Operating Systems Structure

Otto J. Anshus

Adapted from J.E. Smith, 2006: Virtual Machine: Supporting Changing technology and New Applications (talk, U. of Wisconsin)

Software

Application
Programs

Libraries

Service

Dispatcher

Memory Scheduler
Manager

Execution Hardware

Interrupt
controller

Timer

Memory
Translation

System Interconnect
(bus)

Controllers Controllers

1/0 devices
and
Networking

Main
Memory

Hardware
wunnnn Border UL-KL

mmmm Border SW-HW

Adapted from J.E. Smith, 2006: Virtual Machine: Supporting Changing technology and New Applications (talk, U. of Wisconsin)

Software

Application Syscall
Programs

Libraries

Service

Dispatcher

Memory Scheduler
Manager

Execution Hardware

Interrupt
controller

Timer

Memory
Translation

System Interconnect
(bus)

Controllers Controllers

1/0 devices
and
Networking

Main
Memory

Hardware
wunnnn Border UL-KL

mmmm Border SW-HW

Adapted from J.E. Smith, 2006: Virtual Machine: Supporting Changing technology and New Applications (talk, U. of Wisconsin)

wunnnn Border UL-KL

mmmm Border SW-HW

Software

Application
Programs

Syscall

Libraries

Service

Memory Schedu
Manager

Dispatcher

ler

Execution Hardware

Interrupt

controller)
Timer

Memory

System Interconnect

(bus)

Translation

Controllers

1/0 devices
and
Networking

Controllers

Main

Memory

Hardware

A call to a library routine is just a normal UL call: the return
address and parameters are pushed on (user level) stack.
(Compiler has already inserted code to do this and to make
this transparent to UL subroutine code (subroutine code can
therefore happily access the parameters). However, in a
moment HW and your OS must be careful with the stack and
stack pointer, or they will probably be lost or overwritten, and
things will soon crash.)

Adapted from J.E. Smith, 2006: Virtual Machine: Supporting Changing technology and New Applications (talk, U. of Wisconsin)

wunnnn Border UL-KL

mmmm Border SW-HW

Software

Application
Programs

Syscall

Vi

Libraries

Service

Memory Schedu
Manager

Dispatcher

ler

Execution Hardware

Interrupt

controller)
Timer

Memory

System Interconnect

(bus)

Translation

Controllers

1/0 devices
and
Networking

Controllers

Main

Memory

Hardware

A call to a library routine is just a normal UL call: the return
address and parameters are pushed on (user level) stack.
(Compiler has already inserted code to do this and to make
this transparent to UL subroutine code (subroutine code can
therefore happily access the parameters). However, in a
moment HW and your OS must be careful with the stack and
stack pointer, or they will probably be lost or overwritten, and
things will soon crash.)

Adapted from J.E. Smith, 2006: Virtual Machine: Supporting Changing technology and New Applications (talk, U. of Wisconsin)

wunnnn Border UL-KL

mmmm Border SW-HW

Software

Application

Syscall

Programs

L

Libraries

Service

Dispatcher

Memory Scheduler
Manager

Execution Hardware

Interrupt

controller)
Timer

Memory

System Interconnect
(bus)

Translation

Controllers Controllers

1/0 devices
and
Networking

Main

Memory

Hardware

A call to a library routine is just a normal UL call: the return
address and parameters are pushed on (user level) stack.
(Compiler has already inserted code to do this and to make
this transparent to UL subroutine code (subroutine code can
therefore happily access the parameters). However, in a
moment HW and your OS must be careful with the stack and
stack pointer, or they will probably be lost or overwritten, and
things will soon crash.)

Adapted from J.E. Smith, 2006: Virtual Machine: Supporting Changing technology and New Applications (talk, U. of Wisconsin)

A call to a library routine is just a normal UL call: the return
address and parameters are pushed on (user level) stack.
(Compiler has already inserted code to do this and to make
SOftware this transparent to UL subroutine code (subroutine code can
therefore happily access the parameters). However, in a
. . Svscall moment HW and your OS must be careful with the stack and
Appllcatlon y stack pointer, or they will probably be lost or overwritten, and
Programs é things will soon crash.)

Before doing INT 80 the library routine will take the
parameters and service ID and place them in (i) registers, (ii)
memory vector, or (iii) stack (so that the Kernel can fetch
them there.)

Libraries

Service

Dispatcher

Memory Scheduler
Manager

Execution Hardware

Interrupt
controller

Timer

Memory
Translation

System Interconnect
(bus)

Controllers Controllers

1/0 devices
and
Networking

Main
Memory

Hardware
wunnnn Border UL-KL

mmmm Border SW-HW

Adapted from J.E. Smith, 2006: Virtual Machine: Supporting Changing technology and New Applications (talk, U. of Wisconsin)

A call to a library routine is just a normal UL call: the return
address and parameters are pushed on (user level) stack.
(Compiler has already inserted code to do this and to make
SOftware this transparent to UL subroutine code (subroutine code can
therefore happily access the parameters). However, in a
. . Svscall moment HW and your OS must be careful with the stack and
Appllcatlon y stack pointer, or they will probably be lost or overwritten, and
Programs things will soon crash.)

Before doing INT 80 the library routine will take the
parameters and service ID and place them in (i) registers, (ii)
memory vector, or (iii) stack (so that the Kernel can fetch
them there.)

Libraries

Service

Memory Scheduler
Manager

Execution Hardware

Interrupt [€—
controller

Timer

Memory
Translation

System Interconnect
(bus)

Controllers Controllers

1/0 devices
and
Networking

Main
Memory

Hardware
wunnnn Border UL-KL

mmmm Border SW-HW

Adapted from J.E. Smith, 2006: Virtual Machine: Supporting Changing technology and New Applications (talk, U. of Wisconsin)

Remember to initialize interrupt
table (80h) to point to the code doing
the interrupt handling (wherever it is
in memory (so figure out how to get
this address))

wunnnn Border UL-KL

mmmm Border SW-HW

Software

Application
Programs

Syscall

Libraries

Service

Memory Scheduler
Manager

Execution Hardware

Interrupt
controller

—

Timer

Memory

System Interconnect

(bus)

Translation

Controllers

Controllers

1/0 devices
and
Networking

Main
Memory

Hardware

A call to a library routine is just a normal UL call: the return
address and parameters are pushed on (user level) stack.
(Compiler has already inserted code to do this and to make
this transparent to UL subroutine code (subroutine code can
therefore happily access the parameters). However, in a
moment HW and your OS must be careful with the stack and
stack pointer, or they will probably be lost or overwritten, and
things will soon crash.)

Before doing INT 80 the library routine will take the
parameters and service ID and place them in (i) registers, (ii)
memory vector, or (iii) stack (so that the Kernel can fetch
them there.)

Adapted from J.E. Smith, 2006: Virtual Machine: Supporting Changing technology and New Applications (talk, U. of Wisconsin)

Remember to initialize interrupt
table (80h) to point to the code doing
the interrupt handling (wherever it is
in memory (so figure out how to get
this address))

wunnnn Border UL-KL

mmmm Border SW-HW

Software

Application
Programs

Syscall

Libraries

Service

Memory Scheduler
Manager

Execution Hardware

Interrupt [€—

controller]
Timer

Memory

System Interconnect
(bus)

Translation

Controllers

Controllers

1/0 devices
and
Networking

Main
Memory

Hardware

A call to a library routine is just a normal UL call: the return
address and parameters are pushed on (user level) stack.
(Compiler has already inserted code to do this and to make
this transparent to UL subroutine code (subroutine code can
therefore happily access the parameters). However, in a
moment HW and your OS must be careful with the stack and
stack pointer, or they will probably be lost or overwritten, and
things will soon crash.)

Before doing INT 80 the library routine will take the
parameters and service ID and place them in (i) registers, (ii)
memory vector, or (iii) stack (so that the Kernel can fetch
them there.)

Adapted from J.E. Smith, 2006: Virtual Machine: Supporting Changing technology and New Applications (talk, U. of Wisconsin)

Remember to initialize interrupt
table (80h) to point to the code doing
the interrupt handling (wherever it is
in memory (so figure out how to get
this address))

wunnnn Border UL-KL

mmmm Border SW-HW

Software

Application
Programs

Syscall

Libraries

Service

Memory | scneduler
Manager

Execution Hardware

Interrupt [€—

controller]
Timer

Memory

System Interconnect
(bus)

Translation

Controllers

Controllers

1/0 devices
and
Networking

Main
Memory

Hardware

A call to a library routine is just a normal UL call: the return
address and parameters are pushed on (user level) stack.
(Compiler has already inserted code to do this and to make
this transparent to UL subroutine code (subroutine code can
therefore happily access the parameters). However, in a
moment HW and your OS must be careful with the stack and
stack pointer, or they will probably be lost or overwritten, and
things will soon crash.)

Before doing INT 80 the library routine will take the
parameters and service ID and place them in (i) registers, (ii)
memory vector, or (iii) stack (so that the Kernel can fetch
them there.)

Adapted from J.E. Smith, 2006: Virtual Machine: Supporting Changing technology and New Applications (talk, U. of Wisconsin)

Remember to initialize interrupt
table (80h) to point to the code doing
the interrupt handling (wherever it is
in memory (so figure out how to get
this address))

wunnnn Border UL-KL

mmmm Border SW-HW

Software

Application
Programs

Syscall

Libraries

Service

Dispatcher

Memory
Manager

Scheduler_|

Execution Hardware

—

Interrupt

controller]
Timer

Memory

System Interconnect

(bus)

Translation

Controllers

1/0 devices
and
Networking

Controllers

Main

Memory

Hardware

A call to a library routine is just a normal UL call: the return
address and parameters are pushed on (user level) stack.
(Compiler has already inserted code to do this and to make
this transparent to UL subroutine code (subroutine code can
therefore happily access the parameters). However, in a
moment HW and your OS must be careful with the stack and
stack pointer, or they will probably be lost or overwritten, and
things will soon crash.)

Before doing INT 80 the library routine will take the
parameters and service ID and place them in (i) registers, (ii)
memory vector, or (iii) stack (so that the Kernel can fetch
them there.)

Adapted from J.E. Smith, 2006: Virtual Machine: Supporting Changing technology and New Applications (talk, U. of Wisconsin)

Remember to initialize interrupt
table (80h) to point to the code doing
the interrupt handling (wherever it is
in memory (so figure out how to get
this address))

wunnnn Border UL-KL

mmmm Border SW-HW

Software

Application
Programs

Syscall

Libraries

Service

Memory

Scheduler_|
Manager

Execution Hardware

Interrupt [€—

controller]
Timer

Memory

System Interconnect
(bus)

Translation

Controllers

Controllers

1/0 devices
and
Networking

Main
Memory

Hardware

A call to a library routine is just a normal UL call: the return
address and parameters are pushed on (user level) stack.
(Compiler has already inserted code to do this and to make
this transparent to UL subroutine code (subroutine code can
therefore happily access the parameters). However, in a
moment HW and your OS must be careful with the stack and
stack pointer, or they will probably be lost or overwritten, and
things will soon crash.)

Before doing INT 80 the library routine will take the
parameters and service ID and place them in (i) registers, (ii)
memory vector, or (iii) stack (so that the Kernel can fetch
them there.)

Adapted from J.E. Smith, 2006: Virtual Machine: Supporting Changing technology and New Applications (talk, U. of Wisconsin)

Remember to initialize interrupt
table (80h) to point to the code doing
the interrupt handling (wherever it is
in memory (so figure out how to get
this address))

wunnnn Border UL-KL

mmmm Border SW-HW

Software

Application
Programs

Syscall

Libraries

Service

Memory | o ¥ duler_

Manager

Execution Hardware

Interrupt [€—

controller]
Timer

Memory

System Interconnect
(bus)

Translation

Controllers

Controllers

1/0 devices
and
Networking

Main
Memory

Hardware

A call to a library routine is just a normal UL call: the return
address and parameters are pushed on (user level) stack.
(Compiler has already inserted code to do this and to make
this transparent to UL subroutine code (subroutine code can
therefore happily access the parameters). However, in a
moment HW and your OS must be careful with the stack and
stack pointer, or they will probably be lost or overwritten, and
things will soon crash.)

Before doing INT 80 the library routine will take the
parameters and service ID and place them in (i) registers, (ii)
memory vector, or (iii) stack (so that the Kernel can fetch
them there.)

The Dispatcher will assume that the stack has the
correct return address when the iret is issued. If
not we will end up somewhere bad and probably
crash.

Adapted from J.E. Smith, 2006: Virtual Machine: Supporting Changing technology and New Applications (talk, U. of Wisconsin)

Remember to initialize interrupt
table (80h) to point to the code doing
the interrupt handling (wherever it is
in memory (so figure out how to get
this address))

wunnnn Border UL-KL

mmmm Border SW-HW

Software

Application
Programs

Syscall

Libraries

Service

Memory | o ¥ duler_

Manager

Execution Hardware

Interrupt [€—

controller]
Timer

Memory

System Interconnect
(bus)

Translation

Controllers

Controllers

1/0 devices
and
Networking

Main
Memory

Hardware

A call to a library routine is just a normal UL call: the return
address and parameters are pushed on (user level) stack.
(Compiler has already inserted code to do this and to make
this transparent to UL subroutine code (subroutine code can
therefore happily access the parameters). However, in a
moment HW and your OS must be careful with the stack and
stack pointer, or they will probably be lost or overwritten, and
things will soon crash.)

Before doing INT 80 the library routine will take the
parameters and service ID and place them in (i) registers, (ii)
memory vector, or (iii) stack (so that the Kernel can fetch
them there.)

The Dispatcher will assume that the stack has the
correct return address when the iret is issued. If
not we will end up somewhere bad and probably
crash.

Adapted from J.E. Smith, 2006: Virtual Machine: Supporting Changing technology and New Applications (talk, U. of Wisconsin)

Remember to initialize interrupt
table (80h) to point to the code doing
the interrupt handling (wherever it is
in memory (so figure out how to get
this address))

wunnnn Border UL-KL

mmmm Border SW-HW

Software

Application
Programs

Syscall

Libraries

Service

Memory | o ¥ duler_

Manager

Execution Hardware

next I

Interrupt [€—

controller]
Timer

Memory

System Interconnect
(bus)

Translation

Controllers

Controllers

1/0 devices
and
Networking

Main
Memory

Hardware

A call to a library routine is just a normal UL call: the return
address and parameters are pushed on (user level) stack.
(Compiler has already inserted code to do this and to make
this transparent to UL subroutine code (subroutine code can
therefore happily access the parameters). However, in a
moment HW and your OS must be careful with the stack and
stack pointer, or they will probably be lost or overwritten, and
things will soon crash.)

Before doing INT 80 the library routine will take the
parameters and service ID and place them in (i) registers, (ii)
memory vector, or (iii) stack (so that the Kernel can fetch
them there.)

The Dispatcher will assume that the stack has the
correct return address when the iret is issued. If
not we will end up somewhere bad and probably
crash.

Adapted from J.E. Smith, 2006: Virtual Machine: Supporting Changing technology and New Applications (talk, U. of Wisconsin)

A call to a library routine is just a normal UL call: the return
address and parameters are pushed on (user level) stack.
(Compiler has already inserted code to do this and to make
SOftware this transparent to UL subroutine code (subroutine code can
therefore happily access the parameters). However, in a
. . Svscall moment HW and your OS must be careful with the stack and
Appllcatlon y stack pointer, or they will probably be lost or overwritten, and
Programs next I things will soon crash.)

Before doing INT 80 the library routine will take the
parameters and service ID and place them in (i) registers, (ii)
memory vector, or (iii) stack (so that the Kernel can fetch
them there.)

Libraries

Service . The Dispatcher will assume that the stack has the

correct return address when the iret is issued. If

Memo not we will end up somewhere bad and probably
Y | scheduler_ "y

Manager

Remember to initialize interrupt Execution Hardware
table (80h) to point to the code doing ¢

the interrupt handling (wherever it is Interrupt
in memory (so figure out how to get controller Ti
this address)) imer Memory

Translation

10 System Interconnect
Interrupt (bus)

[~ Controllers Controllers

1/0 devices
and
Networking

Main
Memory

Hardware
wunnnn Border UL-KL

mmmm Border SW-HW

Adapted from J.E. Smith, 2006: Virtual Machine: Supporting Changing technology and New Applications (talk, U. of Wisconsin)

A call to a library routine is just a normal UL call: the return
address and parameters are pushed on (user level) stack.
(Compiler has already inserted code to do this and to make
SOftware this transparent to UL subroutine code (subroutine code can
therefore happily access the parameters). However, in a
. . Svscall moment HW and your OS must be careful with the stack and
Appllcatlon y stack pointer, or they will probably be lost or overwritten, and
Programs next I things will soon crash.)

Before doing INT 80 the library routine will take the
parameters and service ID and place them in (i) registers, (ii)
memory vector, or (iii) stack (so that the Kernel can fetch
them there.)

Libraries

Service . The Dispatcher will assume that the stack has the

correct return address when the iret is issued. If

Memo not we will end up somewhere bad and probably
Y | scheduler_ "y

Manager

Remember to initialize interrupt Execution Hardware
table (80h) to point to the code doing ¢

the interrupt handling (wherever it is Interrupt
in memory (so figure out how to get controller
this address)) €

Timer

Memory
Translation

10 System Interconnect
Interrupt (bus)

[~ Controllers Controllers

1/0 devices
and
Networking

Main
Memory

Hardware
wunnnn Border UL-KL

mmmm Border SW-HW

The Architecture of an OS

Layered

Monolithic

Micro kernel and Client/Server
Virtual Machine, (Library, Exokernel)
Hybrids

Goals of the architecture

* OS as Resource Manager
* OS as Virtual Machine (abstractions)

* Architecture, Design, Implementation, &
Tuning result in OS being:
— Protective, interactively fast, throughput fast, energy

efficient, flexible, secure, small (easier to do
protection, security, performance, less bugs)

User User
process || process
“Call” a service in OS ' \

k Service

Operating System Kernel

INTERRUPT HANDLER:

Analyze interrupt;

Get parameters and Start requested service

Service
——

SCHEDULER: Select next process to resume

DISPATCHER: restore context and iret =

Interrupt

Hardware /
\ Overhead

Interrupt from
network, disk, *Crossing the bordser UL -> KL
keyboard,...

UL context -> another UL context

User User
process process

“Call” a service il ' \ Servi A
Crvice A

'- Operating System

Operating System Kernel

INTERRUPT HANDLER:

Analyze interrupt;

Get parameters and Start requested service

Service
——

SCHEDULER: Select next process to resume

DISPATCHER: restore context and iret =

\ 4
Interrupt
Hardware

Interrupt from

network, disk, *Crossing the bordser UL -> KL
keyboard,...

UL context -> another UL context

Layered Structure

Hiding information at each
layer

Develop a layer at a time

Examples

— THE (6 layers, semaphores,
Dijkstra 1968)

— MS-DOS (4 layers) Level 2

Pros
— Separation of concerns

Level 1

— Elegance

Cons
— Protection boundary crossings

Hardware

— Performance

Monolithic

All kernel routines are together
A system call interface

Examples (of fat kernels):

— Classic Unix (Linux, BSD
Unix, ...)

Windows NT (hybrid)
Mach (as a fat kernel)
OS X (fat kernel, but...)

— Performance

— Shared kernel space

Cons
— Stability
— TFlexibility

User
program

User
program
-

(Does it all)

Microkernel

Micro-kernel 1s “small”

— process abstraction,
address space, interrupts User 0S

Services are implemented as process Services
user level processes

Micro-kernel get services on

behalf of users by messaging

with the service processes

Example: L4, Nucleusféi st
Taos, Mach (as a micro

kernel), OS-X (not, but uses some
technologies from Mach making it different

from BSD and Linux)

Microkernel Pros et Cons

* Pros User OS

— Easier to Process Services
» extend or customize

* Port to a new platform

— Fault i1solation

— Smaller kernel => easier to tune/optimize

e (Cons

— Performance

» Naive case: Many protection boundary crossings
— How many?

— Harder to let system services share resources
 Why?

“Truths” on Micro Kernel Flexibility and
Performance

NO: Can be <50 cycles

A micro kernel restricts application level flexibili
Switching overhead kernel-user mode 1s ; ently expensive.

Switching address-spaces is costly.

)) NO: 6-20 microsec round-trip,
IPC 1s CXpEensi1ve. — 53-500 cycles/IPC one way

Micro kernel architectures lead to memory system degradation.

Kernel should be portable (on top of a small hardware-
dependent layer).

The answer 1s: Not necessarily so

Taken from J. Liedtke, SOSP 15 paper:
”On micro kernel construclt(}on”

Monolithic Kernel
based Operating System

Application

lkernel

mode

Hardware

Microkernel
based Operating System

Application

"Hybrid kernel"
based Operating System

Application

Application UNIX | Device
IPC

cual iviemaol

Hardware

Application Device
lernel IPC Driver lernel
mode mode

rtual Mem: cheduling

Hardware

http://en.wikipedia.org/wiki/File:OS-structure2.svg

http://en.wikipedia.org/wiki/File:OS-structure2.svg
http://en.wikipedia.org/wiki/File:OS-structure2.svg

Exokernels

Traditional OS structure Exokernel: application control

Application software can override OS
Fast!

Cache HN

Disk exokernel
Network

slow and can't fix it!
Network

http://pdos.csail.mit.edu/exo/exo-slides/sld003.htm http://pdos.csail.mit.edu/exo/exo-slides/sld004.htm

http://pdos.csail.mit.edu/exo/exo-slides/sld003.htm
http://pdos.csail.mit.edu/exo/exo-slides/sld003.htm
http://pdos.csail.mit.edu/exo/exo-slides/sld004.htm
http://pdos.csail.mit.edu/exo/exo-slides/sld004.htm
http://pdos.csail.mit.edu/exo/exo-slides/sld004.htm
http://pdos.csail.mit.edu/exo/exo-slides/sld004.htm

Taken from Smith and Nairs book: Virtual Machine Architectures, Implementations, and Applications

Life 1s Hard?

Maclintosh apps. Windows apps. Linux apps

MacOS Windows

MaclIntosh apps indows apps.

MacOS

xB6

Well, can be done today (b)
after Apple’s switch to Intel

Virtual Machines to the Rescue

"A running program is often referred to as a virtual machine - a machine that doesn't
exist as a matter of actual physical reality. The virtual machine 1dea is itself one of the
most elegant in the history of technology and is a crucial step in the evolution of
ideas about software. To come up with it, scientists and technologists had to
recognize that a computer running a program isn't merely a washer doing laundry. A
washer 1s a washer whatever clothes you put inside, but when you put a new program
in a computer, it becomes a new machine.... The virtual machine: A way of
understanding software that frees us to think of software design as machine design."

From David Gelernter's "Truth, Beauty, and the Virtual Machine," Discover
Magazine, September 1997, p. 72.

Taken from Smith and Nairs book: Virtual Machine Architectures, Implementations, and Applications, Morgan Kaufmann

What 1f we could do this

Applications Applications

2
~_Ninualizi o

v

07
MUoraoroaaat

Hardware
"Machine"

Virtual Machine

e Virtual machine monitor
— provide multiple virtual

“real” hardware

— run different OS codes

« Example

— IBM VM/370: Started in

the 70’s.
— virtual 8086 mode

— Java VM, VMware

— Xen

User Mode

Virtual Kernel
Mode

Virtual User

user

0S,

VM,

Mode/
/

usSer

OS

n

VM.

n

Syscall
trapped

Privileged
instructions

trapped
Small kernel

Bare hardware

Exact copies of
the bare hardware

16

Kernel
Mode

http://www.multicians.org/thvv/360-67.html
http://www.multicians.org/thvv/360-67.html

Adapted from J.E. Smith, 2006: Virtual Machine: Supporting Changing technology and New Applications (talk, U. of Wisconsin)

Application

Software
system call/trap

Application
Programs

Libraries

Operating System Guest OS

privileged operation

. Memory
Drivers Scheduler i i
Manager next instruction

Execution Hardware
Interrupt Handler

Memory
Translation Dispatch to User
Level Process

System Interconnect
(bus)

VMM
Interrupt Handler:

Controllers Controllers

check privileges
perform operation

/0 devices
and
Networking

Main
Memory

Dispatch
Hardware

wumnnn Border UL-KL Get location of OS

Interrupt Handler

mmmm Border SW-HW

Adapted from J.E. Smith, 2006: Virtual Machine: Supporting Changing technology and New Applications (talk, U. of Wisconsin)

Application

Software
system call/trap —__|

Application
Programs

Libraries

Operating System Guest OS

privileged operation

. Memory
Drivers Scheduler i i
Manager next instruction

Execution Hardware
Interrupt Handler

Memory
Translation Dispatch to User
Level Process

System Interconnect
(bus)

VMM
Interrupt Handler:

Controllers Controllers

I/O devices check privileges
and

Networking

Main

Memory perform operation

Dispatch
Hardware

mmmmnn Border UL-KL Get location of OS<—

Interrupt Handler

mmmm Border SW-HW

Adapted from J.E. Smith, 2006: Virtual Machine: Supporting Changing technology and New Applications (talk, U. of Wisconsin)

Application

Software
system call/trap —__|

Application
Programs

Libraries

Operating System Guest OS

privileged operation

. Memory
Drivers Scheduler i i
Manager next instruction

Execution Hardware
Interrupt Handler <—

Memory
Translation Dispatch to User
Level Process

System Interconnect
(bus)

VMM
Interrupt Handler:

Controllers Controllers

I/O devices check privileges
and

Networking

Main

Memory perform operation

Dispatch
Hardware

mmmmnn Border UL-KL Get location of OS<—]

Interrupt Handler

mmmm Border SW-HW

Adapted from J.E. Smith, 2006: Virtual Machine: Supporting Changing technology and New Applications (talk, U. of Wisconsin)

Application

Software
system call/trap —__|

Application
Programs

Libraries

Operating System Guest OS

privileged operation =

. Memory
Drivers Scheduler i i
Manager next instruction

Execution Hardware
Interrupt Handler <—

Memory
Translation Dispatch to User
Level Process

System Interconnect
(bus)

VMM
Interrupt Handler:

Controllers Controllers

I/O devices check privileges € |
and

Networking

Main

Memory perform operation

Dispatch
Hardware

mmmmnn Border UL-KL Get location of OS<—]

Interrupt Handler

mmmm Border SW-HW

Adapted from J.E. Smith, 2006: Virtual Machine: Supporting Changing technology and New Applications (talk, U. of Wisconsin)

Application

Software
system call/trap —__|

Application
Programs

Libraries

Operating System Guest OS

privileged operation =

. Memory
Drivers Scheduler i i
Manager next instruction —u

Execution Hardware
Interrupt Handler <—

Memory
Translation Dispatch to User
Level Process

System Interconnect
(bus)

VMM
Interrupt Handler:

Controllers Controllers

I/O devices check privileges € |
and

Networking

Main

Memory perform operation —

Dispatch
Hardware

mmmmnn Border UL-KL Get location of OS<—]

Interrupt Handler

mmmm Border SW-HW

Adapted from J.E. Smith, 2006: Virtual Machine: Supporting Changing technology and New Applications (talk, U. of Wisconsin)

Application

Software
system call/trap —__|

Application
Programs

Libraries

Operating System Guest OS

privileged operation =

. Memory
Drivers Scheduler i i
Manager next instruction —u

Execution Hardware
Interrupt Handler <—

Memory
Translation Dispatch to User ———
Level Process

System Interconnect
(bus)

!

VMM
Interrupt Handler:

Controllers Controllers

I/O devices check privileges € |
and

Networking

Main

Memory perform operation —

e

Dispatch

Hardware

mmmmnn Border UL-KL Get location of OS<—]

Interrupt Handler

mmmm Border SW-HW

Adapted from J.E. Smith, 2006: Virtual Machine: Supporting Changing technology and New Applications (talk, U. of Wisconsin)

Application

Software
system call/trap —__|

P .

Application <
Programs

Libraries

Operating System Guest OS

privileged operation =

. Memory
Drivers Scheduler i i
Manager next instruction —u

Execution Hardware
Interrupt Handler <—

Memory
Translation Dispatch to User ———
Level Process

System Interconnect
(bus)

!

VMM
Interrupt Handler:

Controllers Controllers

I/O devices check privileges € |
and

Networking

Main rf i
Memory perform operation ——

e

—]

Dispatch—

Hardware

mmmmnn Border UL-KL Get location of OS<—]

Interrupt Handler

mmmm Border SW-HW

Old Virtual Machine Systems

CMSCambridge Monitor System or Conversational Monitor System. Single User Interactive OS developed
in conjunction with the Virtual Machine Control Program CP-40 at IBM Cambridge Laboratories. Later
adapted for CP-67 and VM/370. Late 1960s [Meyer & Seawright 1970].

CPControl Program. A component of VM/370 for the IBM/370. CP is the kernel which implements the virtual
machine. Early 1970s.

CP-40Virtual machine control program for a modified IBM 360/40. See also CMS. Mid 1960s [Goldberg
1974].

CP-67Virtual machine control program for the IBM 360/67. Successor to CP-40. See also CMS. Late 1960s
[Meyer & Seawright 1970].

HITAC 8400 OSA Virtual machine system for the Hitac 8400 (RCA Spectra 70/45). Late 1960s [Goldberg
1974].

IBM 360/30 OSVirtual machine for the IBM 360/30. Late 1960s [Goldberg 74].M44/44XVirtual machine
system for modified IBM 7044. An early exploration of virtual machine ideas. Mid 1960s [Goldberg 1974,
Belady et al 1981].

Newcastle Recursive VMVirtual Machine system developed on a Burroughs 1700. Early 1970s [Goldberg
1974].

PDP-10Virtual machine system for the PDP-10. Early 1970s [Goldberg 1974].

UCLA VMVirtual machine system developed at UCLA for modified PDP-11/45 for data security studies.
Early 1970s [Goldberg 1974].

UMMPSVirtual machine system for the IBM 360/67. Early 1970s [Goldberg 1974].

VM/370Virtual machine system for IBM 370. Successor to CP-67. See also CMS. First Release 1972
[IBMSJ 1979, Creasy 1981].

VM/PCA version of VM/370 for the PC/370. Early 1980s [Daney & Foth 1984].

VOSVirtual machine OS running on the Michigan Terminal System. Early 1970s [Srodowa & Bates 1973].
18

|
|

Input/ Output

Figure 1. IBM System/360 Model 40 Data Processing System

Virtual 8086

ANEWOLD IDEA: PENTIUM VIRTUAL 8086 MODE

» Virtual 8086 mode on the Pentium makes it possible to
run old 16-bit DOS applications on a virtual machine

Java VM

Programmer writes
the JAVA program.

JAVA Source
Java Program The JAVA compiler generates

JAVA Scurce Code - T - JAVA Compiler the byte codes that correspond

to the instructions in the program.

Byte Codes

The JVM interprets the
JAVA Virtual Machine stream of bytecodes and
executes the instructions.

Instructions

Hardware Platform and
Operating System

The system receives
instructions from JVM
and displays desired
information/output.

Figure 1.1: Diagram of Java Program Execution

Virtual Machine Hardware Support

* What 1s the minimal support?

* 2 modes
» Exception and interrupt trapping
e (Can virtual machine be protected without such
support?

* Yes, emulation instead of executing on real machine

Pro et Contra

Monolithic Layered VM C/S Micro kernel

*Performance «Clean, less bugs *Many virtual «Clear division of]| <More flexible
computers with labour
Clear division of different OS’es *Small means less bugs
labour +manageable
*Test of new OS
while production *Distributed systems
work continues Failure isolation of
*All in all: services at Kernel Level
flexibility
*More Performance .-Perfo;mance *Performance *Flexibility issues?
unstructured issues? LERRED? issues?

, ePerformance 1ssues?
*Complexity

1ssues?

Some Links

Virtual machine

Exokernel

TE

L4

VM

* http://www.vm.ibm.com/

http://whatis.techtarget.com/definition/0,,sid9_gci213305,00.html
http://whatis.techtarget.com/definition/0,,sid9_gci213305,00.html
http://pdos.lcs.mit.edu/exo/
http://pdos.lcs.mit.edu/exo/
http://www.cs.utexas.edu/users/EWD/ewd01xx/EWD196.PDF
http://www.cs.utexas.edu/users/EWD/ewd01xx/EWD196.PDF
http://os.inf.tu-dresden.de/L4/
http://os.inf.tu-dresden.de/L4/
http://www.vm.ibm.com
http://www.vm.ibm.com

