014

4

...anycode...
P(mname);
 ...moncode...
V(mname)
...anycode...

To use a monitor all threads better respect
this pattern:

mname is the name of a mutex

WHY do we need it?

How a Monitor Can Look As Seen By UL Code

moncode is the “monitor procedure”,
typically syscalling wait() to delay itself:

EXAMPLE: if busy {wait(nonbusy)}

or syscalling signal() to resume another
thread (which called wait() at an earlier time:

EXAMPLE: signal(nonbusy)

{

Monday, 3.February, 2014

4

...anycode...
P(mname);
 ...moncode...
V(mname)
...anycode...

To use a monitor all threads better respect
this pattern:

mname is the name of a mutex

WHY do we need it?

How a Monitor Can Look As Seen By UL Code

moncode is the “monitor procedure”,
typically syscalling wait() to delay itself:

EXAMPLE: if busy {wait(nonbusy)}

or syscalling signal() to resume another
thread (which called wait() at an earlier time:

EXAMPLE: signal(nonbusy)

{

Got You: You block
inside a mutex - this
will probably result
in a deadlock

Monday, 3.February, 2014

4

...anycode...
P(mname);
 ...moncode...
V(mname)
...anycode...

To use a monitor all threads better respect
this pattern:

mname is the name of a mutex

WHY do we need it?

How a Monitor Can Look As Seen By UL Code

moncode is the “monitor procedure”,
typically syscalling wait() to delay itself:

EXAMPLE: if busy {wait(nonbusy)}

or syscalling signal() to resume another
thread (which called wait() at an earlier time:

EXAMPLE: signal(nonbusy)

{

Got You: You block
inside a mutex - this
will probably result
in a deadlock

Not so fast: The implementation of wait()
inside the Kernel will open up the mutex.

Monday, 3.February, 2014

One way of remembering what the monitor abstraction is
(The Structure of a Monitor)

•After calling, threads get
blocked and are waiting
to get in and start
executing the called
monitor procedureMain Queue

Condition Queue 1

Condition Queue n

MUTEX

•Threads waiting on a condition
variable for a condition to be
true (waiting for a signal on the
condition variable)

Local procedure 1

Local procedure m

Local variables Shared variables

Initialization executed first time the monitor starts
•Initialization of state
variables, executed ONCE at
startup of monitor

Monitor procedure k: {… signal(condvar); …}

Monitor procedure 1: {…wait(condvar); …}

Threads calling a
monitor
procedure. Can
also be done as
“in-line” code in
each thread

<More to come>

•The only way to access shared
resources is by calling a
monitor procedure

So only ONE
monitor
procedure
executes at a
time

The Monitor

Signal(): {…} Wait(): {…} System implementation
User implementation

Could be the mutex wait queue

Monday, 3.February, 2014

6

Main Queue

Condition Queue 1

Condition Queue n

Local procedure 1

Local procedure m

Local variables Shared variables

Initialization executed first time the monitor starts

Monitor procedure k: {… signal(condvar); …}

Monitor procedure 1: {…wait(condvar); …}

<More to come>

The Monitor

Signal(): {…} Wait(): {…}

Could be the mutex wait queue

Monday, 3.February, 2014

7

Main Queue

Condition Queue 1

Condition Queue n

Local procedure 1

Local procedure m

Local variables Shared variables

Initialization executed first time the monitor starts

Monitor procedure k: {… signal(condvar); …}

Monitor procedure 1: {…wait(condvar); …}

<More to come>

The Monitor

Signal(): {…} Wait(): {…}

Could be the mutex wait queue

Two ways of thinking about monitors
cond variables

...code...
P(mname);
 <mon proc>
V(mname)
...code...

...code...
P(mname);
 <mon proc>
V(mname)
...code...

...code...
P(mname);
 <mon proc>
V(mname)
...code...

signal() - wait() - P() - V() - etc

Syscalls to OS Kernel

Process

Threads

Monday, 3.February, 2014

Approaches to Implementing the Monitor Abstraction
• As a primitive in a language (Mesa, Java)
• By using semaphores (in any language)
• As a thread or as a process

– Need a way to interact with the thread
– through shared variables to deliver the parameters and

name of called monitor procedure
– Need a way to interact with the process

– kernel support of shared variables across address
spaces

– using another mechanism like message passing to pass
parameters and name of procedure

• What we will do
– User Level code

• mutex by P-V
• Use wait() and signal() and condition

variables
– Kernel

• condition variables (the queues)
• wait(), signal()

...code...
P(mname);
 <mon proc>
V(mname)
...code...

...code...
P(mname);
 <mon proc>
V(mname)
...code...

...code...
P(mname);
 <mon proc>
V(mname)
...code...

signal() - wait() - P() - V() - etc

Syscalls to OS Kernel

Monday, 3.February, 2014

Single Resource Hoare Monitor

Reserve;

 <use shared resource>

Release;

Reserve:
{
 if (busy) wait (nonbusy);
 busy:=TRUE;
}

/*Local functions, variables*/
<none needed>
/*Shared variable*/
Boolean busy;
/*Condition variable*/
Condition nonbusy;

Release:
{
 busy:=FALSE;
 signal (nonbusy);
}

/* Initialization code*/
busy:=FALSE;
nonbusy:=EMPTY;

All threads must follow the pattern:

Notice

•the shared variable

•the naming of the condition variable

•the wait and signal calls

•implements a binary semaphore (s=0,1)

Mutex

Monday, 3.February, 2014

Single Resource Monitor

10

% RESERVE THE RESOURCE R
P(mutex);

% monitor “procedure” code
...
if busy wait(cond_var_name_R); % syscall
busy=true;

V(mutex);
... % some thread code
...

All threads must do this to avoid
having several threads accessing
the resource concurrently

... % some thread code
% RELEASE THE RESOURCE R
P(mutex);

% monitor “procedure” code
Call signal(cond_var_name_R); % syscall
busy=false;

V(mutex)
...
...<USE THE RESOURCE R>
...

Other threads

Monday, 3.February, 2014

What is a Condition Variable?

• No “value”
• Waiting queue
• Used to represent a condition

we need to wait for to be
TRUE

• Initial “non-value” is
EMPTY :-)

Main Queue

Condition Queue 1

Condition Queue n

Local procedure 1

Local procedure m

Local variables Shared variables

Initialization executed first time the monitor starts

Monitor procedure 1: {… signal(condvar); …}

Monitor procedure 1: {…wait(condvar); …}

<More to come>

The Monitor

Signal(): {…} Wait(): {…}

Monday, 3.February, 2014

Bounded Buffer Monitor
out

in

Capacity: N

B

Producer

PUT (m):
r:=GET:

Consumer

One condition variable
for each condition:

•nonempty

•nonfull

•MUTEX is already
provided by the monitor

Rules for the buffer B:

•No Get when empty

•No Put when full

•B shared, so must have
mutex between Put and
Get

Put (int m):
{ if (count=n) wait (nonfull);
 B(in):=m;
 in:=in+1 MOD n;
 count++;
 signal (nonempty); }

/*Local functions, variables*/
int in, out;
/*Shared variable*/
int B(0..n-1), count;
/*Condition variable*/
Condition nonfull, nonempty;

int Get:
{ if (count=0) wait (nonempty);
 Get:=B(out);
 out:=out+1 MOD n;
 count--;
 signal (nonfull); }

/* Initialization code*/
in:=out:=count:=0;
nonfull, nonempty:=EMPTY;

/* MOD is % */

Monday, 3.February, 2014

What will happen when a signal() is
executed?

• Assume we have threads in Main_Queue and in a
condition queue

• Main_Queue has lower “priority” than the signaled
condition queue:

• signal() => Take first from condition queue and start it from its
next instruction after the wait() which blocked it

• The signaled thread now executes
– … until a wait(): block it, and take new from Main_Queue
– … until a signal():
– … until finished: take new from Main_Queue

Monday, 3.February, 2014

Where to allow a call
to signal()?

• Look at the two monitors we have
analyzed! Where is the signal()
operation?

• What if we called signal somewhere
else?

• The calling function instance must be
blocked, awaiting return from
signal()

– Need a queue for the temporary
halted thread

• URGENT QUEUE
• In Hoare’s monitors the signal

operation must IMMEDIATELY start
the signaled thread in order for the
condition that it signals about still to
be guaranteed true when the thread
starts

Main Queue

Condition Queue 1

Condition Queue n

Local procedure 1

Local procedure m

Local variables Shared variables

Initialization executed first time the monitor starts

Monitor procedure 1: {… signal(condvar); …}

Monitor procedure 1: {…wait(condvar); …}

The Monitor

Signal(): {…} Wait(): {…}
URGENT Queue

Monday, 3.February, 2014

Options of the Signaler
• Run the signaled monitor procedure (or thread) immediately (must suspend the

current one right away) (Hoare)
– If the signaler has other work to do, life gets complicated
– It is difficult to make sure there is nothing more to do because the signal

implementation is not aware how it is used (where it is called)
– It is easier to prove things

• Exit the monitor (Hansen)
– Just let signal be the last statement before return from a monitor procedure

• Just continue to execute the caller of signal() (Mesa)
– Easy to implement
– But, the condition may not be true when the awaken process actually gets

a chance to run
• Consequently the monitor procedures must be rewritten just a little bit

Monday, 3.February, 2014

Performance problems of Monitors?
• Getting in through Main_Queue

• Many can be in Main_Queue and in a condition queue waiting for a thread to execute a monitor procedure calling
a signal.

– Can take a long time before the signaler gets in
• Need one Wait_Main_Queue and one Signal_Main_Queue?

– But difficult when all procedures call both wait and signal

• The monitor is a potential bottleneck (“Bottleneck OS”? :))
– Use several to avoid hot spots

• Signal must start the signaled thread immediately, so
must switch thread context and save our own

• Takes time and results in increased latency (and we don’t
want a SLOW synchronization mechanism :))

– Made even worse since we can have nested calls
• Even worse for process context switches

– Solution?
• Brilliant idea: Avoid starting the signaled thread

immediately
– But then race conditions can happen so must be

careful and think here...
Monday, 3.February, 2014

Mesa Style “Monitor” (Birrell’s Paper)

• Condition variables are always associated with a mutex
• Wait(mutex, condition)

– Atomically unlock the mutex and enqueue on the condition variable (block the
thread)

– Re-lock the lock when it is awaken

• Signal(condition)
– No-op if there is no thread blocked on the condition variable
– Wake up at some convenient time at least one (if there are threads

blocked)
• Simple to do: Just insert the threads into the Ready_Queue

• Broadcast(condition)
– Wake up all threads waiting on the condition

• ALL gets to reevaluate condition resulting in the wait() call they did
some time ago

– Simple to do: insert them all into the Ready_Queue

Is really a NOTIFY or a HINT

In this course we will implement the MESA style monitor concept in the OS Kernel
Monday, 3.February, 2014

Bounded Buffer Mesa
Monitors

out

in

Capacity: N

B

Producer

PUT (m):
r:=GET (r):

Consumer

One condition for each
condition:

•nonempty

•nonfull

•MUTEX is locked by
LOCK and unlocked by
Wait

Rules for the buffer B:

•No Get when empty

•No Put when full

•B shared, so must have
mutex between Put and
Get

Put (int m):
LOCK bb_mutex {
 { while (count=n) wait (bb_mutex, nonfull);
 B(in):=m;
 in:=in+1 MOD n;
 count++;
 signal (nonempty); }
}

/*Local functions, variables*/
int in, out, count;
/*Shared variable*/
int B(0..n-1);
/* Mutex */
mutex_t bb_mutex;
/*Condition variable*/
Condition nonfull, nonempty;

int Get:
LOCK bb_mutex {
 { while (count=0) wait (bb_mutex, nonempty);
 Get:=B(out);
 out:=out+1 MOD n;
 count--;
 signal (nonfull); }
}

/* Initialization code*/
in:=out:=count:=0;
nonfull, nonempty:=EMPTY;

Spins to
reevaluate

Wait will
UNLOCK

Monday, 3.February, 2014

Mesa-Style vs. Hoare-Style Monitor
• Mesa-style

– Signaler keeps lock and CPU
– The awakened thread is simply inserted into the ready queue, with no

special priority
• Must then spin and reevaluate!

– No costly context switches immediately
– No constraints on when the waiting thread/process must run after a “signal”
– Simple to introduce a broadcast: wake up all

• Good when one thread frees resources, but does not know which other thread
can use them (“who can use j bytes of memory?”)

– Can easily introduce a watch dog timer: if timeout then insert waiter in
Ready_Queue and let waiter reevaluate

• Will guard a little against bugs in other signaling processes/threads causing
starvation because of a “lost” signal

• Hoare-style
– Signaler gives up lock and waiter runs immediately
– Waiter (now executing) gives lock and CPU back to signaler when it exits critical

section or if it waits again

Monday, 3.February, 2014

Programming Style w/Mesa Monitors

Monday, 3.February, 2014

Implementing Semaphores with Mesa-Monitors

P(s)
{
 Acquire(s.mutex);
 --s.value;
 if (s.value < 0)
 wait(s.mutex, s.cond);
 Release(s.mutex);
}

V(s)
{
 Acquire(s.mutex);
 ++s.value;
 if (s.value >= 0)
 signal(s.cond);
 Release(s.mutex);
}

Assume that Signal wakes up exactly one awaiting thread.

Monday, 3.February, 2014

Semaphore vs. Monitor

P(s) means WAIT if s=0
And s--

Wait(cond) means unconditional WAIT

Semaphore Monitor

V(s) means start a waiting
thread and REMEMBER that a
V call was made: s++

Assume s=0 when V(s) is
called: If there is no thread to
start this time, the next thread to
call P(s) will get through P(s)

Signal(cond) means start a
waiting thread. But no memory!

Assume that the condition queue
is empty when signal() is called.
The next thread to call
Wait(cond) (by executing a
monitor procedure!) will block
because the signal() operation
did not leave any trace of the
fact that it was executed on an
empty condition waiting queue.

Monday, 3.February, 2014

Equivalence

• Semaphores
– Good for signaling
– Not good for mutex because it is easy to introduce a bug

• Monitors
– Good for scheduling and mutex
– Too (maybe?) costly for simple signaling

Monday, 3.February, 2014

