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Topics

• Virtual memory
– Virtualization
– Protection

• Address translation
– Base and bound
– Segmentation
– Paging
– Translation look-ahead buffer (TLB)
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The Big Picture

• DRAM is fast, but relatively expensive
• Disks are inexpensive, but slow

– 100x less expensive
– 100.000x longer latency
– 1000x less bandwidth

• Goals
– Run programs as efficiently as possible
– Make the system as safe as possible
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Issues

• Many processes running concurrently
– The more processes the system can handle, the better

• Address space may exceed memory size
– Many small processes whose total size may exceed memory
– Even one large may exceed physical memory size

• Address space may be sparsely used
• Protection

– User processes should not crash the system
– User processes should be protected from each other

• Location transparency
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Strategies

• Size: Can we use slow disks to “extend” the size of available 
memory?
– Disk accesses must be rare in comparison to memory accesses so 

that each disk access is amortized over many memory accesses
• Location: Can we device a mechanism that delays the bindings 

of program address to memory location? Transparency and 
flexibility.

• Process protection: Must check access rights for every memory 
access 

• Sparsity: Can we avoid reserving memory for non-used regions 
of address space?
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Expansion - Location Transparency Issue

• Each process should be able to run regardless of location in 
memory

• Regardless of memory size?
• Dynamically relocateable?
• Memory fragmentation

– External fragmentation – Unused area between processes
– Internal fragmentation – Unused area within processes

• Approach
– Give each process large “virtual (fake)” address space
– Relocate each memory access to actual memory address
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Protection Issue

• Errors in one process should not affect other processes
• For every process, we need to enforce that every load or store is 

to “legal” regions of memory only
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Virtual Memory

• Use secondary storage
– Extend expensive DRAM with reasonable performance

• Flexibility
– Processes may be located anywhere in memory, may be moved 

while executing, may reside partially in memory and partially on 
disk

• Efficient
– 20/80 rule: 20 % of memory gets 80 % of references
– Keep the 20 % in physical memory

• Convenience
– Make sure memory address scheme fits programmer’s needs
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Virtual Memory Design issues

• How is protection enforced
• How are processes relocated in physical memory
• How is memory partitioned
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Generic Translation Overview

• Actual translation is in 
hardware (MMU)

• Controlled in privileged 
software

• CPU view
– what program sees, virtual 

memory
• Memory & I/O view

– physical memory

Translation
(MMU)

CPU

virtual address

Physical
memory

physical address

I/O
device
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Goals of Translation

• Implicit translation for 
each memory reference

• A hit should be very fast
• Trigger an exception on a 

miss
• Protected from user’s 

faults

Registers

Cache(s)

DRAM

Disk

2-3x (L1)
10-20x (L2-L3)

100-300x

20M-30Mx
paging
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Address Mapping Granularity

• Mapping mechanism
– Virtual addresses are mapped to DRAM addresses or onto disk

• Mapping granularity?
– Increased granularity 

• Increases flexibility
• Decreases internal fragmentation
• Requires more mapping information & Handling

• Extremes
– Any byte to any byte: Huge map size
– Large segments: Smaller maps, internal fragmentation
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Locality of Reference

• Behaviors exhibited by most programs
• Locality in time

– When an item is addressed, it is likely to be addressed again shortly
• Locality in space

– When an item is addressed, its neighboring items are likely to be 
addressed shortly

• Basis of caching
• Argues that recently accessed items should be cached together with an 

encompassing region; A block (or line)
• 20/80 rule: 20 % of memory gets 80 % of references
• Keep the 20 % in memory
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Base and Bound

• Built in Cray-1 (1976)
• Protection

– A program can only access physical 
memory in [base, base+bound]

• On a context switch:
– Save/restore base, bound registers

• Pros
– Simple 
– Flat address

• Cons: 
– Fragmentation
– Difficult to share
– Difficult to use disks

virtual address

base

bound

error

+

>

physical address
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Segmentation

• Provides multiple separate virtual address 
spaces (segments)

• Each process has a table of (seg, size)
• Protection

– Each entry has (nil,read,write)
• On a context switch

– Save/restore the table or a pointer to the 
table in kernel memory 

• Pros
– Efficient
– Easy to share

• Cons:
– Complex management
– Fragmentation within a segment

physical address

+

segment offset

Virtual address

seg size

...

>
error
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Historical Computers Applying Segmentation Schemes

• Burroughs B5000, 
• GE645 (Multics)
• Intel iAPX 432
• IBM System/38
• IBM AS/400
• All above designs attempted to provide memory model (and 

other features) more directly supporting programming structures
• See Glenford J. Myers, Advances in Computer Architecture, for 

a proponent description of this historic design trend
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Paging

• Use a fixed size unit called page
• Pages not visible from program
• Use a page table to translate
• Various bits in each entry
• Context switch

– Similar to the segmentation scheme
• What should be the page size?
• Pros

– Simple allocation
– Easy to share

• Cons
– Big page tables
– How to deal with holes?

VPage # offset

Virtual address

...

>
error

PPage# ...

PPage# ...

...

PPage # offset

Physical address

Page table

page table size
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How Many PTEs Do We Need?

• Assume 4KB page size
– 12 bit (low order) displacement within page
– 20 bit (high order) page#

• Worst case for 32-bit address machine
– # of processes × 220

– 220 PTEs per page table (~4MBytes). 10K processes?
• What about 64-bit address machine?

– # of processes × 252 

– Page table won’t fit on disk (252 PTEs = 16PBytes)
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Segmentation with Paging

VPage # offset

Virtual address

...

>

PPage# ...

PPage# ...

...

PPage # offset

Physical address

Page table
seg size

...

Vseg #

error

Multics was the first 
system to combine 
segmentation and 
paging. 
www.multicians.org
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Multiple-Level Page Tables

Directory ...

pte

...

...

...

dir table offset
Virtual address
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Inverted Page Tables

• Main idea
– One PTE for each physical 

page frame
– Hash (Vpage, pid) to Ppage#

• Pros
– Small page table for large 

address space
• Cons

– Lookup is difficult 
– Overhead of managing hash 

chains, etc

pid vpage offset

pid vpage

0

k

n-1

k offset

Virtual 
address

Physical 
address

Inverted page table
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Virtual-To-Physical Lookup

• Program only knows virtual addresses
– Each process goes from 0 to highest address

• Each memory access must be translated
– Involves walk-through of (hierarchical) page tables
– Page table is in memory

• An extra memory access for each memory access???

• Solution
– Cache part of page table (hierarchy) in fast associative memory –

Translation-Lookahead-Buffer (TLB)
– Introduces TLB hits, misses etc.
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Translation Look-aside Buffer (TLB)

offset

Virtual address

...

PPage# ...

PPage# ...

PPage# ...

PPage # offset

Physical address

VPage #

TLB

Hit

Miss

Real
page
table

VPage#
VPage#

VPage#
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Bits in A TLB Entry

• Common (necessary) bits
– Virtual page number: match with the virtual address
– Physical page number: translated address
– Valid
– Access bits: kernel and user (nil, read, write)

• Optional (useful) bits
– Process tag
– Reference
– Modify
– Cacheable
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Hardware-Controlled TLB

• On a TLB miss
– Hardware loads the PTE into the TLB

• Need to write back if there is no free entry
– Generate a fault if the page containing the PTE is invalid
– VM software performs fault handling
– Restart the CPU

• On a TLB hit, hardware checks the valid bit
– If valid, pointer to page frame in memory
– If invalid, the hardware generates a page fault

• Perform page fault handling
• Restart the faulting instruction
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Software-Controlled TLB

• On a miss in TLB
– Write back if there is no free entry
– Check if the page containing the PTE is in memory
– If not, perform page fault handling
– Load the PTE into the TLB
– Restart the faulting instruction

• On a hit in TLB, the hardware checks valid bit
– If valid, pointer to page frame in memory
– If invalid, the hardware generates a page fault

• Perform page fault handling
• Restart the faulting instruction
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Hardware vs. Software Controlled

• Hardware approach
– Efficient
– Inflexible
– Need more space for page table

• Software approach
– Flexible
– Software can do mappings by hashing

• PP# → (Pid, VP#)
• (Pid, VP#) → PP#

– Can deal with large virtual address space
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Cache vs. TLB
• Similarity

– Both are fast and expensive with respect to capasity
– Both cache a portion of memory
– Both write back on a miss

• Differences
– TLB is usually fully set-associative
– Cache can be direct-mapped
– TLB does not deal with consistency with memory
– TLB can be controlled by software 

• Logically TLB lookup appears ahead of cache lookup, careful design allows 
overlapped lookup

• Combine L1 cache with TLB
– Virtually addressed cache
– Why wouldn’t everyone use virtually addressed cache?13.03.14 Tore Larsen 28



TLB Related Issues

• What TLB entry to be replaced?
– Random
– Pseudo LRU

• What happens on a context switch?
– Process tag: change TLB registers and process register
– No process tag: Invalidate the entire TLB contents

• What happens when changing a page table entry?
– Change the entry in memory
– Invalidate the TLB entry
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Consistency Issue

• Snoopy cache protocols
– Maintain cache consistency with DRAM, even when DMA 

happens
• Consistency between DRAM and TLBs: 

– You need to flush (SW) related TLBs whenever changing a page 
table entry in memory

• Multiprocessors need TLB “shootdown”
– When you modify a page table entry, you need to do to flush 

(“shootdown”) all related TLB entries on every processor
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Summary

• Virtual memory
– Easier SW development
– Better memory utilization
– Protection

• Address translation
– Base & bound: Simple, but limited
– Segmentation: Useful but complex

• Paging: Best tradeoff currently
– TLB: Fast translation
– VM needs to handle TLB consistency issues
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