
Semaphores

Otto J. Anshus

Monday, 3.February, 2014

Concurrency: Double buffering

Input sequence f
Network, harddisk, keyboard, a process
sending messages

Monday, 3.February, 2014

Concurrency: Double buffering

Input sequence f
Network, harddisk, keyboard, a process
sending messages

getIO (s,f)s

Monday, 3.February, 2014

Concurrency: Double buffering

Input sequence f
Network, harddisk, keyboard, a process
sending messages

getIO (s,f)s

/* Copy */
t := s;t

Monday, 3.February, 2014

Concurrency: Double buffering

Input sequence f
Network, harddisk, keyboard, a process
sending messages

putIO (t,g)

Output sequence g

getIO (s,f)s

/* Copy */
t := s;t

Monday, 3.February, 2014

Concurrency: Double buffering

Input sequence f
Network, harddisk, keyboard, a process
sending messages

putIO (t,g)

Output sequence g

getIO (s,f)s

/* Copy */
t := s;t

doing IO is a Kernel service

Monday, 3.February, 2014

Concurrency: Double buffering

Input sequence f
Network, harddisk, keyboard, a process
sending messages

putIO (t,g)

Output sequence g

getIO (s,f)s

/* Copy */
t := s;t

*{
getIO();
copy;
putIO();

}

What is bad with this approach?

Sequential approach

* means loop until finished :)

doing IO is a Kernel service

Monday, 3.February, 2014

Concurrency: Double buffering

Input sequence f
Network, harddisk, keyboard, a process
sending messages

putIO (t,g)

Output sequence g

getIO (s,f)s

/* Copy */
t := s;t

*{
getIO();
copy;
putIO();

}

What is bad with this approach?

Sequential approach

* means loop until finished :)

No concurrency so we might as well
use only one buffer

doing IO is a Kernel service

Monday, 3.February, 2014

Concurrency: Double buffering

Input sequence f
Network, harddisk, keyboard, a process
sending messages

putIO (t,g)

Output sequence g

getIO (s,f)s

/* Copy */
t := s;t

getIO(s,f);
*{

Copy;

{putIO(t,g); || getIO(s,f);}
}

/* Fill s and empty t concurrently */

|| specifies concurrent execution.

Two concurrent threads

(Can be Interleaved or Overlapped)

(In this OS course: Interleaved)

*{
getIO();
copy;
putIO();

}

What is bad with this approach?

Sequential approach

* means loop until finished :)

No concurrency so we might as well
use only one buffer

doing IO is a Kernel service

Monday, 3.February, 2014

Concurrency: Double buffering

Input sequence f
Network, harddisk, keyboard, a process
sending messages

putIO (t,g)

Output sequence g

getIO (s,f)s

/* Copy */
t := s;t

getIO(s,f);
*{

Copy;

{putIO(t,g); || getIO(s,f);}
}

/* Fill s and empty t concurrently */

|| specifies concurrent execution.

Two concurrent threads

(Can be Interleaved or Overlapped)

(In this OS course: Interleaved)

putIO getIO

}

getIO;
*{

copy;

Process “Double
Buffering” (DB)

*{
getIO();
copy;
putIO();

}

What is bad with this approach?

Sequential approach

* means loop until finished :)

No concurrency so we might as well
use only one buffer

doing IO is a Kernel service

Monday, 3.February, 2014

Concurrency: Double buffering

Input sequence f
Network, harddisk, keyboard, a process
sending messages

putIO (t,g)

Output sequence g

getIO (s,f)s

/* Copy */
t := s;t

•Put and Get are “disjoint”

•but not with regards to Copy

•Smells like a problem...

•The order of Copy vs. Put
& Get: any race conditions?

•We are OK: order is
defined by program

getIO(s,f);
*{

Copy;

{putIO(t,g); || getIO(s,f);}
}

/* Fill s and empty t concurrently */

|| specifies concurrent execution.

Two concurrent threads

(Can be Interleaved or Overlapped)

(In this OS course: Interleaved)

putIO getIO

}

getIO;
*{

copy;

Process “Double
Buffering” (DB)

*{
getIO();
copy;
putIO();

}

What is bad with this approach?

Sequential approach

* means loop until finished :)

No concurrency so we might as well
use only one buffer

doing IO is a Kernel service

Monday, 3.February, 2014

Concurrency: Double buffering

Input sequence f
Network, harddisk, keyboard, a process
sending messages

putIO (t,g)

Output sequence g

getIO (s,f)s

/* Copy */
t := s;t

•Put and Get are “disjoint”

•but not with regards to Copy

•Smells like a problem...

•The order of Copy vs. Put
& Get: any race conditions?

•We are OK: order is
defined by program

getIO(s,f);
*{

Copy;

{putIO(t,g); || getIO(s,f);}
}

/* Fill s and empty t concurrently */

|| specifies concurrent execution.

Two concurrent threads

(Can be Interleaved or Overlapped)

(In this OS course: Interleaved)

putIO getIO

}

getIO;
*{

copy;

Process “Double
Buffering” (DB)

*{
getIO();
copy;
putIO();

}

What is bad with this approach?

Sequential approach

* means loop until finished :)

No concurrency so we might as well
use only one buffer

doing IO is a Kernel service

But program becomes complicated
even for such a simple problem

Monday, 3.February, 2014

“Complicated Program”
OK, but can we do better?

3

Monday, 3.February, 2014

“Complicated Program”
OK, but can we do better?

3

Do Better Ideas to get correct order of operations

Non-preemptive
Start all threads in a given order and maintain that order

...by OS kernel

...or at UL (yield)

Preemptive
Get the kernel scheduler to select who we want

Explicit scheduling by user level

Monday, 3.February, 2014

“Complicated Program”
OK, but can we do better?

3

Do Better Ideas to get correct order of operations

Non-preemptive
Start all threads in a given order and maintain that order

...by OS kernel

...or at UL (yield)

Preemptive
Get the kernel scheduler to select who we want

Explicit scheduling by user level

Complicated

Monday, 3.February, 2014

“Complicated Program”
OK, but can we do better?

3

Do Better Ideas to get correct order of operations

Non-preemptive
Start all threads in a given order and maintain that order

...by OS kernel

...or at UL (yield)

Preemptive
Get the kernel scheduler to select who we want

Explicit scheduling by user level

Complicated

Complicated

Monday, 3.February, 2014

“Complicated Program”
OK, but can we do better?

3

Do Better Ideas to get correct order of operations

Non-preemptive
Start all threads in a given order and maintain that order

...by OS kernel

...or at UL (yield)

Preemptive
Get the kernel scheduler to select who we want

Explicit scheduling by user level

Complicated

Complicated

Surprisingly, this works rather well (still too complicated, though)

Monday, 3.February, 2014

Concurrency: Double buffering

Put (t,g)

/* Copy */
t := s;

Input sequence f

Output sequence g

Get (s,f) s

t

/* Fill s and empty t concurrently: OS Kernel will do preemptive scheduling of GET, COPY and PUT*/

Monday, 3.February, 2014

Concurrency: Double buffering

Put (t,g)

/* Copy */
t := s;

Input sequence f

Output sequence g

Get (s,f) s

t

/* Fill s and empty t concurrently: OS Kernel will do preemptive scheduling of GET, COPY and PUT*/
Three threads executing concurrently:

{put() || get() || copy} /*Assume preemptive sched. by kernel */

What is shared between the threads?: The buffers s and t. So what can happen
unless we make sure they are used by one and only one thread at a time?:
Interference between the threads possible/likely.

Need how many locks? TWO, one for each shared resource.

Proposed code (Not too bad, but not quite good enough):

copy:: *{acq(lock_t); acq(lock_s); t=s; rel(lock_s); rel(lock_t);}

get:: *{acq(lock_s); s=f; rel(lock_s);}

put:: *{acq(lock_t): g=t; rel(lock_t);}

Monday, 3.February, 2014

Concurrency: Double buffering

Put (t,g)

/* Copy */
t := s;

Input sequence f

Output sequence g

Get (s,f) s

t

/* Fill s and empty t concurrently: OS Kernel will do preemptive scheduling of GET, COPY and PUT*/

Not too bad, but the ORDER can be wrong

•Get overwrites new s

•Copy reads old s

•Copy overwrites new t

•Put reads old t

Most likely we will have a glorious mix of all of the above

Three threads executing concurrently:

{put() || get() || copy} /*Assume preemptive sched. by kernel */

What is shared between the threads?: The buffers s and t. So what can happen
unless we make sure they are used by one and only one thread at a time?:
Interference between the threads possible/likely.

Need how many locks? TWO, one for each shared resource.

Proposed code (Not too bad, but not quite good enough):

copy:: *{acq(lock_t); acq(lock_s); t=s; rel(lock_s); rel(lock_t);}

get:: *{acq(lock_s); s=f; rel(lock_s);}

put:: *{acq(lock_t): g=t; rel(lock_t);}

Monday, 3.February, 2014

Concurrency: Double buffering

Put (t,g)

/* Copy */
t := s;

Input sequence f

Output sequence g

Get (s,f) s

t

/* Fill s and empty t concurrently: OS Kernel will do preemptive scheduling of GET, COPY and PUT*/

Not too bad, but the ORDER can be wrong

•Get overwrites new s

•Copy reads old s

•Copy overwrites new t

•Put reads old t

Most likely we will have a glorious mix of all of the above

Three threads executing concurrently:

{put() || get() || copy} /*Assume preemptive sched. by kernel */

What is shared between the threads?: The buffers s and t. So what can happen
unless we make sure they are used by one and only one thread at a time?:
Interference between the threads possible/likely.

Need how many locks? TWO, one for each shared resource.

Proposed code (Not too bad, but not quite good enough):

copy:: *{acq(lock_t); acq(lock_s); t=s; rel(lock_s); rel(lock_t);}

get:: *{acq(lock_s); s=f; rel(lock_s);}

put:: *{acq(lock_t): g=t; rel(lock_t);}

We need a way to
signal conditions.

Monday, 3.February, 2014

Protecting a Shared Variable
(implementing locks in the OS Kernel)

• Remember: we need a shared address space to share variables (memory)
– threads inside a process share an address space
– processes: do not share address space(s) (of course not?)

• (but can do so by exporting/importing memory regions (buffers) (not in this course))
• Assume

– we have support in the OS kernel for user and/or kernel level threads: threads are individually scheduled without
blocking the other threads (and the process itself!)

– we have locks as an OS service, implemented by and in the Kernel.
• Acquire(lock_A); count++; Release(lock_A);

• (1) Acquire(lock) system call
• User level library

• (2) Push parameters (acquire, lock_name) onto stack
• (3) Trap to kernel (int instruction)

• Kernel level
– Interrupt handler

– (4) Verify valid pointer to lock_A
• Jump to code for Acquire()

• (5a) lock closed: block caller: insert(current, lock_A_wait_queue) (and then do
out(current, Ready_Queue); schedule; dispatch (to some other thread in same address
space or even to another process);)

• (5b) lock open: close lock_A (and schedule: dispatch (back library routine or to another
thread or process);)

• User level: (6) execute count++ %this after getting the lock
• (7) Release(lock) system call

• What should happen now if other threads are not waiting on lock_A?
• ...and if other threads are waiting on lock_A?

Monday, 3.February, 2014

Lock Performance and Cost Issues

• Should we implement the lock-mechanism waiting by spinning or
blocking?

• Competition for a lock
– Un-contended = rarely in use by someone else
– Contended = often used by someone else
– Held = currently in use by someone

• Think about the implications of these situations
– Contended (High contention lock)

• Spinning: Worst (slow in, many cpu cycles wasted)
• Blocking: OK (slow in, but fewer cycles wasted vs. spinning)

– Un-contended (Low contention lock)
• Spinning: Best (fastest in, few cpu cycles wasted)

• Blocking: Bad (fast in, overhead cpu cycles wasted)

• Locks done
– by Kernel
– by UL

Monday, 3.February, 2014

Use of locks when implementing

Block/unblock
(implemented by the OS Kernel)

• What we want to achieve
– Block thread on a queue called waitq

• insert (waitq, last, remove (readyq, current))

– Unblock
• insert (readyq, scheduler, remove (waitq, first))

• (By the way, useful instruction:)
– (“test and set” works both at user and kernel level)

tcb_refposq_ref q_ref tcb_ref

pos is wherever the
scheduler decides to
insert the thread in the
Ready_Queue

Monday, 3.February, 2014

Implementation of Block and Unblock inside OS Kernel

• Block
– Spin until the block_lock is open
– Lock lock

• Save thread context to TCB
• Enqueue the TCB on condwait_queue

– Open lock
– goto scheduler

• UnBlock
– Spin until block_lock is open
– Lock lock

-Dequeue first TCB from condwait_queue
-Put TCB into ready_queue

– Open lock
– goto scheduler

But do we really need a lock if this is implemented inside the kernel?

Is spinning such a good idea inside the kernel?

block and unblock both touch Ready_Queue and some condwait_queue so let us assume that we must protect against concurrent
accesses

{ {

Monday, 3.February, 2014

Two Styles of Synchronization

MUTEX

CONDITION
SYNCHRONIZATION

Acquire will
block first caller
until Release

Acquire will let
first caller through,
and then block next
until Release

Threads inside one
process: Shared address
space. They can access
the same variablesProcess w/two threads

LID is lock name

Monday, 3.February, 2014

Two Styles of Synchronization

MUTEX

CONDITION
SYNCHRONIZATION

Acquire will
block first caller
until Release

Acquire will let
first caller through,
and then block next
until Release

Threads inside one
process: Shared address
space. They can access
the same variables

LOCK is initially OPEN

Process w/two threads

LID is lock name

Monday, 3.February, 2014

Two Styles of Synchronization

MUTEX

CONDITION
SYNCHRONIZATION

Acquire will
block first caller
until Release

Acquire will let
first caller through,
and then block next
until Release

Threads inside one
process: Shared address
space. They can access
the same variables

Acquire (LID);

 <CR>

Release (LID);

LOCK is initially OPEN

Process w/two threads

LID is lock name

Monday, 3.February, 2014

Two Styles of Synchronization

MUTEX

CONDITION
SYNCHRONIZATION

Acquire will
block first caller
until Release

Acquire will let
first caller through,
and then block next
until Release

Threads inside one
process: Shared address
space. They can access
the same variables

Acquire (LID);

 <CR>

Release (LID);

Acquire (LID);

 <CR>

Release (LID);

LOCK is initially OPEN

Process w/two threads

LID is lock name

Monday, 3.February, 2014

Two Styles of Synchronization

MUTEX

CONDITION
SYNCHRONIZATION

Acquire will
block first caller
until Release

Acquire will let
first caller through,
and then block next
until Release

Threads inside one
process: Shared address
space. They can access
the same variables

Acquire (LID);

 <CR>

Release (LID);

Acquire (LID);

 <CR>

Release (LID);

LOCK is initially OPEN

Process w/two threads

LID is lock name

Monday, 3.February, 2014

Two Styles of Synchronization

MUTEX

CONDITION
SYNCHRONIZATION

Acquire will
block first caller
until Release

Acquire will let
first caller through,
and then block next
until Release

Threads inside one
process: Shared address
space. They can access
the same variables

Acquire (LID);

 <CR>

Release (LID);

Acquire (LID);

 <CR>

Release (LID);

LOCK is initially OPEN

Process w/two threads

LID is lock name

Monday, 3.February, 2014

Two Styles of Synchronization

MUTEX

CONDITION
SYNCHRONIZATION

LOCK is initially CLOSED

Acquire will
block first caller
until Release

Acquire will let
first caller through,
and then block next
until Release

Threads inside one
process: Shared address
space. They can access
the same variables

Acquire (LID);

 <CR>

Release (LID);

Acquire (LID);

 <CR>

Release (LID);

LOCK is initially OPEN

Process w/two threads

LID is lock name

Monday, 3.February, 2014

Two Styles of Synchronization

Release (LID);

MUTEX

CONDITION
SYNCHRONIZATION

LOCK is initially CLOSED

Acquire will
block first caller
until Release

Acquire will let
first caller through,
and then block next
until Release

Threads inside one
process: Shared address
space. They can access
the same variables

Acquire (LID);

 <CR>

Release (LID);

Acquire (LID);

 <CR>

Release (LID);

LOCK is initially OPEN

Process w/two threads

LID is lock name

Monday, 3.February, 2014

Two Styles of Synchronization

Acquire (LID); Release (LID);

MUTEX

CONDITION
SYNCHRONIZATION

LOCK is initially CLOSED

Acquire will
block first caller
until Release

Acquire will let
first caller through,
and then block next
until Release

Threads inside one
process: Shared address
space. They can access
the same variables

Acquire (LID);

 <CR>

Release (LID);

Acquire (LID);

 <CR>

Release (LID);

LOCK is initially OPEN

Process w/two threads

LID is lock name

Monday, 3.February, 2014

Two Styles of Synchronization

Acquire (LID); Release (LID);

MUTEX

CONDITION
SYNCHRONIZATION

LOCK is initially CLOSED

Acquire will
block first caller
until Release

Acquire will let
first caller through,
and then block next
until Release

Threads inside one
process: Shared address
space. They can access
the same variables

Acquire (LID);

 <CR>

Release (LID);

Acquire (LID);

 <CR>

Release (LID);

LOCK is initially OPEN

Process w/two threads

LID is lock name

Monday, 3.February, 2014

Two Styles of Synchronization

Acquire (LID); Release (LID);

MUTEX

CONDITION
SYNCHRONIZATION

a.k.a. a SIGNAL

LOCK is initially CLOSED

Acquire will
block first caller
until Release

Acquire will let
first caller through,
and then block next
until Release

Threads inside one
process: Shared address
space. They can access
the same variables

Acquire (LID);

 <CR>

Release (LID);

Acquire (LID);

 <CR>

Release (LID);

LOCK is initially OPEN

Process w/two threads

LID is lock name

Monday, 3.February, 2014

Think about ...

• Mutual exclusion using Acquire - Release:
– Easy to forget one of them?
– Difficult to debug?

• must check all threads for correct use: “Acquire-CR-Release”
– No help from the compiler?

• It does not understand that we mean to say MUTEX
• But could

– check to see if we always match them “left-right”
– associating (by specification/declaration) a variable with a

Mutex, and never allow access to the variable outside of
CR

Monday, 3.February, 2014

Semaphores (Dijkstra, 1965)

• Down(s) a.k.a Wait(s) a.k.a P(s)
– itself a critical region: MUTEX
– delay the calling thread if s≤0
– must decrement s by 1 for each

call (and before delay!)

{
 if (--s < 0)
 Block(s);
}

{
 if (++s <= 0)
 Unblock(s);
}

• Up(s) a.k.a Signal(s) a.k.a V(s)
– itself a critical region: MUTEX
– Increment semaphore by 1
– Wake up the longest waiting

thread if any

s must NOT be
accessible
through other
means than
calling P and V

Can get negative s: counts number of waiting threads

MUTEX

Published as an appendix to the paper on the THE operating system

The semaphore, s, must be given an initial value

P(s) V(s)

P: Passieren == to pass
P: Proberen == to test

V: Vrijmagen == to make free
V: Verhogen == to increment

Dutch words

Monday, 3.February, 2014

A Blocking Semaphore Implementation

s_wait_queue

Threads waiting to get return after calling P (s) when s was <=0s

V (s) P (s)

integer

++1 --1

Unblock one waiting thread
(FIFO is fair)

Block calling thread when
s <=0

•NB: s and waitq are shared resources
So what?

•Approaches to achieve atomicity
Disable interrupts

P() and V() as System calls

Entry-Exit protocols
Monday, 3.February, 2014

A Spinning Semaphore Implementation?

V(s):

s++;

P(s):

while (s <= 0) {};
s--;

MUTEX

Monday, 3.February, 2014

A Spinning Semaphore Implementation?

V(s):

s++;

P(s):

while (s <= 0) {};
s--;

MUTEX

“You Got a Problem with This?”

Monday, 3.February, 2014

Spinning Semaphore

V(s):

s++;

P(s):

while (s <= 0) {};
s--;

Monday, 3.February, 2014

Spinning Semaphore

V(s):

s++;

P(s):

while (s <= 0) {};
s--;

If P spinning inside mutex then V will not get in
Starvation possible (Lady Luck may ignore/favor some threads)

Of P’s
Of V’s

Must open mutex, say, between every iteration of while() to
make it possible for V to get in

Costly
Every 10th iteration?

Latency

Monday, 3.February, 2014

Implementation of Semaphores
• Implementing the P and V of semaphores

– If WAIT is done by blocking
• Expensive
• Must open mutex

– But no real problems because we have a waiting queue now
and we will not get starvation

– If done by spinning
• Must open mutex during spin to let V in

– Starvation of P’s and V’s possible
• May not be a problem in practice

• What can we do to “do better”?

Monday, 3.February, 2014

Implementing Semaphores using Locks
Using locks to implement a semaphore

• mutex lock: lock is initially open
• “delay me” lock: lock is initially locked

• SEMAPHORE value is called “s.value” in the code below: Initially 0

Threads :)

Monday, 3.February, 2014

Implementing Semaphores using Locks
Using locks to implement a semaphore

• mutex lock: lock is initially open
• “delay me” lock: lock is initially locked

• SEMAPHORE value is called “s.value” in the code below: Initially 0

Trouble

Threads :)

Monday, 3.February, 2014

Implementing Semaphores using Locks
Using locks to implement a semaphore

• mutex lock: lock is initially open
• “delay me” lock: lock is initially locked

• SEMAPHORE value is called “s.value” in the code below: Initially 0

Trouble

Threads :)

Monday, 3.February, 2014

Implementing Semaphores using Locks
Using locks to implement a semaphore

• mutex lock: lock is initially open
• “delay me” lock: lock is initially locked

• SEMAPHORE value is called “s.value” in the code below: Initially 0

Trouble

Threads :)

“Lost” V calls: locks
have no memory

Monday, 3.February, 2014

Hemmendinger’s solution (1988)

Monday, 3.February, 2014

Kearn’s Solution (1988)

Monday, 3.February, 2014

Hemmendinger’s Correction (1989)

Monday, 3.February, 2014

Hsieh’s Solution (1989)

Monday, 3.February, 2014

Enough

• Why don’t you just implement P and V in the Kernel using
blocking? :)

21

Monday, 3.February, 2014

Using Semaphores
s := 1;

P (s);
 <CR>
V(s);

P (s);
 <CR>
V(s);

s := 8;
P (s);
 <max 8>
V(s);

P (s);
 <max 8>
V(s);

s := 0;

P (s); V (s);

Thread A is delayed until
thread B says V(s)

One thread gets in, next is
delayed until V is executed

Up to 8 threads can pass P, the ninth
will block until V is said by one of
the eight already in there

NB: remember to set the
initial semaphore value!

Signal MutexProcess Process
Thread A Thread B

Threads

Monday, 3.February, 2014

Simple to debug?

P (x);

V (y);

<many lines of
brilliant code>

P (y);

V (x);

What will happen?

A B

The plan is to have thread A wait for a signal from B and vice versa.

<many lines of
brilliant code>

<many lines of
brilliant code>

<many lines of
brilliant code>

<code> <code>

x := 0;

y := 0;

Semaphores in shared memory accessible to both thread A and B

Monday, 3.February, 2014

Simple to debug?

P (x);

V (y);

<many lines of
brilliant code>

P (y);

V (x);

What will happen?

A B

The plan is to have thread A wait for a signal from B and vice versa.

<many lines of
brilliant code>

<many lines of
brilliant code>

<many lines of
brilliant code>

<code> <code>

x := 0;

y := 0;

Semaphores in shared memory accessible to both thread A and B

The cunning plan is to exchange signals

Monday, 3.February, 2014

Simple to debug?

P (x);

V (y);

<many lines of
brilliant code>

P (y);

V (x);

What will happen?

A B

The plan is to have thread A wait for a signal from B and vice versa.

<many lines of
brilliant code>

<many lines of
brilliant code>

<many lines of
brilliant code>

<code> <code>

x := 0;

y := 0;

Semaphores in shared memory accessible to both thread A and B

The cunning plan is to exchange signals

Monday, 3.February, 2014

Simple to debug?

P (x);

V (y);

<many lines of
brilliant code>

P (y);

V (x);

What will happen?

A B

Not all plans will come through

The two threads ARE FOREVER WAITING FOR EACH OTHERS SIGNAL

Circular Wait

A classic (but not good) situation resulting in a...

The plan is to have thread A wait for a signal from B and vice versa.

<many lines of
brilliant code>

<many lines of
brilliant code>

<many lines of
brilliant code>

<code> <code>

x := 0;

y := 0;

Semaphores in shared memory accessible to both thread A and B

The cunning plan is to exchange signals

Monday, 3.February, 2014

Simple to debug?

P (x);

V (y);

<many lines of
brilliant code>

P (y);

V (x);

What will happen?

A B

Not all plans will come through

The two threads ARE FOREVER WAITING FOR EACH OTHERS SIGNAL

Circular Wait

A classic (but not good) situation resulting in a...

The plan is to have thread A wait for a signal from B and vice versa.

<many lines of
brilliant code>

<many lines of
brilliant code>

<many lines of
brilliant code>

<code> <code>

deadlock

x := 0;

y := 0;

Semaphores in shared memory accessible to both thread A and B

The cunning plan is to exchange signals

Monday, 3.February, 2014

<many

lines

of

brilliV(y);ant

code>

<many

linP(x);es

of

brilliant

code>

A

<many

lines

of

brilliant

coV(x);de>

<many

lines

of

brilP(y);liant

code>

B

More to scale

Monday, 3.February, 2014

Rendezvous between two threads
(or: a Barrier for two threads)

THREAD 1
.
.
V(a)
P(b)

next

THREAD 2
.
.
V(b);
P(a);
.
.
.

(Initially the semaphores a=b=0)

ab

time

Shared memory between the threads

00

Monday, 3.February, 2014

Rendezvous between two threads
(or: a Barrier for two threads)

THREAD 1
.
.
V(a)
P(b)

next

THREAD 2
.
.
V(b);
P(a);
.
.
.

(Initially the semaphores a=b=0)

ab

time

Shared memory between the threads

Initially both threads are in
the Ready_Queue.

Assume that Thread 1 is
scheduled to run first

00

Monday, 3.February, 2014

Rendezvous between two threads
(or: a Barrier for two threads)

THREAD 1
.
.
V(a)
P(b)

next

THREAD 2
.
.
V(b);
P(a);
.
.
.

(Initially the semaphores a=b=0)

ab

time

Shared memory between the threads

Initially both threads are in
the Ready_Queue.

Assume that Thread 1 is
scheduled to run first

00

Monday, 3.February, 2014

Rendezvous between two threads
(or: a Barrier for two threads)

THREAD 1
.
.
V(a)
P(b)

next

THREAD 2
.
.
V(b);
P(a);
.
.
.

(Initially the semaphores a=b=0)

ab

time

Shared memory between the threads

Initially both threads are in
the Ready_Queue.

Assume that Thread 1 is
scheduled to run first

A signal is
raised,
a++

0, 100

Monday, 3.February, 2014

Rendezvous between two threads
(or: a Barrier for two threads)

THREAD 1
.
.
V(a)
P(b)

next

THREAD 2
.
.
V(b);
P(a);
.
.
.

(Initially the semaphores a=b=0)

ab

time

Shared memory between the threads

Initially both threads are in
the Ready_Queue.

Assume that Thread 1 is
scheduled to run first

A signal is
raised,
a++

0, 10

b=0 so no
signal here
yet,
must do b--
and WAIT.

0, -10

Monday, 3.February, 2014

Rendezvous between two threads
(or: a Barrier for two threads)

THREAD 1
.
.
V(a)
P(b)

next

THREAD 2
.
.
V(b);
P(a);
.
.
.

(Initially the semaphores a=b=0)

ab

time

Shared memory between the threads

blocked ,
time runs,
waiting for
thread 2 to
call V(b)

Initially both threads are in
the Ready_Queue.

Assume that Thread 1 is
scheduled to run first

A signal is
raised,
a++

0, 10

b=0 so no
signal here
yet,
must do b--
and WAIT.

0, -10

Monday, 3.February, 2014

Rendezvous between two threads
(or: a Barrier for two threads)

THREAD 1
.
.
V(a)
P(b)

next

THREAD 2
.
.
V(b);
P(a);
.
.
.

(Initially the semaphores a=b=0)

ab

time

Shared memory between the threads

blocked ,
time runs,
waiting for
thread 2 to
call V(b)

Initially both threads are in
the Ready_Queue.

Assume that Thread 1 is
scheduled to run first

A signal is
raised,
a++

0, 10

b=0 so no
signal here
yet,
must do b--
and WAIT.

0, -10

After an unknown time,
Thread 2 is selected by
scheduler and dispatched to

Monday, 3.February, 2014

Rendezvous between two threads
(or: a Barrier for two threads)

THREAD 1
.
.
V(a)
P(b)

next

THREAD 2
.
.
V(b);
P(a);
.
.
.

(Initially the semaphores a=b=0)

ab

time

Shared memory between the threads

blocked ,
time runs,
waiting for
thread 2 to
call V(b)

Initially both threads are in
the Ready_Queue.

Assume that Thread 1 is
scheduled to run first

A signal is
raised,
a++

0, 10

b=0 so no
signal here
yet,
must do b--
and WAIT.

0, -10

After an unknown time,
Thread 2 is selected by
scheduler and dispatched to

A signal is raised, b++. One thread is waiting: insert it into R_Q to be resumed.
0, -1, 0

Monday, 3.February, 2014

Rendezvous between two threads
(or: a Barrier for two threads)

THREAD 1
.
.
V(a)
P(b)

next

THREAD 2
.
.
V(b);
P(a);
.
.
.

(Initially the semaphores a=b=0)

ab

time

Shared memory between the threads

blocked ,
time runs,
waiting for
thread 2 to
call V(b)Thread 1 can

now continue
with next
(but it is the scheduler which will select
next current though)

Initially both threads are in
the Ready_Queue.

Assume that Thread 1 is
scheduled to run first

A signal is
raised,
a++

0, 10

b=0 so no
signal here
yet,
must do b--
and WAIT.

0, -10

After an unknown time,
Thread 2 is selected by
scheduler and dispatched to

A signal is raised, b++. One thread is waiting: insert it into R_Q to be resumed.
0, -1, 0

Monday, 3.February, 2014

Rendezvous between two threads
(or: a Barrier for two threads)

THREAD 1
.
.
V(a)
P(b)

next

THREAD 2
.
.
V(b);
P(a);
.
.
.

(Initially the semaphores a=b=0)

ab

time

Thread 2
will now
receive the
signal sent
by Thread1

Shared memory between the threads

blocked ,
time runs,
waiting for
thread 2 to
call V(b)Thread 1 can

now continue
with next
(but it is the scheduler which will select
next current though)

Initially both threads are in
the Ready_Queue.

Assume that Thread 1 is
scheduled to run first

A signal is
raised,
a++

0, 10

b=0 so no
signal here
yet,
must do b--
and WAIT.

0, -10

After an unknown time,
Thread 2 is selected by
scheduler and dispatched to

A signal is raised, b++. One thread is waiting: insert it into R_Q to be resumed.
0, -1, 0

Monday, 3.February, 2014

Rendezvous between two threads
(or: a Barrier for two threads)

THREAD 1
.
.
V(a)
P(b)

next

THREAD 2
.
.
V(b);
P(a);
.
.
.

(Initially the semaphores a=b=0)

ab

time

Thread 2
will now
receive the
signal sent
by Thread1

Shared memory between the threads

blocked ,
time runs,
waiting for
thread 2 to
call V(b)Thread 1 can

now continue
with next
(but it is the scheduler which will select
next current though)

Initially both threads are in
the Ready_Queue.

Assume that Thread 1 is
scheduled to run first

A signal is
raised,
a++

0, 10

b=0 so no
signal here
yet,
must do b--
and WAIT.

0, -10

After an unknown time,
Thread 2 is selected by
scheduler and dispatched to

A signal is raised, b++. One thread is waiting: insert it into R_Q to be resumed.
0, -1, 0

The threads
meet in time
(quite close
at least)

Monday, 3.February, 2014

Rendezvous between two threads
(or: a Barrier for two threads)

THREAD 1
.
.
V(a)
P(b)

next

THREAD 2
.
.
V(b);
P(a);
.
.
.

(Initially the semaphores a=b=0)

REMEMBER: A semaphore remembers signals not received yet

ab

time

Thread 2
will now
receive the
signal sent
by Thread1

Shared memory between the threads

blocked ,
time runs,
waiting for
thread 2 to
call V(b)Thread 1 can

now continue
with next
(but it is the scheduler which will select
next current though)

Initially both threads are in
the Ready_Queue.

Assume that Thread 1 is
scheduled to run first

A signal is
raised,
a++

0, 10

b=0 so no
signal here
yet,
must do b--
and WAIT.

0, -10

After an unknown time,
Thread 2 is selected by
scheduler and dispatched to

A signal is raised, b++. One thread is waiting: insert it into R_Q to be resumed.
0, -1, 0

The threads
meet in time
(quite close
at least)

Monday, 3.February, 2014

Bounded Buffer using Semaphores

out

in

Capacity: N

B

Producer

PUT (msg):
GET (buf):

Consumer

Condition
synchronization:

•Delay Get when empty

•Delay Put when full

Use one semaphore for
each condition we must
wait for to become TRUE:

•B empty: nonempty:=0

•B full: nonfull:=N

•Is Mutex needed when only 1 P and 1 C?

•PUT at one end, GET at other end

PUT (msg):
 P(nonfull);
 P(mutex);
 <insert>
 V(mutex);
 V(nonempty);

GET (buf):
 P(nonempty);
 P(mutex);
 <remove>
 V(mutex);
 V(nonfull);

MUTEX:

•B and its state
variables are shared
between Put and Get, so
should (must) have a
mutex to give the
threads exclusive access
when they touch the
buffer

Use one semaphore for
each shared resource to
protect it:

•B mutex: mutex:=1One or
several
Producer
threads

bufmsg

Process

One or
several
Consumer
threads

Variables in a
shared address
space

[[

Monday, 3.February, 2014

Brilliant Idea

27

PUT (msg):

P(mutex);

 P(nonfull);
 <insert>
 V(nonempty);

 V(mutex);

GET (buf):

 P(mutex);

 P(nonempty);
 <remove>
 V(nonfull);

 V(mutex);

[[
Monday, 3.February, 2014

Brilliant Idea

27

PUT (msg):

P(mutex);

 P(nonfull);
 <insert>
 V(nonempty);

 V(mutex);

GET (buf):

 P(mutex);

 P(nonempty);
 <remove>
 V(nonfull);

 V(mutex);

[[
(Not)

Monday, 3.February, 2014

“Dining Philosophers”

•Each: need 2 forks to eat

•5 philosophers: 10 forks

•5 forks: 2 can eat concurrently

i

i i+1
i+1

Get L; Get R if free else Put L;

•Starvation possible

Ti

Get L; Get R;

•Deadlock possible
*{think;
 P(s(i));
 P(s(i+1));
 eat;
 V(s(i+1));
 V(s(i));}

S(i) = 1 initially

Ti

Ti

s
s(i): One
semaphore per fork
to be used in
mutex style P-V

Things to observe:

•A fork can be used by one
and only one at a time

•No deadlock

•No starving

•Concurrent eating

Think about: What if we
had to clean the forks
between usage?

-where in the code?
-number of washers?

Mutex on whole table:

•1 can eat at a time *{think;
 P(s); eat; V(s);}

*{....} is while(1){...}

Monday, 3.February, 2014

“Dining Philosophers”

•Each: need 2 forks to eat

•5 philosophers: 10 forks

•5 forks: 2 can eat concurrently

i

i i+1
i+1

Get L; Get R if free else Put L;

•Starvation possible

Ti

Get L; Get R;

•Deadlock possible
*{think;
 P(s(i));
 P(s(i+1));
 eat;
 V(s(i+1));
 V(s(i));}

S(i) = 1 initially

Ti

Ti

s
s(i): One
semaphore per fork
to be used in
mutex style P-V

Things to observe:

•A fork can be used by one
and only one at a time

•No deadlock

•No starving

•Concurrent eating

Initial semaphore value?

Think about: What if we
had to clean the forks
between usage?

-where in the code?
-number of washers?

Mutex on whole table:

•1 can eat at a time *{think;
 P(s); eat; V(s);}

*{....} is while(1){...}

Monday, 3.February, 2014

“Dining Philosophers”

•Each: need 2 forks to eat

•5 philosophers: 10 forks

•5 forks: 2 can eat concurrently

i

i i+1
i+1

Get L; Get R if free else Put L;

•Starvation possible

Ti

Get L; Get R;

•Deadlock possible
*{think;
 P(s(i));
 P(s(i+1));
 eat;
 V(s(i+1));
 V(s(i));}

S(i) = 1 initially

Ti

Ti

s
s(i): One
semaphore per fork
to be used in
mutex style P-V

Things to observe:

•A fork can be used by one
and only one at a time

•No deadlock

•No starving

•Concurrent eating

Initial semaphore value?

s=1;

Think about: What if we
had to clean the forks
between usage?

-where in the code?
-number of washers?

Mutex on whole table:

•1 can eat at a time *{think;
 P(s); eat; V(s);}

*{....} is while(1){...}

Monday, 3.February, 2014

Dining Philosophers

i

i i+1
i+1

states
•Thinking

•Eating

•Wanting

*{
 think;
 ENTRY;
 eat;
 EXIT;
}

Ti

S(i) = 0 initially

P(mutex);
 state(i):=Wanting;
 if (state(i-1) !=Eating AND state(i+1) != Eating)
 {/*Safe to eat*/
 state(i):=Eating;
 V(s(i)); /*Because , so I signal myself so I don’t block at P below*/ }
V(mutex);
P(s(i)); /*Init was 0!! I or right (left) neighbor may have said V(i) to me!*/

P(mutex);
 state(i):=Thinking;
 if (state(i-1)=Wanting AND state(i-2) !=Eating)
 {
 state(i-1):=Eating;
 V(s(i-1)); /*Start Left neighbor*/
 }
/*Analogue for Right neighbor*/
V(mutex);

To avoid starvation they could look after each other:

•Entry: If L and R is not eating I can

•Exit: If L (R) wants to eat and L.L (R.R) is not eating
I start him eating

One semaphore per philosopher
Used in signal style

Trouble: starvation pattern possible:
2&4 at table, 1&3 hungry
2 gets up, 1 sits down
4 gets up, 3 sits down
3 gets up, 4 sits down
1 gets up, 2 sits down
Ad infinitum => Phil 0 will starve

What if NOT?

Monday, 3.February, 2014

Dining Philosophers

i

i i+1
i+1

s

Get L; Get R;

•Deadlock possible
P(s(i));
 P(s(i+1));
 eat;
 V(s(i+1));
V(s(i));

S(i) = 1 initially

T1, T2, T3, T4:

T5

P(s(i)):
 P(s(i+1));
 <eat>
 V(s(i+1));
V(s(i));

P(s(1));
 P(s(5));
 <eat>
 V(s(5));
V(s((1));

•Remove the danger of
circular waiting (deadlock)

•T1-T4: Get L; Get R;

•T5: Get R; Get L;

Can we in a simple way do better
than this one?

•Non-symmetric solution. Still quite elegant

Monday, 3.February, 2014

