
Address Translation

Tore Brox-Larsen
Based on and including material developed by:

Kai Li, Andy Bavier, Princeton University



Topics

• Virtual memory
– Virtualization
– Protection

• Address translation
– Base and bound
– Segmentation
– Paging
– Translation look-ahead buffer (TLB)

13.03.14 Tore Larsen 2



The Big Picture

• DRAM is fast, but relatively expensive
• Disks are inexpensive, but slow

– 100x less expensive
– 100.000x longer latency
– 1000x less bandwidth

• Goals
– Run programs as efficiently as possible
– Make the system as safe as possible

13.03.14 Tore Larsen 3



Issues

• Many processes running concurrently
– The more processes the system can handle, the better

• Address space may exceed memory size
– Many small processes whose total size may exceed memory
– Even one large may exceed physical memory size

• Address space may be sparsely used
• Protection

– User processes should not crash the system
– User processes should be protected from each other

• Location transparency
13.03.14 Tore Larsen 4



Strategies

• Size: Can we use slow disks to “extend” the size of available 
memory?
– Disk accesses must be rare in comparison to memory accesses so 

that each disk access is amortized over many memory accesses
• Location: Can we device a mechanism that delays the bindings 

of program address to memory location? Transparency and 
flexibility.

• Process protection: Must check access rights for every memory 
access 

• Sparsity: Can we avoid reserving memory for non-used regions 
of address space?

13.03.14 Tore Larsen 5



Expansion - Location Transparency Issue

• Each process should be able to run regardless of location in 
memory

• Regardless of memory size?
• Dynamically relocateable?
• Memory fragmentation

– External fragmentation – Unused area between processes
– Internal fragmentation – Unused area within processes

• Approach
– Give each process large “virtual (fake)” address space
– Relocate each memory access to actual memory address

13.03.14 Tore Larsen 6



Protection Issue

• Errors in one process should not affect other processes
• For every process, we need to enforce that every load or store is 

to “legal” regions of memory only

13.03.14 Tore Larsen 7



Virtual Memory

• Use secondary storage
– Extend expensive DRAM with reasonable performance

• Flexibility
– Processes may be located anywhere in memory, may be moved 

while executing, may reside partially in memory and partially on 
disk

• Efficient
– 20/80 rule: 20 % of memory gets 80 % of references
– Keep the 20 % in physical memory

• Convenience
– Make sure memory address scheme fits programmer’s needs

13.03.14 Tore Larsen 8



Virtual Memory Design issues

• How is protection enforced
• How are processes relocated in physical memory
• How is memory partitioned

13.03.14 Tore Larsen 9



Generic Translation Overview

• Actual translation is in 
hardware (MMU)

• Controlled in privileged 
software

• CPU view
– what program sees, virtual 

memory
• Memory & I/O view

– physical memory

Translation
(MMU)

CPU

virtual address

Physical
memory

physical address

I/O
device

13.03.14 Tore Larsen 10



Goals of Translation

• Implicit translation for 
each memory reference

• A hit should be very fast
• Trigger an exception on a 

miss
• Protected from user’s 

faults

Registers

Cache(s)

DRAM

Disk

2-3x (L1)
10-20x (L2-L3)

100-300x

20M-30Mx
paging

13.03.14 Tore Larsen 11



Address Mapping Granularity

• Mapping mechanism
– Virtual addresses are mapped to DRAM addresses or onto disk

• Mapping granularity?
– Increased granularity 

• Increases flexibility
• Decreases internal fragmentation
• Requires more mapping information & Handling

• Extremes
– Any byte to any byte: Huge map size
– Large segments: Smaller maps, internal fragmentation

13.03.14 Tore Larsen 12



Locality of Reference

• Behaviors exhibited by most programs
• Locality in time

– When an item is addressed, it is likely to be addressed again shortly
• Locality in space

– When an item is addressed, its neighboring items are likely to be 
addressed shortly

• Basis of caching
• Argues that recently accessed items should be cached together with an 

encompassing region; A block (or line)
• 20/80 rule: 20 % of memory gets 80 % of references
• Keep the 20 % in memory

13.03.14 Tore Larsen 13



Base and Bound

• Built in Cray-1 (1976)
• Protection

– A program can only access physical 
memory in [base, base+bound]

• On a context switch:
– Save/restore base, bound registers

• Pros
– Simple 
– Flat address

• Cons: 
– Fragmentation
– Difficult to share
– Difficult to use disks

virtual address

base

bound

error

+

>

physical address

13.03.14 Tore Larsen 14



Segmentation

• Provides multiple separate virtual address 
spaces (segments)

• Each process has a table of (seg, size)
• Protection

– Each entry has (nil,read,write)
• On a context switch

– Save/restore the table or a pointer to the 
table in kernel memory 

• Pros
– Efficient
– Easy to share

• Cons:
– Complex management
– Fragmentation within a segment

physical address

+

segment offset

Virtual address

seg size

...

>
error

13.03.14 Tore Larsen 15



Historical Computers Applying Segmentation Schemes

• Burroughs B5000, 
• GE645 (Multics)
• Intel iAPX 432
• IBM System/38
• IBM AS/400
• All above designs attempted to provide memory model (and 

other features) more directly supporting programming structures
• See Glenford J. Myers, Advances in Computer Architecture, for 

a proponent description of this historic design trend

13.03.14 Tore Larsen 16

http://en.wikipedia.org/wiki/Burroughs_large_systems
http://en.wikipedia.org/wiki/GE-600_series
http://en.wikipedia.org/wiki/Multics
http://en.wikipedia.org/wiki/Intel_iAPX_432
http://en.wikipedia.org/wiki/IBM_System/38
http://en.wikipedia.org/wiki/IBM_AS/400


Paging

• Use a fixed size unit called page
• Pages not visible from program
• Use a page table to translate
• Various bits in each entry
• Context switch

– Similar to the segmentation scheme
• What should be the page size?
• Pros

– Simple allocation
– Easy to share

• Cons
– Big page tables
– How to deal with holes?

VPage # offset

Virtual address

...

>
error

PPage# ...

PPage# ...

...

PPage # offset

Physical address

Page table

page table size

13.03.14 Tore Larsen 17



How Many PTEs Do We Need?

• Assume 4KB page size
– 12 bit (low order) displacement within page
– 20 bit (high order) page#

• Worst case for 32-bit address machine
– # of processes × 220

– 220 PTEs per page table (~4MBytes). 10K processes?
• What about 64-bit address machine?

– # of processes × 252 

– Page table won’t fit on disk (252 PTEs = 16PBytes)

13.03.14 Tore Larsen 18



Segmentation with Paging

VPage # offset

Virtual address

...

>

PPage# ...

PPage# ...

...

PPage # offset

Physical address

Page table
seg size

...

Vseg #

error

Multics was the first 
system to combine 
segmentation and 
paging. 
www.multicians.org

13.03.14 Tore Larsen 19



Multiple-Level Page Tables

Directory ...

pte

...

...

...

dir table offset
Virtual address

13.03.14 Tore Larsen 20



Inverted Page Tables

• Main idea
– One PTE for each physical 

page frame
– Hash (Vpage, pid) to Ppage#

• Pros
– Small page table for large 

address space
• Cons

– Lookup is difficult 
– Overhead of managing hash 

chains, etc

pid vpage offset

pid vpage

0

k

n-1

k offset

Virtual 
address

Physical 
address

Inverted page table
13.03.14 Tore Larsen 21



Virtual-To-Physical Lookup

• Program only knows virtual addresses
– Each process goes from 0 to highest address

• Each memory access must be translated
– Involves walk-through of (hierarchical) page tables
– Page table is in memory

• An extra memory access for each memory access???

• Solution
– Cache part of page table (hierarchy) in fast associative memory –

Translation-Lookahead-Buffer (TLB)
– Introduces TLB hits, misses etc.

13.03.14 Tore Larsen 22



Translation Look-aside Buffer (TLB)

offset

Virtual address

...

PPage# ...

PPage# ...

PPage# ...

PPage # offset

Physical address

VPage #

TLB

Hit

Miss

Real
page
table

VPage#
VPage#

VPage#

13.03.14 Tore Larsen 23



Bits in A TLB Entry

• Common (necessary) bits
– Virtual page number: match with the virtual address
– Physical page number: translated address
– Valid
– Access bits: kernel and user (nil, read, write)

• Optional (useful) bits
– Process tag
– Reference
– Modify
– Cacheable

13.03.14 Tore Larsen 24



Hardware-Controlled TLB

• On a TLB miss
– Hardware loads the PTE into the TLB

• Need to write back if there is no free entry
– Generate a fault if the page containing the PTE is invalid
– VM software performs fault handling
– Restart the CPU

• On a TLB hit, hardware checks the valid bit
– If valid, pointer to page frame in memory
– If invalid, the hardware generates a page fault

• Perform page fault handling
• Restart the faulting instruction

13.03.14 Tore Larsen 25



Software-Controlled TLB

• On a miss in TLB
– Write back if there is no free entry
– Check if the page containing the PTE is in memory
– If not, perform page fault handling
– Load the PTE into the TLB
– Restart the faulting instruction

• On a hit in TLB, the hardware checks valid bit
– If valid, pointer to page frame in memory
– If invalid, the hardware generates a page fault

• Perform page fault handling
• Restart the faulting instruction

13.03.14 Tore Larsen 26



Hardware vs. Software Controlled

• Hardware approach
– Efficient
– Inflexible
– Need more space for page table

• Software approach
– Flexible
– Software can do mappings by hashing

• PP# → (Pid, VP#)
• (Pid, VP#) → PP#

– Can deal with large virtual address space

13.03.14 Tore Larsen 27



Cache vs. TLB
• Similarity

– Both are fast and expensive with respect to capasity
– Both cache a portion of memory
– Both write back on a miss

• Differences
– TLB is usually fully set-associative
– Cache can be direct-mapped
– TLB does not deal with consistency with memory
– TLB can be controlled by software 

• Logically TLB lookup appears ahead of cache lookup, careful design allows 
overlapped lookup

• Combine L1 cache with TLB
– Virtually addressed cache
– Why wouldn’t everyone use virtually addressed cache?13.03.14 Tore Larsen 28



TLB Related Issues

• What TLB entry to be replaced?
– Random
– Pseudo LRU

• What happens on a context switch?
– Process tag: change TLB registers and process register
– No process tag: Invalidate the entire TLB contents

• What happens when changing a page table entry?
– Change the entry in memory
– Invalidate the TLB entry

13.03.14 Tore Larsen 29



Consistency Issue

• Snoopy cache protocols
– Maintain cache consistency with DRAM, even when DMA 

happens
• Consistency between DRAM and TLBs: 

– You need to flush (SW) related TLBs whenever changing a page 
table entry in memory

• Multiprocessors need TLB “shootdown”
– When you modify a page table entry, you need to do to flush 

(“shootdown”) all related TLB entries on every processor

13.03.14 Tore Larsen 30



Summary

• Virtual memory
– Easier SW development
– Better memory utilization
– Protection

• Address translation
– Base & bound: Simple, but limited
– Segmentation: Useful but complex

• Paging: Best tradeoff currently
– TLB: Fast translation
– VM needs to handle TLB consistency issues

13.03.14 Tore Larsen 31


	Address Translation
	Topics
	The Big Picture
	Issues
	Strategies
	Expansion - Location Transparency Issue
	Protection Issue
	Virtual Memory
	Virtual Memory Design issues
	Generic Translation Overview
	Goals of Translation
	Address Mapping Granularity
	Locality of Reference 
	Base and Bound
	Segmentation
	Historical Computers Applying Segmentation Schemes
	Paging
	How Many PTEs Do We Need?
	Segmentation with Paging
	Multiple-Level Page Tables
	Inverted Page Tables
	Virtual-To-Physical Lookup
	Translation Look-aside Buffer (TLB)
	Bits in A TLB Entry
	Hardware-Controlled TLB
	Software-Controlled TLB
	Hardware vs. Software Controlled
	Cache vs. TLB
	TLB Related Issues
	Consistency Issue
	Summary

