
INF3170 { Logikk

Forelesning 3: SAT and DPLL

Espen H. Lian

Institutt for informatikk, Universitetet i Oslo

24. september 2013

Dagens plan

1 Introduction

2 DPLL

3 Complexity

4 DPLL Implementation

5 Bibliography

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 2 / 58

Introduction

1 Introduction

2 DPLL

3 Complexity

4 DPLL Implementation

5 Bibliography

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 3 / 58

Introduction Introduction

Introduction

SAT is the problem of determining if a propositional formula is
satis�able.

SAT can also refer to the problem of determining if a propositional
formula on conjunctive normal form is satis�able.

Both problems are NP-complete.

The DPLL (Davis-Putnam-Logemann-Loveland) procedure from 1962
[2] is an algorithm solving SAT.

DPLL is a re�nement of the DP (Davis-Putnam) procedure from
1960 [1].

We present (a version of) DPLL as a calculus.

DPLL is interesting because it works well in practice, ie. some of the
best SAT solvers are based on DPLL.

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 4 / 58

Introduction Normal forms

Preliminaries

A literal is a propositional variable or its negation.

We will use the following notation.

propositional variables: P;Q;R; S (possibly subscripted)

literals: x ; y ; z (possibly subscripted)

general formulae: X ;Y ;Z

The complement of a literal is de�ned as follows.

P = :P, and

:P = P.

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 5 / 58

Introduction Normal forms

NNF

A formula is on negation normal form (NNF) if negations occur only in
front of propositional variables and implications does not occur at all.

Any formula can be put on NNF using the following rewrite rules.

::X ! X

X � Y ! :X _ Y

:(X ^ Y)! :X _ :Y

:(X _ Y)! :X ^ :Y

Some additional rewrite rules are needed for formula containing > and ?.

We will assume that a formula X on NNF does not contain > or ? unless
X = > or X = ?.

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 6 / 58

Introduction Normal forms

CNF and DNF

A formula is on conjunctive normal form (CNF) if it is a conjunction of
disjunctions of literals.

Example

(:P _ Q) ^ (P _ :Q _ R) ^ (Q _ S) ^ (P _ :R)

A formula on NNF can be put on CNF using the following rewrite rules.

(X ^ Y) _ Z ! (X _ Z) ^ (Y _ Z)

Z _ (X ^ Y)! (Z _ X) ^ (Z _ Y)

A formula is on disjunctive normal form (DNF) if it is a disjunction of
conjunctions of literals.

DNF is like CNF, only with ^ and _ exchanged.

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 7 / 58

Introduction Normal forms

Example

The following formula expresses \P ^ Q or R ^ S but not both."

((P ^ Q) _ (R ^ S)) ^ (:(P ^ Q) _ :(R ^ S))

NNF: ((P ^ Q) _ (R ^ S)) ^ ((:P _ :Q) _ (:R _ :S))

CNF: (P _ R) ^ (P _ S) ^ (Q _ R) ^ (Q _ S) ^ (:P _ :Q _ :R _ :S)

The NNF to CNF part of the left conjunct can be performed as follows.

(P ^ Q) _ (R ^ S)

! (P _ (R ^ S)) ^ (Q _ (R ^ S))

! (P _ R) ^ (P _ S) ^ (Q _ (R ^ S))

! (P _ R) ^ (P _ S) ^ (Q _ R) ^ (Q _ S)

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 8 / 58

Introduction Normal forms

Size increase

Rewriting a formula from DNF to CNF (or vice versa) may cause an
exponential increase in size.

(P1 ^ P2) _ (P3 ^ P4) _ (P5 ^ P6)

On CNF:

(P1 _ P3 _ P5) ^ (P1 _ P3 _ P6) ^

(P1 _ P4 _ P5) ^ (P1 _ P4 _ P6) ^

(P2 _ P3 _ P5) ^ (P2 _ P3 _ P6) ^

(P2 _ P4 _ P5) ^ (P2 _ P4 _ P6)

We will deal with the increase in size later.

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 9 / 58

Introduction Clauses and clause sets

Clauses and clause sets

For the sake of notational simplicity, instead of using formula on CNF, we
will use clause sets.

A clause is a �nite set fx1; : : : ; xng of literals,
written as [x1 : : : xn], and
interpreted disjunctively.

A unit clause is a singleton clause
i.e. of the form [x].

A clause set is a �nite set fC1; : : : ;Cng of clauses,
interpreted conjunctively.

We use `[' and `]' for clauses, and `f' and `g' for clause sets because they
are interpreted di�erently:

v([x1 : : : xn]) = v(x1) _ � � � _ v(xn)

v(fC1; : : : ;Cng) = v(C1) ^ � � � ^ v(Cn)

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 10 / 58

Introduction Clauses and clause sets

Example

Some clauses and the formulae they represent:

1 [P :Q R] P _ :Q _ R

2 [P :P] P _ :P

3 [], the empty clause ?, the empty disjunction

Some clause sets and the formulae they represent:

1 f[P :Q R]g P _ :Q _ R

2 f[P :P]; []; [P :Q R]g (P _ :P) ^ ? ^ (P _ :Q _ R)

3 fg, the empty clause set >, the empty conjunction

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 11 / 58

Introduction Clauses and clause sets

Clauses and clause sets

We will use the following notation.

clauses: C ;D (possibly subscripted)

clause sets: �;�;�

We will also write ? for [], and ? for fg.

De�ne �x = fC [[x] jC 2 �g, ie. x is added to every clause.

Example

1 f[P Q]; [:Q]; [:P :Q]gx = f[P Q x]; [:Q x]; [:P :Q x]g.

2 f[P Q]; [:Q]; [:P :Q]gP = f[P Q]; [P :Q]; [P :P :Q]g.

3 f?gx = f[]gx = f[x]g.

4 ?x = ?.

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 12 / 58

Introduction Clauses and clause sets

Subsumption

If C � D, we say that C subsumes D.

Example: [:Q] subsumes [P :Q].

Subsumption Lemma

If C subsumes D, then v(C) = 1 implies v(D) = 1.

Proof.

If v(C) = 1, then v(x) = 1 for some x 2 C .

If C � D, then x 2 D, thus v(x) = 1 for some x 2 D.

Hence v(D) = 1.

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 13 / 58

DPLL

1 Introduction

2 DPLL

3 Complexity

4 DPLL Implementation

5 Bibliography

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 14 / 58

DPLL Introduction

Introduction

The DPLL calculus operates not on formulae but on a clause sets.

Let � and � be clause sets and C a clause.

�;� means � [�.

�;C means � [fCg.

We say that x occurs in � if x 2 C for some C 2 �.

:Q occurs in f[P :Q]; [:P R]g, while Q does not.

In derivations we drop `f' and `g' from clause sets.

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 15 / 58

DPLL Introduction

Introduction

A branch is closed if the empty clause occurs in its leaf node.

An example derivation is:

�

[]; [S]

[Q]; [:Q]; [S]

[Q]; [S]

[Q]; [:R]; [S]

[P Q]; [P :Q]; [:P Q]; [:P :R]; [S]

The left branch is closed; the right branch is not.

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 16 / 58

DPLL Introduction

The Idea

The main idea is to try to satisfy the clause set.

If we make a literal x true, we can

remove every clause containing x , and

remove x from every clause containing it.

Example

Let � = f[P Q]; [:P :Q]; [Q :R]g. If v(P) = 1, we can

remove [P Q] from �, and

remove :P from [:P :Q].

Then v(�) = v(f[:Q]; [Q :R]g).

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 17 / 58

DPLL Introduction

The Idea

We start by removing

any clause C such that fx ; xg � C for some x .

This does not a�ect satis�ability.

Let �, � and � be clause sets without any occurence of x or x such that

� and � are non-empty.

Then given the clause set �x ;�x ;�,

�x is the subset where x occurs;

�x is the subset where x occurs;

� is the subset where neither occur.

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 18 / 58

DPLL Introduction

Monotone literal �xing

We say that x is monotone in a clause set if it is the case that

x occurs in some clauses and

x does not occur in any clause.

If x is monotone in a clause set, we make x true, because this makes the
clauses x occurs in true and does not a�ect the other clauses.

Monotone literal �xing

�
Mon

�x ;�

This rule is also called the A�rmative-Negative Rule.

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 19 / 58

DPLL Introduction

Unit subsumption

Observe: [x] subsumes every clause where x occurs.

If it is the case that

the unit clause [x] occurs,

x occur in some other clauses, and

x occurs in yet others,

we may remove the clauses where x occurs (except [x]).

Unit subsumption

[x];�x ;�
Sub

[x]; �x ;�x ;�

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 20 / 58

DPLL Introduction

Examples

Example: :Q is monotone in [P :Q R]; [:P :R]; [P :R].

[P :Q R]; [:P :R]; [P :R]
Mon

[P :Q R]; [:P :R]; [P :R]

Example: [Q] subsumes [:P Q].

[Q]; [:P Q]; [:P :Q]; [R]
Sub

[Q]; [:P Q]; [:P :Q]; [R]

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 21 / 58

DPLL Introduction

Unit resolution

If it is the case that

the unit clause [x] occurs,

x does not occur anywhere else but

x does,

make x true.

Unit resolution

�;�
Res

[x];�x ;�

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 22 / 58

DPLL Introduction

Split

If it is the case that

x occurs in some clauses, and

x occurs in others,

we can make two branches: one where x is true and one where x is false.

Split

�;� �;�
Split

�x ;�x ;�

Note: x is true in the right branch.

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 23 / 58

DPLL Introduction

Examples

Example: Q occurs only in [Q], while there are occurrences of :Q.

[Q]; [P :Q]; [:P :Q]; [R]
Res

[Q]; [P :Q]; [:P :Q]; [R]

Example: Split on P.

[P :Q]; [:P Q] [P :Q];[:P Q]
Split

[P :Q]; [:P Q]

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 24 / 58

DPLL Examples

Example 1

The following formula is valid.

(P � (Q � R)) � ((P � Q) � (P � R))

In order to prove this, we negate the formula and rewrite it to CNF:

:((P � (Q � R)) � ((P � Q) � (P � R)))

! :(:(:P _ (:Q _ R)) _ (:(:P _ Q) _ (:P _ R)))

! ::(:P _ (:Q _ R)) ^ (::(:P _ Q) ^ (::P ^ :R))

! (:P _ :Q _ R) ^ (:P _ Q) ^ P ^ :R (NNF=CNF)

This is equivalent to the following clause set.

f[P]; [:R]; [:P Q]; [:P :Q R]g

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 25 / 58

DPLL Examples

Example 1

We prove unsatis�ability using only unit resolution.

�

[P]; [:R]; [:P Q]; [:P :Q R]
Res

[P]; [:R]; [:P Q]; [:P :Q R]
Res

[P]; [:R]; [:P Q]; [:P :Q R]
Res

[P]; [:R]; [:P Q]; [:P :Q R]

Every branch is closed, thus we have a proof.

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 26 / 58

DPLL Examples

Example 2

?
Mon5

[P R]; [P :R]

?
Mon4

[:R]
Res3

[:P]; [P :R]
Split2

[:P Q]; [P :Q R]; [P :R]
Mon1

[:P Q]; [P :Q R]; [Q S]; [P :R]

1 S is monotone

2 Split on :Q

3 Unit resolution on :P

4 :R is monotone

5 P is monotone

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 27 / 58

DPLL Examples

The rules

These are all the rules.

Monotone literal �xing

�
Mon

�x ;�

Unit resolution

�;�
Res

[x];�x ;�

Unit subsumption

[x];�x ;�
Sub

[x]; �x ;�x ;�

Split

�;� �;�
Split

�x ;�x ;�

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 28 / 58

DPLL Derived rules

Derived rules

If we allow � and � to be empty, the following rule is called Unit

propagation (on x).

Unit propagation

�;�
Prop

[x]; �x ;�x ;�

It can be derived from the other rules.

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 29 / 58

DPLL Derived rules

Unit propagation

We can derive Prop as follows.

If � and � are non-empty:

�;�
Res

[x];�x ;�
Sub

[x]; �x ;�x ;�

If � = ?, then �x = ?:

�;�
Mon

[x]; �x ;�x ;�

If � = ?, then �x = ?:

�;�
Res

[x]; �x ;�x ;�

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 30 / 58

DPLL Soundness and completeness

Soundness

Recall that a proof is a closed derivation.

Theorem (Soundness)

If there exists a proof of �, then � is unsatis�able.

Proof.

We show this contrapositively:

If � is satis�able, then � is not provable.

Assume that � is satis�able.

Rules preserve satis�ability upwards, (�)

thus any derivation � has at least one satis�able leaf node �.

As the empty clause is unsatis�able, � is not closed,

thus � is not a proof.

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 31 / 58

DPLL Soundness and completeness

Maximal Derivations

Recall that a maximal derivation is one where no rule is applicable.

Lemma

A leaf node in a maximal derivation is either ? or contains the empty

clause.

Proof.

Let � be a leaf node in a derivation �. We show the following:

If � is neither ? nor contains the empty clause, then � is not maximal.

Assume that � is neither ? nor contains the empty clause.

Then there is some literal x occurring in �.

If x does not occur in �, Mon is applicable.

If x does occur in �, Split (or in some cases Sub) is applicable.

In either case, � is not maximal.

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 32 / 58

DPLL Soundness and completeness

Completeness

Theorem (Completeness)

If � is unsatis�able, there exists a proof of �.

Proof.

We show this contrapositively:

If there exists no proof of �, then � is satis�able.

Assume that there exists no proof of �.

Let � be a derivation.

Termination (�) lets us assume that � is maximal.

Because � is not a proof, it contains at least one open leaf node �.

By the lemma, � = ?, which is satis�able.

Rules preserve satis�ability downwards, (�)

thus � is satis�able.

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 33 / 58

Complexity

1 Introduction

2 DPLL

3 Complexity

4 DPLL Implementation

5 Bibliography

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 34 / 58

Complexity Size

Size

A problem is an instance of SAT, i.e. a clause set. If

the number of clauses is n,

there occurs m distinct propositional variables, and

every clause is of length k ,

the problem size is de�ned as the triple

n �m � k :

Example

Some problems and their sizes:

f[P :Q R]; [Q R :S]g has size 2� 4� 3.

f[P :Q]; [:P Q]; [P Q]g has size 3� 2� 2.

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 35 / 58

Complexity Size

k-SAT and HORNSAT

De�nition (k-SAT)

k-SAT is the subset of SAT with problems of size n �m � k.

Example: 3-SAT:

f[:P :Q R]; [:P :Q :R]; [P Q R]; [P Q :R]g

De�nition (HORNSAT)

HORNSAT is the subset of SAT where every clause is a Horn clause,

i.e. contains at most one positive literal.

Example: Both HORNSAT and 2-SAT:

f[:P :Q]; [:P R]; [:Q R]g

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 36 / 58

Complexity Size

k-SAT and HORNSAT

The complexity k-SAT and HORNSAT is well-known:

3-SAT is NP-complete.

2-SAT is NL-complete.

HORNSAT is P-complete.

The relationship between the classes is as follows.

NL � P � NP � PSPACE

NL 6= PSPACE

Hence

2-SAT is not harder than HORNSAT, and

HORNSAT is not harder than 3-SAT.

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 37 / 58

Complexity Reduction to CNF

Reduction to CNF

As mentioned, reducing a propositional formula to CNF can cause
exponential increase in size.

A formula of the form (x1 ^ y1) _ � � � _ (xn ^ yn) reduced to CNF has size

2n � 2n � n;

that is 2n clauses of length n.

Example

If n = 3, we get a 8� 6� 3 problem:

(x1 _ x2 _ x3) ^ (x1 _ x2 _ y3) ^ (x1 _ x3 _ y2) ^ (x1 _ y2 _ y3) ^

(x2 _ x3 _ y1) ^ (x2 _ y1 _ y3) ^ (x3 _ y1 _ y2) ^ (y1 _ y2 _ y3)

But the reason for using DPLL in the �rst place is e�ciency!

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 38 / 58

Complexity Equivalence

Equivalence

Two formulae X and Y are equivalent if

v(X) = v(Y) for every valuation v :

Equivalence can be expressed in our logical language. Let (X � Y) denote
(X � Y) ^ (Y � X). Then

v(X � Y) = 1 i� X and Y are equivalent:

So far we have reduced a formula to an equivalent one on CNF:

X
CNF
���! Y , where

X and Y are equivalent, and

Y is on CNF.

This is, in fact, not strictly necessary.

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 39 / 58

Complexity Equisatis�ability

Equisatis�ability

For our purposes, it su�ces that X and Y are equisatis�able:

X is satis�able i� Y is satis�able:

Until now, the procedure for generating input to DPLL has been

X
NNF
���! Y

CNF
���! Z , where

X , Y , and Z are equivalent, and

Z may be exponentially larger than Y .

Our next approach is as follows.

X
NNF
���! Y

CNF
���! Z , where

Y and Z are not equivalent, but equisatis�able, and

Z is no more than polynomially larger than Y .

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 40 / 58

Complexity Tseitin encoding

Tseitin encoding

Problem given an arbitrary formula on NNF, �nd an equisatis�able
formula on CNF (or the corresponding clause set).

Solution Represent each subformulae (except for literals) with a new
propositional variable, recursively.
Usually attributed to Tseitin [3].

Example

((P ^ :Q) _ R) has two non-literal subformulae, one of which is itself.

P1z }| {
((P ^ :Q)| {z }

P2

_R)

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 41 / 58

Complexity Tseitin encoding

Tseitin encoding

For each subformula X , introduce a new variable Pk and generate a
formula expressing that Pk is equivalent to X :

(P1 � (P2 _ R)) [not (P1 � ((P ^ :Q) _ R))]

(P2 � (P ^ :Q))

In addition we want the variable representing the entire formula { in our
case P1 { to be true. The result is:

P1 ^

(P1 � (P2 _ R)) ^

(P2 � (P ^ :Q))

The formula above and ((P ^ :Q) _ R) are both satis�able, but they are
not equivalent.

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 42 / 58

Complexity Tseitin encoding

Tseitin encoding

In order to convert P1 ^ (P1 � (P2 _ R)) ^ (P2 � (P ^ :Q)) to CNF, we
use the following functions.

[x ^ y]P = f[:P x]; [:P y]; [P x y]g

[x _ y]P = f[P x]; [P y]; [:P x y]g

Lemma (Clause representation)

[x � y]P is equivalent to P � (x � y) for � 2 f^;_g.

Example: P2 � (P ^ :Q) is equivalent to

[P ^ :Q]P2 , which equals

f[:P2 P]; [:P2 :Q]; [P2 :P Q]g.

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 43 / 58

Complexity Tseitin encoding

Tseitin encoding

In conclusion:

((P ^ :Q) _ R) is equisatis�able to

P1 ^ (P1 � (P2 _ R)) ^ (P2 � (P ^ :Q))

which is equivalent to

f[P1]g [[P2 _ R]P1 [[P ^ :Q]P2

which equals the clause set

f[P1];

[P1 :P2]; [P1 :R]; [:P1 P2 R];

[:P2 P]; [:P2 :Q]; [P2 :P Q]g:

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 44 / 58

Complexity Tseitin encoding

Tseitin encoding

Tseitin encoding:

?
Mon

[:P Q]

?
Mon

[P]
Mon

[P]; [:Q]
Split

[:P2 P]; [:P2 :Q]; [P2 :P Q]
Mon

[P2 R]; [:P2 P]; [:P2 :Q]; [P2 :P Q]
Prop

[P1]; [P1 :P2]; [P1 :R]; [:P1 P2 R]; [:P2 P]; [:P2 :Q]; [P2 :P Q]

Equivalent CNF encoding:

?
Mon

[P R]; [:Q R]

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 45 / 58

Complexity Tseitin encoding

Tseitin encoding

Is this any better (in general) than the original CNF translation?

We will use the number of binary connectives (n) as a measure of the
size of our original formula on NNF.

We let m denote the number of distinct propositional variables.

Then the size of the equisatis�able clause set generated is

(3n + 1)� (m + n)�63:

This means that that there are

3n + 1 clauses,
m auxiliary variables, and
each clause has at most length 3.

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 46 / 58

DPLL Implementation

1 Introduction

2 DPLL

3 Complexity

4 DPLL Implementation

5 Bibliography

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 47 / 58

DPLL Implementation Pseudocode algorithm

Pseudocode algorithm

A minimal version of DPLL can be implemented as follows.

1: proc LookAhead(�)

2: while � contains some unit clause [x]

3: perform unit propagation on x

4: return �

5: proc DPLL(�)

6: � := LookAhead(�)

7: if � = ? return 1

8: if ? 2 � return 0

9: x := ChooseLiteral(�)

10: return DPLL(�; [x]) or DPLL(�; [x])

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 48 / 58

DPLL Implementation Pseudocode algorithm

Correctness

Correctness of the algorithm

DPLL(�) returns 1 if � is satis�able, and 0 if not.

The idea is that branching and adding a unit clause [x] to one branch
and [x] to the other, and then performing unit propagation is basically
the same as splitting:

�;�

[x]; �x ;�x ;�

�;�

[x]; �x ;�x ;�

�x ;�x ;�

(This is not a proof in the calculus.)

If x is monotone, it gets a little trickier.

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 49 / 58

DPLL Implementation Jeroslow Wang heuristic

Jeroslow Wang heuristic

The only non-deterministic part is which literal is chosen.

Picking the optimal literal is in general NP-hard and coNP-hard [4].

Thus it is harder than deciding satis�ability of the formula!

But there exists heuristics [5].

Let �jx denote the subset of � where x occurs: fC 2 � j x 2 Cg

Pick the x that maximizes w(�jx), where w is the weight function

w(�) =
X

k>1

n(�; k)

2k
;

and n(�; k) is the number of clauses in � of length k .

\Pick an x that occurs in many short clauses."

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 50 / 58

DPLL Implementation Jeroslow Wang heuristic

Example

Let us apply the algorithm to

� = f[:P Q]; [P :Q R]; [Q S]; [P :R]g:

What is DPLL(�)?

� contains no unit clause, thus LookAhead(�) returns �, and

� is neither empty nor contains the empty clause,

hence we must choose some literal to split on.

In order to do this, we apply the heuristic.

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 51 / 58

DPLL Implementation Jeroslow Wang heuristic

Example

We calculate w(�jx) for each x occurring in

� = f[:P Q]; [P :Q R]; [Q S]; [P :R]g:

E.g., the weight of P in �: w(�jP) = 0=21 + 1=22 + 1=23 = 3=8.

:P P :Q Q :R R :S S
0

1=8

1=4

3=8

1=2

W
ei
gh
t

Q has the highest weight in �.

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 52 / 58

DPLL Implementation Jeroslow Wang heuristic

Example

We add [Q] to � and perform unit propagation.

[P R]; [P :R]
Prop

[:P Q]; [P :Q R]; [Q S]; [P :R]; [Q]

We calculate w(�0jx) for each x occurring in �0 = f[P R]; [P :R]g.

:P P :R R
0

1=4

1=2

W
ei
gh
t

P has the highest weight in �0.

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 53 / 58

DPLL Implementation Jeroslow Wang heuristic

Example

We add [P] to �0 and perform unit propagation.

?
Prop

[:R]
Prop

[P R]; [P :R]; [P]

DPLL([P R]; [P :R]; [P]; [P]) returns 1, thus so does

DPLL(�; [Q]), thus so does

DPLL(�).

Hence � is satis�able.

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 54 / 58

DPLL Implementation SAT Solvers

SAT Solvers

A SAT solver is a program that determines whether a propositional
formula or clause set is satis�able.

Many modern SAT solvers are based on the SAT solver MiniSAT,
which again is based on DPLL.

MiniSAT won all the industrial categories at SAT 2005.

We can try it on an 3030� 1015� 3 problem.

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 55 / 58

DPLL Implementation SAT Solvers

MiniSAT

============================[Problem Statistics]=============================
| |
| Number of variables: 1015 |
| Number of clauses: 3030 |
| Parse time: 0.00 s |
| |
============================[Search Statistics]==============================
| Conflicts | ORIGINAL | LEARNT | Progress |
| | Vars Clauses Literals | Limit Clauses Lit/Cl | |
===
100	627 1932 5162	708 100 11	38.228 %
250	627 1932 5162	779 250 12	38.227 %
475	627 1932 5162	857 475 11	38.227 %
812	627 1932 5162	942 812 10	38.227 %
1318	627 1932 5162	1037 1318 10	38.227 %
2077	627 1932 5162	1140 1359 9	38.227 %
3216	627 1932 5162	1254 966 8	38.227 %
4924	627 1932 5162	1380 1026 8	38.227 %
===
restarts : 27
conflicts : 4998 (15971 /sec)
decisions : 5388 (0.00 % random) (17217 /sec)
propagations : 1131352 (3615098 /sec)
conflict literals : 44646 (31.69 % deleted)
Memory used : 6.00 MB
CPU time : 0.312952 s

SATISFIABLE

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 56 / 58

Bibliography

1 Introduction

2 DPLL

3 Complexity

4 DPLL Implementation

5 Bibliography

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 57 / 58

Bibliography

Bibliography I

[1] Martin Davis and Hilary Putnam, A Computing Procedure for

Quanti�cation Theory, J. ACM, 7(3):201{215, 1960.

[2] Martin Davis, George Logemann and Donald Loveland, A machine

program for theorem-proving, Commun. ACM, 5(7):394{397, 1962.

[3] G. S. Tseitin, On the Complexity of Derivation in Propositional

Calculus.

[4] Paolo Liberatore, On the complexity of choosing the branching

literal in DPLL, Arti�cial Intelligence, 116(1{2):315{326, 2000.

[5] Robert G. Jeroslow and Jinchang Wang, Solving Propositional

Satis�ability Problems, Annals of Mathematics and Arti�cial

Intelligence, 1(1):167{187, 1990.

Institutt for informatikk (UiO) INF3170 { Logikk 24.09.2013 58 / 58

	Introduction
	Introduction
	Normal forms
	Clauses and clause sets

	DPLL
	Introduction
	Examples
	Derived rules
	Soundness and completeness

	Complexity
	Size
	Reduction to CNF
	Equivalence
	Equisatisfiability
	Tseitin encoding

	DPLL Implementation
	Pseudocode algorithm
	Jeroslow Wang heuristic
	SAT Solvers

	Bibliography

