
Protection and System Calls

Otto J. Anshus

Monday, 13.January, 2014

Protection Issues

• CPU protection
– Prevent a user from using the CPU for too long

• Throughput of jobs, and response time to events (incl. user interactive
response time)

• Memory protection
– Prevent users from modifying kernel code and data structures
– …and each others code and data

• I/O protection
– Prevent users from performing illegal I/O’s

• Question to ponder during the fast approaching long winter
nights
– what is the difference between protection and security?

Monday, 13.January, 2014

Typical Unix OS Structure

Application

Portable OS Layer

Libraries

Machine-dependent layer

•Low-level system initialization and
bootstrap

•Fault, trap, interrupt and exception
handling

•Memory management: hardware
address translation

•Low-level kernel/user-mode process
context switching

•I/O device driver and device
initialization code

C

Assembler

System Call Interface

•...have to

•Performance

Monday, 13.January, 2014

What is a Process?
• Four segments

– Code/text: instructions
– Data: variables
– Stack
– Heap

• Why?
– Separate code and data
– Stack and heap grow

toward each other

• Stack
– Layout by compiler
– Allocate at process creation

(fork)
– Deallocate at process

termination
• Heap

– Linker and loader specify the
starting address

– Allocate/deallocate by library
calls such as malloc() and free()
called by application

• Data
– Compiler allocate statically
– Compiler specify names and

symbolic references
– Linker translate references and

relocate addresses
– Loader finally lay them out in

memory

NB: WE must figure out how to
let the OS implement all of this
and how to handle a running process

Monday, 13.January, 2014

Registers Directly Used by User Level
Processes

In “protected mode”, there are 8 32-bit general-purpose
registers for use:

• data registers
◦ EAX, the accumulator (32 bits (16 and AX (AH, AL)))
◦ EBX, the base register
◦ ECX, the counter register
◦ EDX, the data register

• address registers
◦ ESI, the source register
◦ EDI, the destination register
◦ ESP, the stack pointer register
◦ EBP, the stack base pointer register

5

Monday, 13.January, 2014

Registers accessed by Kernel (cannot be
directly accessed by user level processes)

Registers used by OS Kernel changing the state of the processor:

• control registers
◦ CR0, CR1, CR2, CR3

• test registers
◦ TR4, TR5, TR6, TR7

• descriptor registers
◦ GDTR, the global descriptor table register (see below)
◦ LDTR, the local descriptor table register (see below)
◦ IDTR, the interrupt descriptor table register (see below)

• task register
◦ TR 6

Monday, 13.January, 2014

User level vs. Kernel level

• User level
• Some instructions are not available any more
• Programs can be modified and substituted by user

• Kernel (a.k.a. supervisory or privileged) level
– All instructions are available
– Total control possible so OS should never ever give

away to a user process the right to run at kernel level

Application

Portable OS Layer

Libraries

Machine-dependent layer

Monday, 13.January, 2014

Architecture Support: Privileged Mode

Monday, 13.January, 2014

Boot OS and Run It and User Level Processes
• Boot OS

– power on/start up code reads boot block from HD to memory and transfer control to
boot block code

– boot block code reads OS from HD to memory
– OS is given control

• OS starting user program (first time)
– Read (already compiled and readied program) image from disk
– Initialize OS kernel data structures with info about the program
– ATOMICALLY DO {<Set privilege level ”user”>; <Load instruction register from

start of program>} % why ‘atomically?

– Now we have a user level PROCESS running

• User level process requesting OS service
– Make a mark ”somewhere” (memory, stack, registers) indicating which service is

requested and where to find the parameters
– Execute instruction that is bound to trap in decode

• Still need mechanism that allows OS to ”preempt” user process, OS needs to be activated
independently of running program. That can only be achieved “external” to the running
program’s instruction stream.

Monday, 13.January, 2014

What to Do When User Level Process is Trying to Execute
an Illegal Instruction

• Instruction Stream
– Fetch instruction
– Decode instruction
– Fetch operands
– Execute
– Write back result
– Next instruction

When decoding instruction, what to do if
bit-pattern doesn’t represent a (legal)
instruction?

– Halt? (No, but why not?)
– Instead: “Trap”: fetch next instruction at

”predetermined” address in memory. Make sure
that you have placed your (OS) code there
beforehand

Monday, 13.January, 2014

Interrupts and Traps

• Interrupts
– Raised by external events
– CPU resume from the interrupt

handler in the kernel
• switch to next process

– iret instruction: returns by
popping return address from
stack, and enable interrupts
(IA32 instruction set)

• Traps
– Internal events
– System calls (syscalls)
– Also return by iret

Application IS program being executed IS at least one process (with at least one thread each)

OS Kernel

Monday, 13.January, 2014

Interrupts and Exceptions
• Interrupt sources

– HW (by external devices)
– SW: INT n

• Exceptions (something unexpected or needing action
happened)
– Program errors

• faults: save address (CS, EIP) of faulting instruction, “fix” fault, restart
instruction

– Case: page fault, divide by zero

• traps: save address of instruction
– Case: debugger

• aborts: oops (no saving, not recoverable)
– Case: your first attempts at OS kernel code

– SW generated: INT 3
– Machine-check exceptions

• See Intel doc Vol. 3 for details

Monday, 13.January, 2014

Interrupts and Exceptions

Monday, 13.January, 2014

Interrupts and Exceptions

Monday, 13.January, 2014

Privileged Instruction Examples

• Memory address mapping
• Data cache flush and invalidation
• Invalidating TLB entries
• Loading and reading system registers
• Changing processor mode from kernel to user
• Changing the voltage and frequency of the processor
• Halting a processor
• Reset a processor
• I/O operations

Monday, 13.January, 2014

IA32 Protection Rings

No worries, we will use level 0 and 3

Monday, 13.January, 2014

System Calls
• Operating System API

– Interface between a process and OS kernel
– Seen as a set of library functions

• Process management
– end, abort , load, execute, create, terminate, set, wait

• Memory management
• mmap & munmap, mprotect, mremap, msync, swapon & off,

• File management
• create, delete, open, close, R, W, seek

• Device management
• res, rel, R, W, seek, get & set atrib., mount, unmount

• Communication
• get ID’s, open, close, send, receive

Monday, 13.January, 2014

System Call Mechanism
• User code can be arbitrary
• User code cannot modify kernel

memory
• Makes a system call with

parameters
• The call mechanism switches

code to kernel mode
• Execute system call
• Return with results

Kernel in
protected memory

entry

User
program

User
program

call

return

But HOW?

Monday, 13.January, 2014

System Call Implementation

• Use an “interrupt”
• Hardware devices (keyboard, serial port, timer, disk,…)

and software can request service using interrupts
• The CPU is interrupted

– ...and a service handler routine is run
• …when finished the CPU resumes from where it was

interrupted (or somewhere else determined by the OS
kernel)

Monday, 13.January, 2014

OS Kernel: Interrupt/Trap/Exception Handler

HW Device
Interrupt

HW exceptions

SW exceptions

System Call

Virtual address
exceptions

HW enforces this boundary, but we must
use it correctly

System
Service
dispatcher System

services

Interrupt
service
routines

Exception
dispatcher

Exception
handlers

VM manager’s
pager

Sys_call_table

User Level code running
Interrupts ON

Kernel Level code running
Interrupts OFF (simple)

This is inside
the Kernel

Entry point of Int Handler
...

...

Monday, 13.January, 2014

Passing Parameters

• Pass by registers
• #registers
• #usable registers
• #parameters in syscall

• Pass by memory vector
– A register holds the address of

a location in users memory
• Pass by stack

– Push: done by library
– Pop: done by Kernel

frame

frame

Top

REMEMBER: Kernel has
access to callers address
space, but not vice versa

Monday, 13.January, 2014

The Stack
•Many stacks possible, but only
one is “current”: the one in the
segment referenced by the SS
register

•Max size 4 gigabytes

•PUSH: write (--ESP);

•POP: read(ESP++);

•When setting up a stack
remember to align the stack
pointer on 16 bit word or 32 bit
double-word boundaries

Monday, 13.January, 2014

Library Stubs for System Calls

• User Level Library
int read(int fd, char * buf, int size)
{
 move READ to R0

 move fd, buf, size to R1, R2, R3

 int $0x80
 load result code from Rresult

}

User
stack

Registers

User
memory

Kernel
stack

Registers

Kernel
memory

Returns here
when work
is done by
kernel

Could be an error
code

32-255
available
to user

Win NT: 2E

Linux: 80

HW takes over and IP is set to OS Kernel

• User Level Process calls: read(fd, buf, size);

Monday, 13.January, 2014

System Call Entry Point in Kernel

User
stack

Registers

User
memory

Kernel
stack

Registers

Kernel
memory

• Assume passing parameters in
registers
EntryPoint inside OS Kernel:
 switch to kernel stack;
 save user context;
 if legal(R0) call service;

 restore user context;
 switch to user stack;
 iret;

int 0x80

SW
interrupt

Puts results into buf Or: User stack

Or: some register

Change to user
mode and return

Kernel
Mode:
Total
control.
All
interrupts
are
disabled

NB,
black frame
means KL...

A simplified Interrupt Handler

Monday, 13.January, 2014

System Call Entry Point
• Assume passing parameters in

registers
(EntryPoint:)
 switch to kernel stack;
 save all registers;
 if legal(R0) call sys_call_table[R0];
 restore user registers;
 switch to user stack;
 iret; %next instr in user space app

int 0x80

SW
interrupt

Save/Restore Context?

If envoked code executes for a long
time: should SCHEDULE or at least
ENABLE interrupts (here or inside
service routine).

READ returns with result and
handler must return them to user
(Or SCHEDULE to run another process)

Monday, 13.January, 2014

Polling instead of Interrupt?

• OS kernel could check a request queue of syscalls
instead of using an interrupt?

• Waste CPU cycles checking
• All have to wait while the checks are being done
• When to check?

– Non-predictable
– Pulse every 10-100ms?

» too long time

• Same valid for HW Interrupts vs. Polling
• However, spinning can give good performance (more

later)

But used for Servers

Monday, 13.January, 2014

Design Issues for Syscall
• We used only one result reg, what if more results?
• In kernel and in called service: Use caller’s stack or a

special stack?
– Use a special stack

• Quality assurance
– Use a single entry or multiple entries?

• Simple is good?
– Then a single entry is simpler, easier to make robust

• Can kernel code call system calls?
– Yes, but should avoid the entry point mechanism

Monday, 13.January, 2014

System calls vs. Library calls

• Division of labor (a.k.a. Separation of Concerns)
• Memory management example

– Kernel
• Allocates “pages” (w/HW protection)
• Allocates many “pages” (a big chunk) to library

– Big chunks, no “small” allocations

– Library
• Provides malloc/free for allocation and deallocation of memory
• Application use malloc/free to manage its own memory at fine

granularity
• When no more memory, library asks kernel for a new chunk of pages

Monday, 13.January, 2014

User process vs. kernel

• To go from User Level Process to Kernel
– syscalls using int

• To go from Kernel to User Level Process
– iret (with “good” stack)
– Kernel is all powerful

• Can write into user memory
• Can terminate, block and activate user processes

Monday, 13.January, 2014

