
1

Operating Systems Structure

Otto J. Anshus

2

Adapted from J.E. Smith, 2006: Virtual Machine: Supporting Changing technology and New Applications (talk, U. of Wisconsin)

Interrupt
Handler

Dispatcher

Interrupt
controller

IPC???

Timer

Border UL-KL

Border SW-HW

Service

2

Adapted from J.E. Smith, 2006: Virtual Machine: Supporting Changing technology and New Applications (talk, U. of Wisconsin)

Interrupt
Handler

Dispatcher

Interrupt
controller

Syscall

IPC???

Timer

Border UL-KL

Border SW-HW

Service

2

Adapted from J.E. Smith, 2006: Virtual Machine: Supporting Changing technology and New Applications (talk, U. of Wisconsin)

Interrupt
Handler

Dispatcher

Interrupt
controller

Syscall

IPC???

Timer

Border UL-KL

Border SW-HW

A call to a library routine is just a normal UL call: the return
address and parameters are pushed on (user level) stack.
(Compiler has already inserted code to do this and to make
this transparent to UL subroutine code (subroutine code can
therefore happily access the parameters). However, in a
moment HW and your OS must be careful with the stack and
stack pointer, or they will probably be lost or overwritten, and
things will soon crash.)

Service

2

Adapted from J.E. Smith, 2006: Virtual Machine: Supporting Changing technology and New Applications (talk, U. of Wisconsin)

Interrupt
Handler

Dispatcher

Interrupt
controller

Syscall

IPC???

Timer

Border UL-KL

Border SW-HW

A call to a library routine is just a normal UL call: the return
address and parameters are pushed on (user level) stack.
(Compiler has already inserted code to do this and to make
this transparent to UL subroutine code (subroutine code can
therefore happily access the parameters). However, in a
moment HW and your OS must be careful with the stack and
stack pointer, or they will probably be lost or overwritten, and
things will soon crash.)

Service

2

Adapted from J.E. Smith, 2006: Virtual Machine: Supporting Changing technology and New Applications (talk, U. of Wisconsin)

Interrupt
Handler

Dispatcher

Interrupt
controller

int 80

Syscall

IPC???

Timer

Border UL-KL

Border SW-HW

A call to a library routine is just a normal UL call: the return
address and parameters are pushed on (user level) stack.
(Compiler has already inserted code to do this and to make
this transparent to UL subroutine code (subroutine code can
therefore happily access the parameters). However, in a
moment HW and your OS must be careful with the stack and
stack pointer, or they will probably be lost or overwritten, and
things will soon crash.)

Service

2

Adapted from J.E. Smith, 2006: Virtual Machine: Supporting Changing technology and New Applications (talk, U. of Wisconsin)

Interrupt
Handler

Dispatcher

Interrupt
controller

int 80

Syscall

IPC???

Timer

Border UL-KL

Border SW-HW

A call to a library routine is just a normal UL call: the return
address and parameters are pushed on (user level) stack.
(Compiler has already inserted code to do this and to make
this transparent to UL subroutine code (subroutine code can
therefore happily access the parameters). However, in a
moment HW and your OS must be careful with the stack and
stack pointer, or they will probably be lost or overwritten, and
things will soon crash.)

Service

Before doing INT 80 the library routine will take the
parameters and service ID and place them in (i) registers, (ii)
memory vector, or (iii) stack (so that the Kernel can fetch
them there.)

2

Adapted from J.E. Smith, 2006: Virtual Machine: Supporting Changing technology and New Applications (talk, U. of Wisconsin)

Interrupt
Handler

Dispatcher

Interrupt
controller

int 80

Syscall

IPC???

Timer

Border UL-KL

Border SW-HW

A call to a library routine is just a normal UL call: the return
address and parameters are pushed on (user level) stack.
(Compiler has already inserted code to do this and to make
this transparent to UL subroutine code (subroutine code can
therefore happily access the parameters). However, in a
moment HW and your OS must be careful with the stack and
stack pointer, or they will probably be lost or overwritten, and
things will soon crash.)

Service

Before doing INT 80 the library routine will take the
parameters and service ID and place them in (i) registers, (ii)
memory vector, or (iii) stack (so that the Kernel can fetch
them there.)

2

Adapted from J.E. Smith, 2006: Virtual Machine: Supporting Changing technology and New Applications (talk, U. of Wisconsin)

Interrupt
Handler

Dispatcher

Interrupt
controller

int 80

Syscall

IPC???

Timer

Border UL-KL

Border SW-HW

A call to a library routine is just a normal UL call: the return
address and parameters are pushed on (user level) stack.
(Compiler has already inserted code to do this and to make
this transparent to UL subroutine code (subroutine code can
therefore happily access the parameters). However, in a
moment HW and your OS must be careful with the stack and
stack pointer, or they will probably be lost or overwritten, and
things will soon crash.)

Service

Before doing INT 80 the library routine will take the
parameters and service ID and place them in (i) registers, (ii)
memory vector, or (iii) stack (so that the Kernel can fetch
them there.)

Remember to initialize interrupt
table (80h) to point to the code doing
the interrupt handling (wherever it is
in memory (so figure out how to get
this address))

2

Adapted from J.E. Smith, 2006: Virtual Machine: Supporting Changing technology and New Applications (talk, U. of Wisconsin)

Interrupt
Handler

Dispatcher

Interrupt
controller

int 80

Syscall

IPC???

Timer

Border UL-KL

Border SW-HW

A call to a library routine is just a normal UL call: the return
address and parameters are pushed on (user level) stack.
(Compiler has already inserted code to do this and to make
this transparent to UL subroutine code (subroutine code can
therefore happily access the parameters). However, in a
moment HW and your OS must be careful with the stack and
stack pointer, or they will probably be lost or overwritten, and
things will soon crash.)

Service

Before doing INT 80 the library routine will take the
parameters and service ID and place them in (i) registers, (ii)
memory vector, or (iii) stack (so that the Kernel can fetch
them there.)

Remember to initialize interrupt
table (80h) to point to the code doing
the interrupt handling (wherever it is
in memory (so figure out how to get
this address))

2

Adapted from J.E. Smith, 2006: Virtual Machine: Supporting Changing technology and New Applications (talk, U. of Wisconsin)

Interrupt
Handler

Dispatcher

Interrupt
controller

int 80

Syscall

IPC???

Timer

Border UL-KL

Border SW-HW

A call to a library routine is just a normal UL call: the return
address and parameters are pushed on (user level) stack.
(Compiler has already inserted code to do this and to make
this transparent to UL subroutine code (subroutine code can
therefore happily access the parameters). However, in a
moment HW and your OS must be careful with the stack and
stack pointer, or they will probably be lost or overwritten, and
things will soon crash.)

Service

Before doing INT 80 the library routine will take the
parameters and service ID and place them in (i) registers, (ii)
memory vector, or (iii) stack (so that the Kernel can fetch
them there.)

Remember to initialize interrupt
table (80h) to point to the code doing
the interrupt handling (wherever it is
in memory (so figure out how to get
this address))

2

Adapted from J.E. Smith, 2006: Virtual Machine: Supporting Changing technology and New Applications (talk, U. of Wisconsin)

Interrupt
Handler

Dispatcher

Interrupt
controller

int 80

Syscall

IPC???

Timer

Border UL-KL

Border SW-HW

A call to a library routine is just a normal UL call: the return
address and parameters are pushed on (user level) stack.
(Compiler has already inserted code to do this and to make
this transparent to UL subroutine code (subroutine code can
therefore happily access the parameters). However, in a
moment HW and your OS must be careful with the stack and
stack pointer, or they will probably be lost or overwritten, and
things will soon crash.)

Service

Before doing INT 80 the library routine will take the
parameters and service ID and place them in (i) registers, (ii)
memory vector, or (iii) stack (so that the Kernel can fetch
them there.)

Remember to initialize interrupt
table (80h) to point to the code doing
the interrupt handling (wherever it is
in memory (so figure out how to get
this address))

2

Adapted from J.E. Smith, 2006: Virtual Machine: Supporting Changing technology and New Applications (talk, U. of Wisconsin)

Interrupt
Handler

Dispatcher

Interrupt
controller

int 80

Syscall

IPC???

Timer

Border UL-KL

Border SW-HW

A call to a library routine is just a normal UL call: the return
address and parameters are pushed on (user level) stack.
(Compiler has already inserted code to do this and to make
this transparent to UL subroutine code (subroutine code can
therefore happily access the parameters). However, in a
moment HW and your OS must be careful with the stack and
stack pointer, or they will probably be lost or overwritten, and
things will soon crash.)

Service

Before doing INT 80 the library routine will take the
parameters and service ID and place them in (i) registers, (ii)
memory vector, or (iii) stack (so that the Kernel can fetch
them there.)

Remember to initialize interrupt
table (80h) to point to the code doing
the interrupt handling (wherever it is
in memory (so figure out how to get
this address))

2

Adapted from J.E. Smith, 2006: Virtual Machine: Supporting Changing technology and New Applications (talk, U. of Wisconsin)

Interrupt
Handler

Dispatcher

Interrupt
controller

int 80

Syscall

next
IPC???

Timer

Border UL-KL

Border SW-HW

A call to a library routine is just a normal UL call: the return
address and parameters are pushed on (user level) stack.
(Compiler has already inserted code to do this and to make
this transparent to UL subroutine code (subroutine code can
therefore happily access the parameters). However, in a
moment HW and your OS must be careful with the stack and
stack pointer, or they will probably be lost or overwritten, and
things will soon crash.)

Service

Before doing INT 80 the library routine will take the
parameters and service ID and place them in (i) registers, (ii)
memory vector, or (iii) stack (so that the Kernel can fetch
them there.)

Remember to initialize interrupt
table (80h) to point to the code doing
the interrupt handling (wherever it is
in memory (so figure out how to get
this address))

The Dispatcher will assume that the stack has the
correct return address when the iret is issued. If
not we will end up somewhere bad and probably
crash.

2

Adapted from J.E. Smith, 2006: Virtual Machine: Supporting Changing technology and New Applications (talk, U. of Wisconsin)

Interrupt
Handler

Dispatcher

Interrupt
controller

int 80

Syscall

next
IPC???

Timer

Border UL-KL

Border SW-HW

A call to a library routine is just a normal UL call: the return
address and parameters are pushed on (user level) stack.
(Compiler has already inserted code to do this and to make
this transparent to UL subroutine code (subroutine code can
therefore happily access the parameters). However, in a
moment HW and your OS must be careful with the stack and
stack pointer, or they will probably be lost or overwritten, and
things will soon crash.)

Service

Before doing INT 80 the library routine will take the
parameters and service ID and place them in (i) registers, (ii)
memory vector, or (iii) stack (so that the Kernel can fetch
them there.)

Remember to initialize interrupt
table (80h) to point to the code doing
the interrupt handling (wherever it is
in memory (so figure out how to get
this address))

The Dispatcher will assume that the stack has the
correct return address when the iret is issued. If
not we will end up somewhere bad and probably
crash.

2

Adapted from J.E. Smith, 2006: Virtual Machine: Supporting Changing technology and New Applications (talk, U. of Wisconsin)

Interrupt
Handler

Dispatcher

Interrupt
controller

int 80

Syscall

next

next

IPC???

Timer

Border UL-KL

Border SW-HW

A call to a library routine is just a normal UL call: the return
address and parameters are pushed on (user level) stack.
(Compiler has already inserted code to do this and to make
this transparent to UL subroutine code (subroutine code can
therefore happily access the parameters). However, in a
moment HW and your OS must be careful with the stack and
stack pointer, or they will probably be lost or overwritten, and
things will soon crash.)

Service

Before doing INT 80 the library routine will take the
parameters and service ID and place them in (i) registers, (ii)
memory vector, or (iii) stack (so that the Kernel can fetch
them there.)

Remember to initialize interrupt
table (80h) to point to the code doing
the interrupt handling (wherever it is
in memory (so figure out how to get
this address))

The Dispatcher will assume that the stack has the
correct return address when the iret is issued. If
not we will end up somewhere bad and probably
crash.

2

Adapted from J.E. Smith, 2006: Virtual Machine: Supporting Changing technology and New Applications (talk, U. of Wisconsin)

Interrupt
Handler

Dispatcher

Interrupt
controller

int 80

Syscall

next

I/O
Interrupt

next

IPC???

Timer

Border UL-KL

Border SW-HW

A call to a library routine is just a normal UL call: the return
address and parameters are pushed on (user level) stack.
(Compiler has already inserted code to do this and to make
this transparent to UL subroutine code (subroutine code can
therefore happily access the parameters). However, in a
moment HW and your OS must be careful with the stack and
stack pointer, or they will probably be lost or overwritten, and
things will soon crash.)

Service

Before doing INT 80 the library routine will take the
parameters and service ID and place them in (i) registers, (ii)
memory vector, or (iii) stack (so that the Kernel can fetch
them there.)

Remember to initialize interrupt
table (80h) to point to the code doing
the interrupt handling (wherever it is
in memory (so figure out how to get
this address))

The Dispatcher will assume that the stack has the
correct return address when the iret is issued. If
not we will end up somewhere bad and probably
crash.

2

Adapted from J.E. Smith, 2006: Virtual Machine: Supporting Changing technology and New Applications (talk, U. of Wisconsin)

Interrupt
Handler

Dispatcher

Interrupt
controller

int 80

Syscall

next

I/O
Interrupt

next

IPC???

Timer

Border UL-KL

Border SW-HW

A call to a library routine is just a normal UL call: the return
address and parameters are pushed on (user level) stack.
(Compiler has already inserted code to do this and to make
this transparent to UL subroutine code (subroutine code can
therefore happily access the parameters). However, in a
moment HW and your OS must be careful with the stack and
stack pointer, or they will probably be lost or overwritten, and
things will soon crash.)

Service

Before doing INT 80 the library routine will take the
parameters and service ID and place them in (i) registers, (ii)
memory vector, or (iii) stack (so that the Kernel can fetch
them there.)

Remember to initialize interrupt
table (80h) to point to the code doing
the interrupt handling (wherever it is
in memory (so figure out how to get
this address))

The Dispatcher will assume that the stack has the
correct return address when the iret is issued. If
not we will end up somewhere bad and probably
crash.

3

The Architecture of an OS

• Layered
• Monolithic
• Micro kernel and Client/Server
• Virtual Machine, (Library, Exokernel)
• Hybrids

4

Goals of the architecture

• OS as Resource Manager
• OS as Virtual Machine (abstractions)
• Architecture, Design, Implementation, &

Tuning result in OS being:
– Protective, interactively fast, throughput fast, energy

efficient, flexible, secure, small (easier to do
protection, security, performance, less bugs)

5

User
process

“Call” a service in OS

Interrupt from
network, disk,
keyboard,…

Interrupt
Hardware

Operating System Kernel

Service
Service

Service
Service

INTERRUPT HANDLER:

Analyze interrupt;

Get parameters and Start requested service

SCHEDULER: Select next process to resume

Overhead

•Crossing the border UL -> KL

•UL context -> another UL context

User
process

Service
Service

Service

DISPATCHER: restore context and iret

5

User
process

“Call” a service in OS

Interrupt from
network, disk,
keyboard,…

Interrupt
Hardware

Operating System Kernel

Service
Service

Service
Service

INTERRUPT HANDLER:

Analyze interrupt;

Get parameters and Start requested service

SCHEDULER: Select next process to resume

Overhead

•Crossing the border UL -> KL

•UL context -> another UL context

User
process

Service
Service

Service

DISPATCHER: restore context and iret

Operating System

6

Layered Structure
• Hiding information at each

layer
• Develop a layer at a time
• Examples

– THE (6 layers, semaphores,
Dijkstra 1968)

– MS-DOS (4 layers)
• Pros

– Separation of concerns
– Elegance

• Cons
– Protection boundary crossings
– Performance

Hardware

Level 1

Level 2

Level N
...

7

Monolithic
• All kernel routines are together
• A system call interface
• Examples (of fat kernels):

– Classic Unix (Linux, BSD
Unix, ...)

– Windows NT (hybrid)
– Mach (as a fat kernel)
– OS X (fat kernel, but...)

• Pro
– Performance
– Shared kernel space

• Cons
– Stability
– Flexibility

Kernel
(Does it all)

entry

User
program

User
program

call

return

8

Microkernel
• Micro-kernel is “small”

– process abstraction,
address space, interrupts

• Services are implemented as
user level processes

• Micro-kernel get services on
behalf of users by messaging
with the service processes

• Example: L4, Nucleus,
Taos, Mach (as a micro
kernel), OS-X (not, but uses some
technologies from Mach making it different
from BSD and Linux)

µ−kernel

entry

User
process

OS
Services

call

return

Brinch-Hansen: “The Nucleus of...”.
Recommended read.

9

Microkernel Pros et Cons

• Pros
– Easier to

• extend or customize
• Port to a new platform

– Fault isolation
– Smaller kernel => easier to tune/optimize

• Cons
– Performance

• Naive case: Many protection boundary crossings
– How many?

– Harder to let system services share resources
• Why?

µ−kernel

entry

User
process

OS
Services

call

return

10

“Truths” on Micro Kernel Flexibility and
Performance

• A micro kernel restricts application level flexibility.
• Switching overhead kernel-user mode is inherently expensive.
• Switching address-spaces is costly.
• IPC is expensive.
• Micro kernel architectures lead to memory system degradation.
• Kernel should be portable (on top of a small hardware-

dependent layer).

Taken from J. Liedtke, SOSP 15 paper:
”On micro kernel construction”

NO: Can be <50 cycles

NO: 6-20 microsec round-trip,
53-500 cycles/IPC one way

The answer is: Not necessarily so

• http://en.wikipedia.org/wiki/File:OS-structure2.svg

11

http://en.wikipedia.org/wiki/File:OS-structure2.svg
http://en.wikipedia.org/wiki/File:OS-structure2.svg

Exokernels

12

http://pdos.csail.mit.edu/exo/exo-slides/sld003.htm http://pdos.csail.mit.edu/exo/exo-slides/sld004.htm

http://pdos.csail.mit.edu/exo/exo-slides/sld003.htm
http://pdos.csail.mit.edu/exo/exo-slides/sld003.htm
http://pdos.csail.mit.edu/exo/exo-slides/sld004.htm
http://pdos.csail.mit.edu/exo/exo-slides/sld004.htm
http://pdos.csail.mit.edu/exo/exo-slides/sld004.htm
http://pdos.csail.mit.edu/exo/exo-slides/sld004.htm

13

Life is Hard?

Taken from Smith and Nairs book: Virtual Machine Architectures, Implementations, and Applications

Well, can be done today
after Apple’s switch to Intel

14

Virtual Machines to the Rescue
"A running program is often referred to as a virtual machine - a machine that doesn't
exist as a matter of actual physical reality. The virtual machine idea is itself one of the
most elegant in the history of technology and is a crucial step in the evolution of
ideas about software. To come up with it, scientists and technologists had to
recognize that a computer running a program isn't merely a washer doing laundry. A
washer is a washer whatever clothes you put inside, but when you put a new program
in a computer, it becomes a new machine.... The virtual machine: A way of
understanding software that frees us to think of software design as machine design."

From David Gelernter's "Truth, Beauty, and the Virtual Machine," Discover
Magazine, September 1997, p. 72.

15

What if we could do this

Taken from Smith and Nairs book: Virtual Machine Architectures, Implementations, and Applications, Morgan Kaufmann

16

Virtual Machine

• Virtual machine monitor
– provide multiple virtual

“real” hardware
– run different OS codes

• Example
– IBM VM/370: Started in

the 70’s. Check out
– virtual 8086 mode
– Java VM, VMware
– Xen Bare hardware

Small kernel

VM1 VMn
. . .

OS1 OSn

user user

Exact copies of
the bare hardware

Syscall
trapped

Privileged
instructions
trapped

Virtual Kernel
Mode

Kernel
Mode

User Mode

Virtual User
Mode

http://www.multicians.org/thvv/360-67.html
http://www.multicians.org/thvv/360-67.html

17

privileged operation
next instruction

check privileges
perform operation

Dispatch

system call/trap

Interrupt Handler:

Interrupt Handler

Application

Guest OS

VMM

Dispatch to User
Level Process

Adapted from J.E. Smith, 2006: Virtual Machine: Supporting Changing technology and New Applications (talk, U. of Wisconsin)

Get location of OS
Interrupt Handler

Border UL-KL

Border SW-HW

17

privileged operation
next instruction

check privileges
perform operation

Dispatch

system call/trap

Interrupt Handler:

Interrupt Handler

Application

Guest OS

VMM

Dispatch to User
Level Process

Adapted from J.E. Smith, 2006: Virtual Machine: Supporting Changing technology and New Applications (talk, U. of Wisconsin)

Get location of OS
Interrupt Handler

Border UL-KL

Border SW-HW

17

privileged operation
next instruction

check privileges
perform operation

Dispatch

system call/trap

Interrupt Handler:

Interrupt Handler

Application

Guest OS

VMM

Dispatch to User
Level Process

Adapted from J.E. Smith, 2006: Virtual Machine: Supporting Changing technology and New Applications (talk, U. of Wisconsin)

Get location of OS
Interrupt Handler

Border UL-KL

Border SW-HW

17

privileged operation
next instruction

check privileges
perform operation

Dispatch

system call/trap

Interrupt Handler:

Interrupt Handler

Application

Guest OS

VMM

Dispatch to User
Level Process

Adapted from J.E. Smith, 2006: Virtual Machine: Supporting Changing technology and New Applications (talk, U. of Wisconsin)

Get location of OS
Interrupt Handler

Border UL-KL

Border SW-HW

17

privileged operation
next instruction

check privileges
perform operation

Dispatch

system call/trap

Interrupt Handler:

Interrupt Handler

Application

Guest OS

VMM

Dispatch to User
Level Process

Adapted from J.E. Smith, 2006: Virtual Machine: Supporting Changing technology and New Applications (talk, U. of Wisconsin)

Get location of OS
Interrupt Handler

Border UL-KL

Border SW-HW

17

privileged operation
next instruction

check privileges
perform operation

Dispatch

system call/trap

Interrupt Handler:

Interrupt Handler

Application

Guest OS

VMM

Dispatch to User
Level Process

Adapted from J.E. Smith, 2006: Virtual Machine: Supporting Changing technology and New Applications (talk, U. of Wisconsin)

Get location of OS
Interrupt Handler

Border UL-KL

Border SW-HW

17

privileged operation
next instruction

check privileges
perform operation

Dispatch

system call/trap

Interrupt Handler:

Interrupt Handler

Application

Guest OS

VMM

Dispatch to User
Level Process

Adapted from J.E. Smith, 2006: Virtual Machine: Supporting Changing technology and New Applications (talk, U. of Wisconsin)

Get location of OS
Interrupt Handler

Border UL-KL

Border SW-HW

18

Old Virtual Machine Systems
• CMSCambridge Monitor System or Conversational Monitor System. Single User Interactive OS developed

in conjunction with the Virtual Machine Control Program CP-40 at IBM Cambridge Laboratories. Later
adapted for CP-67 and VM/370. Late 1960s [Meyer & Seawright 1970].

• CPControl Program. A component of VM/370 for the IBM/370. CP is the kernel which implements the virtual
machine. Early 1970s.

• CP-40Virtual machine control program for a modified IBM 360/40. See also CMS. Mid 1960s [Goldberg
1974].

• CP-67Virtual machine control program for the IBM 360/67. Successor to CP-40. See also CMS. Late 1960s
[Meyer & Seawright 1970].

• HITAC 8400 OSA Virtual machine system for the Hitac 8400 (RCA Spectra 70/45). Late 1960s [Goldberg
1974].

• IBM 360/30 OSVirtual machine for the IBM 360/30. Late 1960s [Goldberg 74].M44/44XVirtual machine
system for modified IBM 7044. An early exploration of virtual machine ideas. Mid 1960s [Goldberg 1974,
Belady et al 1981].

• Newcastle Recursive VMVirtual Machine system developed on a Burroughs 1700. Early 1970s [Goldberg
1974].

• PDP-10Virtual machine system for the PDP-10. Early 1970s [Goldberg 1974].
• UCLA VMVirtual machine system developed at UCLA for modified PDP-11/45 for data security studies.

Early 1970s [Goldberg 1974].
• UMMPSVirtual machine system for the IBM 360/67. Early 1970s [Goldberg 1974].
• VM/370Virtual machine system for IBM 370. Successor to CP-67. See also CMS. First Release 1972

[IBMSJ 1979, Creasy 1981].
• VM/PCA version of VM/370 for the PC/370. Early 1980s [Daney & Foth 1984].
• VOSVirtual machine OS running on the Michigan Terminal System. Early 1970s [Srodowa & Bates 1973].

19

20

Virtual 8086

21

Java VM

22

Virtual Machine Hardware Support

• What is the minimal support?
• 2 modes
• Exception and interrupt trapping

• Can virtual machine be protected without such
support?

• Yes, emulation instead of executing on real machine

23

Pro et Contra
Monolithic Layered VM C/S Micro kernel

•Many virtual
computers with
different OS’es

•Test of new OS
while production
work continues

•All in all:
flexibility

•Performance
issues?

•Complexity
issues?

•Performance

•More
unstructured

•Performance
issues?

•Clean, less bugs

•Clear division of
labour

•More flexible

•Small means less bugs
+manageable

•Distributed systems

•Failure isolation of
services at Kernel Level

•Flexibility issues?

•Performance issues?

•Clear division of
labour

•Performance
issues?

24

Some Links

• Virtual machine
• http://whatis.techtarget.com/definition/0,,sid9_gci213305,00.html

• Exokernel
• http://pdos.lcs.mit.edu/exo/

• THE
• http://www.cs.utexas.edu/users/EWD/ewd01xx/EWD196.PDF

• L4
• http://os.inf.tu-dresden.de/L4/

• VM
• http://www.vm.ibm.com/

http://whatis.techtarget.com/definition/0,,sid9_gci213305,00.html
http://whatis.techtarget.com/definition/0,,sid9_gci213305,00.html
http://pdos.lcs.mit.edu/exo/
http://pdos.lcs.mit.edu/exo/
http://www.cs.utexas.edu/users/EWD/ewd01xx/EWD196.PDF
http://www.cs.utexas.edu/users/EWD/ewd01xx/EWD196.PDF
http://os.inf.tu-dresden.de/L4/
http://os.inf.tu-dresden.de/L4/
http://www.vm.ibm.com
http://www.vm.ibm.com

