
Processes and
Non-Preemptive Scheduling

Otto J. Anshus

2

Concurrency and Process
• Challenge: Physical reality is Concurrent

– “Concurrent software” may more simply than sequential be able to reflect this
– We want to have many apps running on a single computer “at the same time”

• Must share CPU, memory, I/O devices

• Lots of interrupts/traps/exceptions/faults will happen

– Options
• let each app see the others and deal with it (each must fight or cooperate with the others, like cars in a

city)
• let each app believe it has the computer all alone (analogy: each car is all alone in the city (however,

the speed of the car can change at any time independently of the driver, including suddenly stopping/starting
and crashing)

• Trad. solution: Make the OS understand “process” and “threads” and give support
to the processes and threads

– Now we can decompose complex problems into simpler ones
• Applications/computations are comprised of one or several processes

– Cooperating processes need synchronization and communication (using message passing)
• Each process comprised of one or several

• Cooperating threads

• Synchronization and communication (using locks, semaphores, monitors)

• Deal with one smaller problem at a time: use a process or a thread for each
– Drawback: performance?
– Alternative: Event oriented model

• Each process can now believe it has a computer to itself: it can be written as if this is indeed the
case

3

Kernel

Processes

Thread

Processes

3

Kernel

Processes

Thread

Processes

Kernel

Extreme use of Processes
(Could be overkill)

Get input from
device Process input Action 2

Action 1

Action 3

Should you use
Processes or Threads?

Device (kbd, disk,
network, sensor...)

4

*{put(get(dev), B}
*{compute(get(B));
 display result;
}

data from device (keyboard, disk, USB, network,...)

An application comprised
of multiple processes

An application comprised
of multiple threads inside
a single process

*{send(get(dev, L), C}
*{compute(recv(C, L));
 display result;
}

Process
global
buffer

B

Channel C

Local
buffer

L

Local
buffer

L

Process address space

Process address space Process address space

5

Process
• An instance of a program under execution

– Program specifying (logical) control-flow (thread)
– Data
– Private address space
– Open files
– Run-time environment

• Very important operating system concept
– Used for supporting the concurrent execution of independent or

cooperating program instances
– Used to structure applications and systems
– Unit of Protection

Kernel

Processes

Threads

Processes

6

Flow of Execution

Kernel Mode

User Mode

“Input finished” interrupt
from Disk

P1: Read file syscall

P1: CPU bound

P2: CPU bound

Interrupt handling;
Scheduler (selects P2);
Dispatch Pselected;

Interrupt handling;
Scheduler (selects P1);
Dispatch Pselected;

Interrupt handling;
Scheduler (selects some P);
Dispatch Pselected;

Int0x80 interrupt from
user level application

Timer Interrupt
(repeated every 10-100ms)

(OS scheduler can select any ready
process to run)

(Assume R to disk =>
long wait 10-100’s ms)

Time
(interleaved

sequence)

Two processes P1 and P2 executing interleaved on Pre-Emptive OS Kernel

7

Flow of Execution

6

Kernel Mode

User Mode

P1:READ file syscall;

P1:YIELD;

P2:YIELD syscall;

Interrupt handling;
Scheduler (selects P2);
Dispatch Pselected;

Interrupt handling;
Scheduler (selects P1 if READ
finished otherwise IDLE process);
Dispatch Pselected;

Interrupt handling;
Scheduler (selects P2);
Dispatch Pselected;

Int0x80 interrupt from
user level application

Time
(interleaved

sequence)

Two processes P1 and P2 executing interleaved on Non-PreEmptive OS
Kernel

Int0x80 interrupt from
user level application

Int0x80 interrupt from
user level application

7

Flow of Execution

6

Kernel Mode

User Mode

P1:READ file syscall;

P1:YIELD;

P2:YIELD syscall;

Interrupt handling;
Scheduler (selects P2);
Dispatch Pselected;

Interrupt handling;
Scheduler (selects P1 if READ
finished otherwise IDLE process);
Dispatch Pselected;

Interrupt handling;
Scheduler (selects P2);
Dispatch Pselected;

Int0x80 interrupt from
user level application

Time
(interleaved

sequence)

Two processes P1 and P2 executing interleaved on Non-PreEmptive OS
Kernel

Int0x80 interrupt from
user level application

Int0x80 interrupt from
user level application

Observe how the READ
syscall includes a YIELD
(cooperative scheduling)

8

Concurrency & performance

• Speedup
– ideal: n processes, n speedup
– reality: bottlenecks + overheads

• Processes may have to be ordered for some operations, this will limit
parallel pay-off

– Questions
• Speedup when

– working with 1 partner?
– working with 10 partners? 100? 1000? 10.000? ...

• Give an example when we should benefit performance-wise even on
a single CPU with a single core?

– Also check out Amdahl’s Law

9

Procedure, Co-routine, Thread, Process

• Procedure, Function, (Sub)Routine
• Call-execute all-return nesting

• Co-routine
• Call-resumes-return

• Thread (more later)
• Process

– Single threaded
– Multi threaded

User level non preemptive “scheduler”
spread “all over” user code

10

Procedure, function, subroutine

Call A;
Call B;

Call B;

Main A B

Call A;
Call B; Resume A;

Resume B;

Main A B

Resume A;

Return

Return

“Yield” when finished

Yield during execution to
share CPU

Return

Co-routine

10

Procedure, function, subroutine

Call A;
Call B;

Call B;

Main A B

Call A;
Call B; Resume A;

Resume B;

Main A B

Resume A;

Return

Return

“Yield” when finished

Yield during execution to
share CPU

Return

Co-routine

10

Procedure, function, subroutine

Call A;
Call B;

Call B;

Main A B

Call A;
Call B; Resume A;

Resume B;

Main A B

Resume A;

Return

Return

“Yield” when finished

Yield during execution to
share CPU

Return

Co-routine

10

Procedure, function, subroutine

Call A;
Call B;

Call B;

Main A B

Call A;
Call B; Resume A;

Resume B;

Main A B

Resume A;

Return

Return

“Yield” when finished

Yield during execution to
share CPU

Return

Co-routine

10

Procedure, function, subroutine

Call A;
Call B;

Call B;

Main A B

Call A;
Call B; Resume A;

Resume B;

Main A B

Resume A;

Return

Return

“Yield” when finished

Yield during execution to
share CPU

Return

Co-routine

10

Procedure, function, subroutine

Call A;
Call B;

Call B;

Main A B

Call A;
Call B; Resume A;

Resume B;

Main A B

Resume A;

Return

Return

“Yield” when finished

Yield during execution to
share CPU

Return

Co-routine

10

Procedure, function, subroutine

Call A;
Call B;

Call B;

Main A B

Call A;
Call B; Resume A;

Resume B;

Main A B

Resume A;

Return

Return

“Yield” when finished

Yield during execution to
share CPU

Return

Co-routine

10

Procedure, function, subroutine

Call A;
Call B;

Call B;

Main A B

Call A;
Call B; Resume A;

Resume B;

Main A B

Resume A;

Return

Return

“Yield” when finished

Yield during execution to
share CPU

Return

Co-routine

10

Procedure, function, subroutine

Call A;
Call B;

Call B;

Main A B

Call A;
Call B; Resume A;

Resume B;

Main A B

Resume A;

Return

Return

“Yield” when finished

Yield during execution to
share CPU

Return

Co-routine

10

Procedure, function, subroutine

Call A;
Call B;

Call B;

Main A B

Call A;
Call B; Resume A;

Resume B;

Main A B

Resume A;

Return

Return

“Yield” when finished

Yield during execution to
share CPU

Return

Co-routine

10

Procedure, function, subroutine

Call A;
Call B;

Call B;

Main A B

Call A;
Call B; Resume A;

Resume B;

Main A B

Resume A;

Return

Return

“Yield” when finished

Yield during execution to
share CPU

Return

Co-routine

10

Procedure, function, subroutine

Call A;
Call B;

Call B;

Main A B

Call A;
Call B; Resume A;

Resume B;

Main A B

Resume A;

Return

Return

“Yield” when finished

Yield during execution to
share CPU

Return

Co-routine

10

Procedure, function, subroutine

Call A;
Call B;

Call B;

Main A B

Call A;
Call B; Resume A;

Resume B;

Main A B

Resume A;

Return

Return

“Yield” when finished

Yield during execution to
share CPU

Return

Co-routine

10

Procedure, function, subroutine

Call A;
Call B;

Call B;

Main A B

Call A;
Call B; Resume A;

Resume B;

Main A B

Resume A;

Return

Return

“Yield” when finished

Yield during execution to
share CPU

Return

Co-routine

10

Procedure, function, subroutine

Call A;
Call B;

Call B;

Main A B

Call A;
Call B; Resume A;

Resume B;

Main A B

Resume A;

Return

Return

“Yield” when finished

Yield during execution to
share CPU

Return

Co-routine

10

Procedure, function, subroutine

Call A;
Call B;

Call B;

Main A B

Call A;
Call B; Resume A;

Resume B;

Main A B

Resume A;

Return

Return

“Yield” when finished

Yield during execution to
share CPU

Return

Co-routine

10

Procedure, function, subroutine

Call A;
Call B;

Call B;

Main A B

Call A;
Call B; Resume A;

Resume B;

Main A B

Resume A;

Return

Return

“Yield” when finished

Yield during execution to
share CPU

Return

Co-routine

10

Procedure, function, subroutine

Call A;
Call B;

Call B;

Main A B

Call A;
Call B; Resume A;

Resume B;

Main A B

Resume A;

Return

Return

“Yield” when finished

Yield during execution to
share CPU

Return

Co-routine

10

Procedure, function, subroutine

Call A;
Call B;

Call B;

Main A B

Call A;
Call B; Resume A;

Resume B;

Main A B

Resume A;

Return

Return

“Yield” when finished

Yield during execution to
share CPU

Return

Co-routine

10

Procedure, function, subroutine

Call A;
Call B;

Call B;

Main A B

Call A;
Call B; Resume A;

Resume B;

Main A B

Resume A;

Return

Return

“Yield” when finished

Yield during execution to
share CPU

Return

Co-routine

10

Procedure, function, subroutine

Call A;
Call B;

Call B;

Main A B

Call A;
Call B; Resume A;

Resume B;

Main A B

Resume A;

Return

Return

“Yield” when finished

Yield during execution to
share CPU

Return

Co-routine

10

Procedure, function, subroutine

Call A;
Call B;

Call B;

Main A B

Call A;
Call B; Resume A;

Resume B;

Main A B

Resume A;

Return

Return

“Yield” when finished

Yield during execution to
share CPU

Return

Co-routine

10

Procedure, function, subroutine

Call A;
Call B;

Call B;

Main A B

Call A;
Call B; Resume A;

Resume B;

Main A B

Resume A;

Return

Return

“Yield” when finished

Yield during execution to
share CPU

Return

Co-routine

10

Procedure, function, subroutine

Call A;
Call B;

Call B;

Main A B

Call A;
Call B; Resume A;

Resume B;

Main A B

Resume A;

Return

Return

“Yield” when finished

Yield during execution to
share CPU

Return

Co-routine

10

Procedure, function, subroutine

Call A;
Call B;

Call B;

Main A B

Call A;
Call B; Resume A;

Resume B;

Main A B

Resume A;

Return

Return

“Yield” when finished

Yield during execution to
share CPU

Return

Co-routine

10

Procedure, function, subroutine

Call A;
Call B;

Call B;

Main A B

Call A;
Call B; Resume A;

Resume B;

Main A B

Resume A;

Return

Return

“Yield” when finished

Yield during execution to
share CPU

Return

Co-routine

10

Procedure, function, subroutine

Call A;
Call B;

Call B;

Main A B

Call A;
Call B; Resume A;

Resume B;

Main A B

Resume A;

Return

Return

Never executed

“Yield” when finished

Yield during execution to
share CPU

Return

Co-routine

11

Process

• “Modern” process: Process and Thread are separated
as concepts

• Process—Unit of Resource Allocation—Defines the
context

• Thread—Control Thread—Unit of execution,
scheduling

• Every process has at least one thread

12

Single threaded sequential Process

• Sequential execution of operations
– No concurrency inside a (single threaded) process
– Everything happens sequentially

• Process state defined by:
– Registers
– Stack(s)
– Main memory
– I/O devices

• Files and their state
• Communication ports

– Other resources

13

Program and Process

main()
{
…
foo()
…
bar()
…
baz()
…
qux()
…
quux()
…
}

foo(){…}
bar() {…}/* a.k.a. gazonk
baz() {…}
qux() {…}
quux() {…}
 Program

main()
{
…
foo()
…
bar()
…
baz()
…
qux()
…
quux()
…
}

foo(){…}
bar() {…}
baz() {…}
qux() {…}
quux() {…}

 Process

heap
stack
main
foo

registers
PC

Resources:
comm. ports,

files,
semaphores

PID

For at least one
thread of execution

The
context

14

Process vs. Program

• Process “>” program
– Program is just part of process state
– Example: many users can run the same program

• Process “<“ program
– A program can invoke more than one process
– Example: Fork off processes

15

Process State Transitions

Running

BlockedReady
Sc

he
du

ler

dis
pa

tch W
ait for

resource

Resource becomes
available

Create
a process

terminate

P4P3P2P1

P2

P1

ReadyQueue P4P3

BlockedQueue

Scheduler

Dispatcher

Trap
Handler

Service

!

Current

Trap Return
Handler

U s e r L e v e l P r o c e s s e s

KERNEL

MULTIPROGRAMMING

•Uniprocessor: Interleaving
(“pseudoparallelism”)

•Multiprocessor: Overlapping (“true
paralellism”)

PCB’s

Memory resident part

Instruction Pointer
(program counter) in the
EIP register

16

What needs to be saved and restored on a context switch?

• Volatile state
• Program counter (Program Counter (PC) also called Instruction

Pointer (Intel: EIP))
• Processor status register
• Other register contents
• User and kernel stack pointers
• A pointer to the address space in which the process runs

• the process’s page table directory

17

Basic Flow of Context Switch

17

Basic Flow of Context Switch

• Save(volatile machine state, current process);
– done by HW and Interrupt handler

17

Basic Flow of Context Switch

• Save(volatile machine state, current process);
– done by HW and Interrupt handler

• Load(another process’s saved volatile state);
– selecting another process is done by OS Kernel

Scheduler
– loading is done by OS Kernel Dispatcher

17

Basic Flow of Context Switch

• Save(volatile machine state, current process);
– done by HW and Interrupt handler

• Load(another process’s saved volatile state);
– selecting another process is done by OS Kernel

Scheduler
– loading is done by OS Kernel Dispatcher

• Start(new process);
– done by OS Kernel Dispatcher

18

Implementing processes

• OS (kernel) needs to keep track of all processes
– Progress
– Metadata (priorities etc.) used by OS
– Memory
– Files
– State including waiting for conditions, signals, and messages

• Process table with one entry (Process Control Block)
per process

• Will also have the processes in queues

19

Make a Process

• Creation
– load code and data into memory
– create an empty stack
– initialize state to same as after a process switch
– make process READY to run

• insert into OS scheduler queue (Ready_Queue)
• Clone

– Stop current process and save (its) state
– make copy of currents code, data, stack and OS state
– make the new process READY to run

20

Process Control Block (PCB)

• Process management info
– State (ready, running, blocked)
– Registers, PSW, EFLAGS, and other CPU state
– Stack, code, and data segment

• Memory management info
– Segments, page table, stats, etc

• I/O and file management
– Communication ports, directories, file descriptors, etc.

• OS must allocate resources to each process, and do the state
transitions

21

Where Should PCB Be Kept?

• Save the PCB on user stack
– Many processors have a special instruction to do it

efficiently
– But, need to deal with the overflow problem
– When the process terminates, the PCB vanishes

• Save the PCB inside Kernel
– May not be as efficient as saving it on stack
– But, it is very flexible and no other problems

22

Manipulating Processes

• Creation and termination
– fork, exec, wait, kill

• Interaction
– message passing between processes

• Syscalls include
– block, yield

23

Threads

• thread
– a sequential execution stream within a process (sometimes

called a lightweight process)
– threads in a process share the same address space

• thread concurrency
– easy to program overlapping of computation with I/O
– supports doing many things at a time: web browser
– a server serves multiple requests

24

Thread Control Block (TCB)

• state (ready, running, blocked)
• registers
• status (EFLAGS)
• program counter (EIP)
• stack
• code

25

Thread API

• creation
– fork, join

• interaction
– condition synchronization & mutual exclusion

• acquire(lock_name), release (lock_name)
• semaphores

– operations on monitor condition variables
• wait, signal, broadcast

26

Process vs. Thread

• address space
– processes do not (usually) share memory, threads in a

process do
• therefore, process context switch implies getting a new

address space in place
– page table and other memory mechanisms

• privileges
– each process has its own set, threads in a process share

27

Threads and Processes in this Course

Kernel threads

Kernel
Address
Space

Kernel Level

at User Level

Project OSTrad. User-Level Threads
Single-threaded processes in individual address spaces

Kernel Level

User Level Thread Support

Process

Threads

• User-level threads within a process are
– Not seen by Kernel (so Kernel can not block and schedule

them)
– Scheduled by (user-level) scheduler in process

• Kernel-level threads
– Seen by OS Kernel (so Kernel can block and schedule them

individually)

28

User- and Kernel-Level Thread Support

• User-level threads within a process are
– Not seen by Kernel (so Kernel can not block and schedule

them)
– Scheduled by (user-level) scheduler in process

• Kernel-level threads
– Seen by OS Kernel (so Kernel can block and schedule them

individually)

28

User- and Kernel-Level Thread Support

What if a thread
blocks?

29

Context Switching Issues
• Performance

– Overhead multiplied so need to keep it fast (nano vs micro vs milli
seconds)

– Most time is spent SAVING and RESTORING the context of processes
• Less processor state to save, the better

– Pentium has a multitasking mechanism, but SW can be faster if it saves
less of the state

• How to save time on the copying of context state?
– Re-map (address) instead of copy (data)

• Where to store Kernel data structures “shared” by all processes
• Memory

• How to give processes a fair share of CPU time
• Preemptive scheduling, time-slice defines maximum time interval

between scheduling decisions

30

Example Process State Transitions

P4P3P2P1

P2

P1

ReadyQueue P4P3

BlockedQueue

Scheduler

Dispatcher

Trap
Handler

Service

!

Current

Trap Return
Handler

U s e r L e v e l P r o c e s s e s

KERNEL

MULTIPROGRAMMING

•Uniprocessor: Interleaving
(“pseudoparallelism”)

•Multiprocessor: Overlapping (“true
paralellism”)

PC

PCB’s

Memory resident part

Running

BlockedReady

Resource becomes available
(move to ready queue)

Create
a process

Terminate
(call scheduler)

Yield
(call scheduler)

Block for resource
(call scheduler)

Scheduler
dispatch

31

Scheduler

• Non-preemptive scheduler invoked by syscalls (to OS Kernel)
– block
– yield
– (fork and exit)

• The simplest form
 Scheduler:
 save current process state (store to PCB)
 choose next process to run
 dispatch (load state stored in PCB to registers, and run)
• Does this work?

• PCB must be resident in memory
• Remember the stacks

32

Process Context Switch

• save a context
– all registers (general purpose ad floating-point)
– all co-processor state
– save all memory to disk?
– what about cache and TLB?

• start a context: reverse of above
• challenge: save state without changing it before it is saved

– hardware will save a few registers when an interrupt happens. We can use
them.

– CISC: have a special instruction to save and restore all registers to/from
stack

– RISC: reserve registers for kernel

33

Stacks
• Remember: We have only one copy of the Kernel in memory

• Here is a way to view this: all processes “execute” the same kernel
code (=> Must have a kernel stack for each process)

• Used for storing parameters, return address, locally created
variables in frames or activation records

• Each process
– user stack
– kernel stack

• always empty when process is in user mode executing
instructions

• Does the Kernel need its own stack(s)?

34

“Swapping”

• The processes competing for resources may have combined
demands that exceeds available resources (like memory)

• Reducing the degree of multiprogramming by moving some
processes to disk, and temporarily not consider them for execution
may be a strategy to provide for “infinite pie”

35

Add Job Swapping to
State Transition Diagram

Running

BlockedReady

Create
a process

Terminate
(call scheduler)

Yield
(call scheduler)

WAIT for resource
(call scheduler)

Scheduler
dispatch

Memory
needed

Memory
needed

35

Add Job Swapping to
State Transition Diagram

Running

BlockedReady

Create
a process

Terminate
(call scheduler)

Yield
(call scheduler)

WAIT for resource
(call scheduler)

Scheduler
dispatch

Reso
urce

s

beco
me

available
Swap out

Swap in
Swapped
onto disk

Memory
needed

Memory
needed

35

Add Job Swapping to
State Transition Diagram

Running

BlockedReady

Create
a process

Terminate
(call scheduler)

Yield
(call scheduler)

WAIT for resource
(call scheduler)

Scheduler
dispatch

Reso
urce

s

beco
me

available
Swap out

Swap in
Swapped
onto disk

Swap out

Memory
needed

Memory
needed

