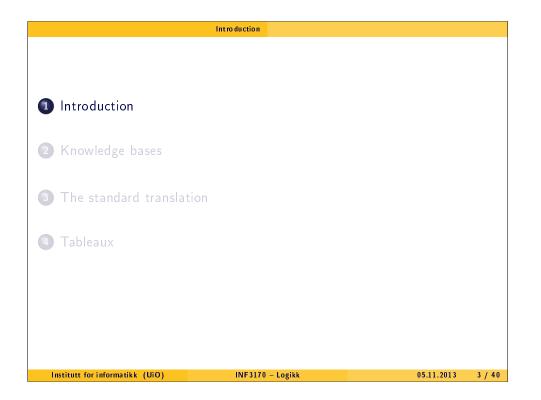
INF3170 – Logikk Forelesning 6: Description Logic 1 Espen H. Lian Institutt for informatikk, Universitetet i Oslo 5. november 2013



Dagens plan Introduction Knowledge bases The standard translation Tableaux

Introduction

Introduction

Suppose you want to express set membership and subsumption, i.e., e.g,

• $a \in C \cap D$ and $C \subseteq D$.

You can do this is first-order logic (using predicates C and D)

• $C(a) \wedge D(a)$ and $\forall x. C(x) \supset D(x)$.

Now suppose you are afraid of variables. The only variable above is universally quantified, so you do not really need it. Instead, use a language that can express subsumption of **concepts** (which are intepreted as sets) in a more familiar way.

If C and D are concepts, then so is $C \sqcap D$. The first-order logic formulae above can then be expressed as follows:

INF3170 - Logikk

• $C \sqcap D(a)$ and $C \sqsubseteq D$.

Institutt for informatikk (UiO)

Introduction Syntax

The concept language

 \mathcal{ALC} is the concept language constructed from

- atomic concepts (unary predicates),
- atomic roles (binary predicates),

and the following concept constructors:

● ⊤	universal concept		
$\bullet \perp$	bottom concept		
• ∀ <i>R</i> . <i>C</i>	value restriction		
● ∃ <i>R</i> . <i>C</i>	existential quantification		
• <i>C</i> ⊔ <i>D</i>	union		
• $C \sqcap D$	intersection		
• ¬C	negation		
where C and D are concep	ts, and <i>R</i> an atomic role		
Institutt for informatikk (UiO)	INF3170 – Logikk	05.11.2013	5 / 40

Introduction Semantics

Semantics

The interpretation function is extended to complex concepts.

- $\top^{\mathfrak{A}} = \Delta$
- $\perp^{\mathfrak{A}} = \emptyset$
- $(\neg C)^{\mathfrak{A}} = \Delta \setminus C^{\mathfrak{A}}$
- $(C \sqcup D)^{\mathfrak{A}} = C^{\mathfrak{A}} \cup D^{\mathfrak{A}}$
- $(C \sqcap D)^{\mathfrak{A}} = C^{\mathfrak{A}} \cap D^{\mathfrak{A}}$
- $(\forall R.C)^{\mathfrak{A}} = \{x \in \Delta \mid R^{\mathfrak{A}}(x) \subseteq C^{\mathfrak{A}}\}$
- $(\exists R.C)^{\mathfrak{A}} = \{x \in \Delta \mid C^{\mathfrak{A}} \cap R^{\mathfrak{A}}(x) \neq \emptyset\}$

For a binary relation R, R(x) denotes $\{y | xRy\}$.

Introduction Semantics

Models

Recall that a **interpretation** (or **model**)

 $\mathfrak{A} = \langle \Delta, \cdot^{\mathfrak{A}} \rangle$

over unary and binary predicates consists of

- a **domain** Δ that is a non-empty set, and
- an interpretation function \mathfrak{A} that maps
 - ullet individuals to the elements: $a^{\mathfrak{A}}\in\Delta$
 - atomic concepts to sets: $\mathcal{A}^{\mathfrak{A}} \subseteq \Delta$
 - ullet atomic roles to binary relations: $R^{\mathfrak{A}} \subseteq \Delta imes \Delta$

Introduction Semantics

INF3170 - Logikk

Example

Institutt for informatikk (UiO)

This will be our main example.

Example

We have

- two atomic concepts Man and Woman, and
- an atomic role hasChild.

Let \mathfrak{A} be the intepretation with

• the domain $\Delta = \{Maria, Jesus\}$

such that our concepts and role have the following extensions:

- Woman^{\mathfrak{A}} = {Maria},
- $Man^{\mathfrak{A}} = {Jesus},$
- hasChild^{\mathfrak{A}} = { $\langle Maria, Jesus \rangle$ },

05.11.2013

Introduction Semantics

Example

Given this intperpretation,

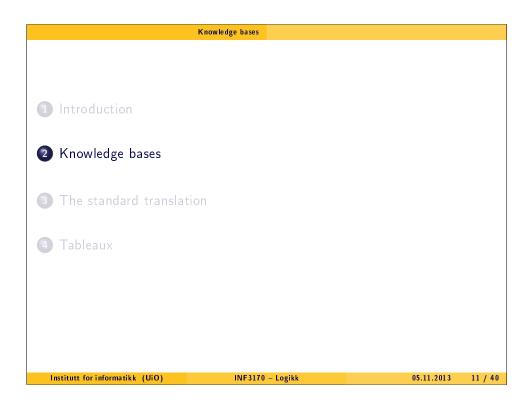
 The extension of <u>Man □ Woman</u> is empty: Nobody is both a man and a woman.

$$[Man \sqcap Woman)^{\mathfrak{A}} = Man^{\mathfrak{A}} \cap Woman^{\mathfrak{A}}$$

= $\{Maria\} \cap \{Jesus\}$
= \emptyset

 The extension of <u>Man ⊔ Woman</u> equals the domain: Everyone is either a man or a woman.

$$(Man \sqcup Woman)^{\mathfrak{A}} = Man^{\mathfrak{A}} \cup Woman^{\mathfrak{A}}$$
$$= \{Maria\} \cup \{Jesus\}$$
$$= \Delta$$
Institutt for informatikk (UiO) INF3170 - Logikk 05.11.2013



Introduction Semantics

Example

Given this intperpretation,

• The extension of <u>∃hasChild.Man</u> is {Maria}: She has a child, and that child is a man.

 $\exists \mathsf{hasChild}.\mathsf{Man}^{\mathfrak{A}} = \{ x \in \Delta \mid \mathsf{Man}^{\mathfrak{A}} \cap \mathsf{hasChild}^{\mathfrak{A}}(x) \neq \emptyset \} \\ = \{ \mathsf{Maria} \},$

as hasChild^{\mathfrak{A}}(Maria) = {Jesus}.

• The extension of <u>∀hasChild.Man</u> is {Maria, Jesus}: Every child Maria has is a man; for Jesus this holds vacuously, as he has no children.

$$\begin{aligned} \forall \mathsf{hasChild.Man}^{\mathfrak{A}} &= \{ x \in \Delta \, | \, \mathsf{hasChild}^{\mathfrak{A}}(x) \subseteq \mathsf{Man}^{\mathfrak{A}} \} \\ &= \{ \mathsf{Maria}, \mathsf{Jesus} \}, \end{aligned}$$

as hasChild^{\mathfrak{A}}(Jesus) = \emptyset .

INF3170 – Logikk

05.11.2013 10 / 40

Knowledge bases Assertions

Assertions

9 / 40

An assertion is of the form

Institutt for informatikk (UiO)

- C(a) for a concept C and individual a
- R(a, b) for a role R and individuals a and b

In order to give semantics to an assertion, we must map each individual to the domain:

- $a^{\mathfrak{A}} \in \Delta$, such that
- $a^{\mathfrak{A}} \neq b^{\mathfrak{A}}$ if $a \neq b$ (the unique name assumption or UNA)

An interpretation ${\mathfrak A}$ satisfies

- C(a) if $a^{\mathfrak{A}} \in C^{\mathfrak{A}}$
- R(a, b) if $\langle a^{\mathfrak{A}}, b^{\mathfrak{A}} \rangle \in R^{\mathfrak{A}}$

Knowledge bases Assertions

Assertions

Let <u>MARIA</u> and <u>JESUS</u> be individuals, and map them as follows:

- $MARIA^{\mathfrak{A}} = Maria$
- $\mathsf{JESUS}^{\mathfrak{A}} = \mathrm{Jesus}$

The interpretation in our main example satisfies, e.g.,

• hasChild(MARIA, JESUS) as

 $\langle \mathsf{MARIA}^{\mathfrak{A}}, \mathsf{JESUS}^{\mathfrak{A}} \rangle \in \mathsf{hasChild}^{\mathfrak{A}};$

● ∃hasChild.Man(MARIA), as

```
MARIA^{\mathfrak{A}} \in \exists hasChild.Man^{\mathfrak{A}}.
```

Institutt for informatikk (UiO)

INF3170 – Logikk

05.11.2013

13 / 40

 Knowledge bases

 Knowledge bases

 An ALC knowledge base is a pair consisting of:

 • A TBox, a finite set of terminological axioms

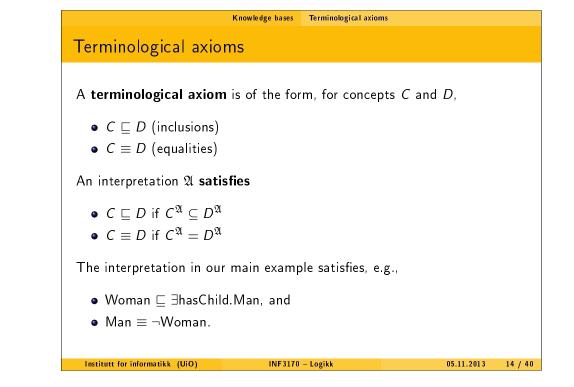
 • An ABox, a finite set of assertions

 An interpretation A satisfies

 • an ABox if it satisfies every assertion in it

 • a TBox if it satisfies every axiom in it

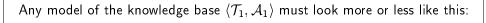
 • a knowledge base if it satisfies both the ABox and the TBox



An \mathcal{ALC} knowledge	base $\mathcal{K}_1 = \langle \mathcal{T}_1, \mathcal{A}_1 angle$:	
Example		
TBox \mathcal{T}_1		
● Woman ⊑ Perso	on	
● Man ⊑ Person		
• Mother \equiv Wom	an ⊓ ∃hasChild.Person	
ABox \mathcal{A}_1		
Woman(MARIA)	
 Man(JESUS) 		
hasChild(MARIA	A, JESUS)	

Knowledge bases Knowledge bases

Example





Knowledge bases Reasoning

Reasoning

We consider several reasoning problems, wrt. assertions:

• instance checking;

and concepts:

- satisfiability;
- subsumption;
- disjointness.

Knowledge bases Knowledge bases

Example

Our main example interpretation \mathfrak{A} is a model of the ABox \mathcal{A}_1 .

If we extend \mathfrak{A} to interpret <u>Person</u> and <u>Mother</u> as follows,

- $\mathsf{Person}^\mathfrak{A} = \Delta = \{ \operatorname{Maria}, \operatorname{Jesus} \}$ and
- Mother^{\mathfrak{A}} = {Maria},

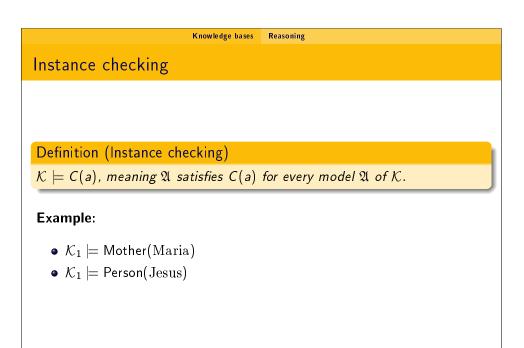
it becomes a model of the TBox \mathcal{T}_1 :

- Woman $^{\mathfrak{A}} \subseteq \mathsf{Person}^{\mathfrak{A}}$
- $Man^{\mathfrak{A}} \subseteq Person^{\mathfrak{A}}$

Institutt for informatikk (UiO)

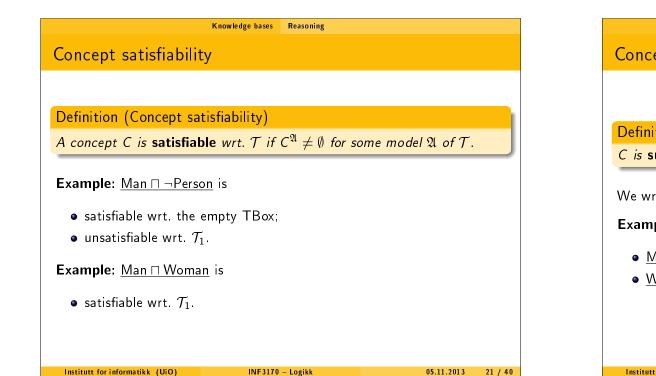
• $\mathsf{Mother}^{\mathfrak{A}} = \mathsf{Woman}^{\mathfrak{A}} \cap \exists \mathsf{hasChild}.\mathsf{Person}^{\mathfrak{A}}$

Thus \mathfrak{A} becomes a model of the knowledge base $\mathcal{K}_1 = \langle \mathcal{T}_1, \mathcal{A}_1 \rangle$.

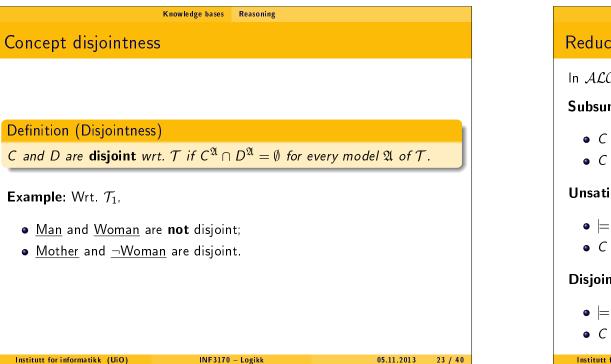


INF3170 - Logikk

05.11.2013



Institutt for informatikk (UiO)



21 / 40

Concept subsumption		
Definition (Subsumption)		
C is subsumed by D wrt. T if \mathfrak{A} satisfies C \sqsubseteq D for every	r model X	of ${\mathcal T}$.
We write $\mathcal{T}\models {\sf C}\sqsubseteq {\sf D}$ if ${\sf C}$ is subsumed by ${\sf D}$ wrt. $\mathcal T$. Example:		
• Mother is subsumed by Woman wrt. \mathcal{T}_1 .		
 Woman is subsumed by Woman ⊔ Man wrt. any TBox 		
Institutt for informatikk (UiO) INF3170 – Logikk	05.11.2013	22 / 40

Knowledge bases Reasoning

Knowledge bases Reasoning

INF3170 - Logikk

Reducing reasoning problems to each other

In \mathcal{ALC} , these problems can all be reduced to each other.

Subsumption

- C is unsatisfiable iff $\models C \sqsubseteq \bot$
- C and D are disjoint iff $\models C \sqcap D \sqsubset \bot$

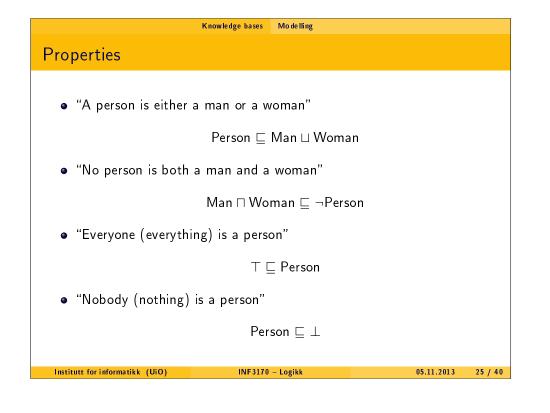
Unsatisfiability

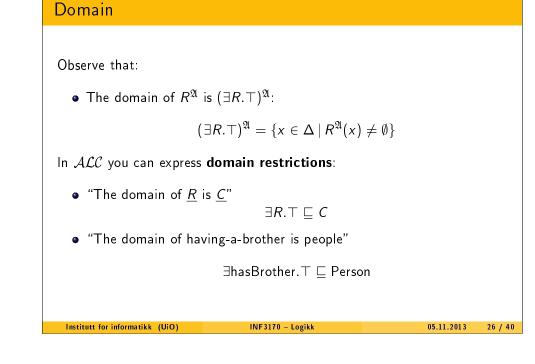
- $\models C \sqsubseteq D$ iff $C \sqcap \neg D$ is unsatisfiable
- C and D are disjoint iff $C \sqcap D$ is unsatisfiable

Disjointness

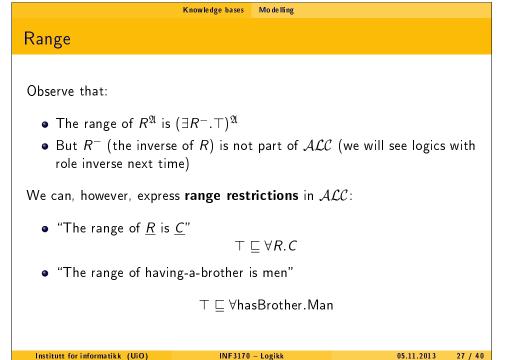
- $\models C \sqsubseteq D$ iff C and $\neg D$ are disjoint
- C is unsatisfiable iff C and \top are disjoint

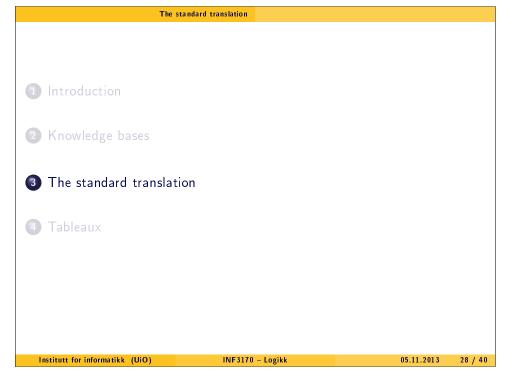
Institutt for informatikk (UiO)





Knowledge bases Modelling





The standard translation

The standard translation

Two functions π and μ map concepts to first-order formulae.

$\pi(A) = Ax$	$\mu({\sf A})={\sf A}{\sf y}$
$\pi(\neg C) = \neg \pi(C)$	$\mu(\neg C) = \neg \mu(C)$
$\pi(\mathit{C} \sqcup \mathit{D}) = \pi(\mathit{C}) \lor \pi(\mathit{D})$	$\mu(\mathit{C} \sqcup \mathit{D}) = \mu(\mathit{C}) \lor \mu(\mathit{D})$
$\pi(C\sqcap D)=\pi(C)\wedge\pi(D)$	$\mu(\mathit{C}\sqcap D)=\mu(\mathit{C})\wedge\mu(D)$
$\pi(\exists R.C) = \exists y(xRy \land \mu(C))$	$\mu(\exists R.C) = \exists x(yRx \land \pi(C))$
$\pi(\forall R.C) = \forall y(xRy \supset \mu(C))$	$\mu(\forall R.C) = \forall x(yRx \supset \pi(C))$
Proposition	

INF3170 - Logikk

 $a^{\mathfrak{A}} \in C^{\mathfrak{A}}$ if and only if $\mathfrak{A} \models \pi(C)[x \mapsto a]$.

Institutt for informatikk (UiO)

Fragments of FOL
First-order logic (FOL) is undecidable.
But there are decidable fragments, such as propositional logic.
Other decidable fragments include:

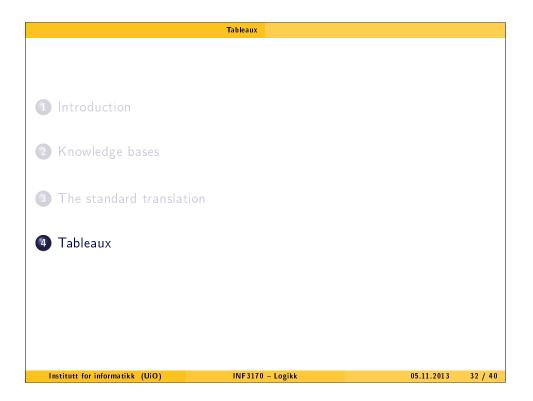
The two-variable fragment (NEXPTIME-complete)
The guarded fragment (2EXPTIME-complete)
The guarded fragment where the number of variables or the arity of relations is bounded (EXPTIME-complete)

The standard translation maps concepts to the guarded two-variable fragment, e.g.,

∃R.∃R.A → ∃y(xRy ∧ ∃x(yRx ∧ ∃y(xRy ∧ Ay)))

Hence satisfiability of ALC is in EXPTIME.

05.11.2013



Tableaux Negation normal form

Tableaux

Any concept can be put on NNF using the following rewrite rules.

$$\neg \neg C \rightarrow C$$

$$\neg (C \sqcap D) \rightarrow \neg C \sqcup \neg D$$

$$\neg (C \sqcup D) \rightarrow \neg C \sqcap \neg D$$

$$\neg (\exists R.C) \rightarrow \forall R.\neg C$$

$$\neg (\forall R.C) \rightarrow \exists R.\neg C$$

INF3170 - Logikk

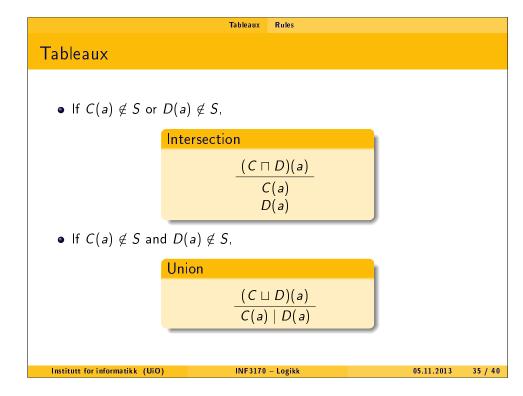
If we go via FOL, it is easy to see that, e.g.,

•
$$\neg \forall y (xRy \supset Cy)$$
 is equivalent to $\exists y (xRy \land \neg Cy)$.

Institutt for informatikk (UiO)

05.11.2013

33 / 40

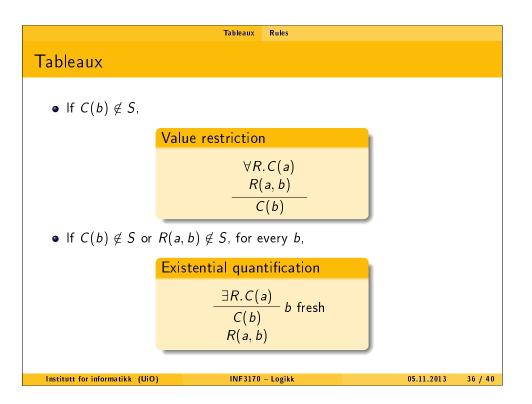


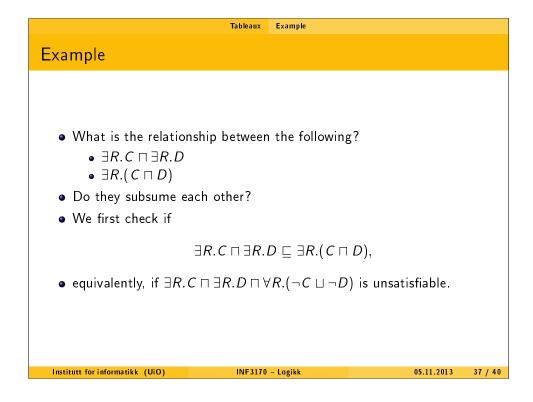
INF3170 - Logikk

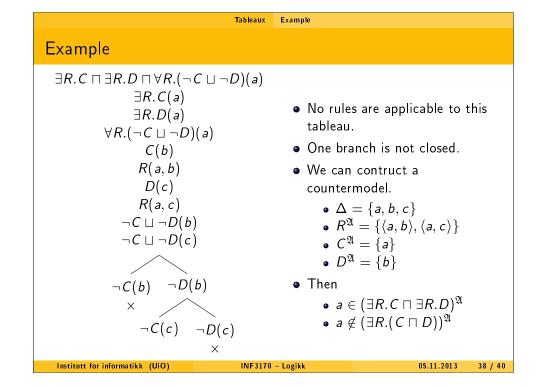
05.11.2013

34 / 40

Institutt for informatikk (UiO)







05.11.2013

