Cut elimination

Start – derivation using cut rule Syntactic steps where cuts are eliminated Termination – the process terminates Estimate – height increase of derivation

Cut rule

- From G,H and -H,F to G,F
- Variants
 - From G,H and -H,G to G
 - Using lemmas
 - Using auxiliary constructions
 - Using indirect proofs
- The process think about eliminating lemmas

Syntactic process

- Syntactic in X and Y
 - Transformation involving only X and Y and parts of X and Y (makes good sense if X and Y are say derivations, formulas, trees, ...)
- Measuring the process involving derivation D
 - Height length of largest branch in D
 - Degree length of largest cut formula
- Goal
 - From derivation F (h,d) get F(h*,0)
 - Estimate h*

Process – picture – one step

• From D • To D'

Transformations

- Given derivation D
- Pick a node F in D with maximal degree and as high up in D as possible. Such a node is called critical .
- Check that the proposed transformations are syntactic
- Check that degree is not increased
- Check that the number of nodes in D with maximal degree is decreased

Simple transformations

- Change names for new variables in forall
- Thinning : From G to G,H
- Conjunction : From G and H to G (or to H)
- Disjunction : From G or H to G,H
- All-quantifier : From all x.Fx to Fs
- Idea change the formulas in the thread above the formula until you meet where the formula is introduced
- Neither height nor degree is increased
- No simple transformation for exists-quantifier

Cut elimination - connectives

- Assume we have a connective cut
 - From F and G, H and -F or -G, H to H
 - Change this into two cuts with F and with G
 - First F,H and -F,-G,H to H,-G,H (=-G,H)
 - Then G,H and -G,H to H
 - Obtains smaller cut degree with only one extra step

Cut elimination - quantifiers

- Assume we have a quantifier cut
 - From all x.Fx , G and ex x.-Fx , G to G
 - Must trace ex.-Fx up to all the places where it is introduced. There we can use cuts with appropriate instantiations of all x.Fx
 - We only know that the places are above the original quantifier cut.
 - In worst case the height above the original quantifier cut is doubled. We cannot say more than that.
 - We get rid of a large cut using a doubling of height.

Process - termination

- We start with a derivation D of sequent G
- We measure D with the pair (height, degree)
- Pick a critical cut and eliminate it
- This decrease the number of nodes with maximal degree
- Repeat until we have eliminated all cuts of maximal degree
- Then repeat the process with a smaller maximal degree
- After passes for all degrees we get a derivation with no cuts
- The process terminates

Process – estimate of height

- Assume we have a derivation D with pair (h,d)
- We have d passes of transformations
- In each pass we use syntactic transformations going from the top of the tree down to the root
- In worst case the transformation doubles the height above
- One pass from (h,d) to (2^h,d-1)
- All passes height a tower of 2's of height d and an h at the top. The parenthesis in the tower goes the awful way.
- From (16,3) to 2^{64k} much larger than the number of atoms in the universe (about 2²⁵⁶)

Example – notations for numbers

- Unary predicate N . We write 0:N 17:N x:N
- Constant 0:N
- Unary function s:N → N successor
- Connectives, quantifiers, equality
- Other functions defined by primitive recursion
- Here the following is of special interest
 - $exy = 2^{x}+y intended meaning$
 - e0y = sy
 - esxy = exexy

Process - problems

Pro cuts

- Cuts are needed to make derivations short
- All texts use auxiliary notions and theorems . These can be faithfully represented as cuts
- Contra cuts
 - Must guess appropriate cut formulas
 - No automation of reasoning with cuts
 - Interactive reasoning user interaction by user providing cuts
- Old discussion of direct versus indirect arguments

Example - theory

Basic theory

- 0:N and all x:N . sx:N
- Equations for primitive recursive functions
- Problem: Can we derive BASIC + EQUATIONS t:N
- Answer:
 - Without cut the height is at least the magnitude of t
 - With cut much shorter derivations

Example – auxiliaries - 1

- New notion for exy
 - $-N_0 = N$
 - $x:N_{i+1} = all y:N_i \cdot exy:N_i$
- New lemma
 - 0:N_i for all i

The axioms basic give the lemma for i=0 and i=1

Example – auxiliaries - 2

• Let us prove the lemma for i+2

- To prove all $y:N_{i+1} \cdot e0y:N_{i+1}$
- Assume y: N_{i+1} . i.e. all z: N_i . eyz: N_i
- But then also all $z:N_i$ eyeyz: N_i i.e. sy: N_{i+1}
- Conclude 0:N_{i+2}
- A very short proof of the lemma

Example - conclusion

- Number of atoms eeeeee0000000
- No cut free proof of eeeeee0000000:N not enough space
- Using lemma repeatedly we have a short proof
 - From $0:N_5$ and $0:N_6$ we get $e00:N_5$
 - From $0:N_A$ we get ee000: N_A
 - From $0:N_3$ we get eee0000: N_3
 - From $0:N_2$ we get eeee00000:N_2
 - From $0:N_1$ we get eeeee000000: N_1
 - From $0:N_0$ we get eeeeee0000000:N
- The rough estimates of height increase cannot be improved (using equality is not important)