INF3170 – Logikk Forelesning 7: Description Logic 2 Espen H. Lian Institutt for informatikk, Universitetet i Oslo 19. november 2013



Dagens plan Introduction Complexity theory Description logics OWL 2

Introduction

Introduction

Description Logics

- **Description logics** are a class of decidable logics primarily used for knowledge representation.
- The language consists of **concepts** of an application domain,
- and the hierarchical structure of the application domain is expressed through **terminological axioms**.
- Some examples of terminological axiom about animals are:
 - Wolf ⊑ Carnivore ("A wolf is a carnivore")
 - Carnivore ≡ Animal □ ∃eats.Animal

("The definition of a carnivore is an animal that eats animals")

• Being decidable, description logics can be classified according to their complexity.

INF3170 - Logikk

4 / 39

Introduction

Introduction Complexity Theory

• **Complexity theory** classifies problems according to how much resources are necessary/sufficient to solve them.

- In our case, the problems are **reasoning** problems, such as: Does one concept subsume another concept?
- An example of subsumption is:
 - Does Wolf ⊑ Animal follow from the axioms? ("Is a wolf an animal?")
- Given the terminological axioms on the previous foil (also to the right), it follows that a wolf is an animal:

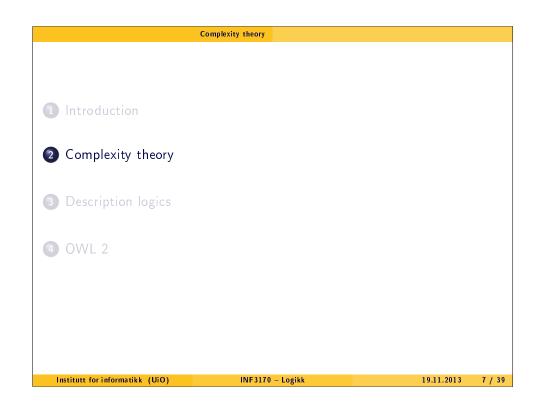
INF3170 - Logikk

- A wolf is a carnivore (1st axiom), and
- a carnivore is an animal (follows from the 2nd),
- In general, reasoning is hard.

Institutt for informatikk (UiO)

19.11.2013

5 / 39



Introduction Description Logic and Their Complexity

- The more expressive the logic, the higher the complexity of reasoning.
- The goal when designing a language is to maximize the expressivity while staying within a certain complexity class.
- Earlier, one tried to maximize the expressivity while retaining decidability.
- Now, it is more common to try to maximize the expressivity while staying within a certain (typically tractable) complexity class.
- We will consider different logics that have been designed with this in mind.
- Last time we saw *ALC*, a logic with a simple syntax: Boolean connectives, value restriction and existential quantification.

INF3170 - Logikk

Complexity theory

Complexity Classes

Institutt for informatikk (UiO)

Classes

- A **complexity class** is a set of decision problems that can be decided within some specific bound on the size of the input in some computational model.
- The bounds are usually on
 - time, or
 - space.
- The computational model is usually
 - a deterministic Turing machine (DTM), or
 - a non-deterministic Turing machine (NDTM).
- E.g., **NP** is the class of decision problems solvable in polynomial time on a non-deterministic Turing machine.

INF3170 - Logikk

• In addition, AC_0 is a circuit complexity class consisting of constant-depth unlimited-fanin circuits.

19.11.2013

6 / 39

Complexity theory

Complexity Classes

Classes

Class	Model	Bound	Example Growth
L	DTM	logarithmic space	log n
NL	NDTM	logarithmic space	
Р	DTM	polynomial time	n ²
NP	NDTM	polynomial time	
PSPACE	DTM	polynomial space	
EXPTIME	DTM	exponential time	2 ⁿ
NEXPTIME	NDTM	exponential time	
2EXPTIME	DTM	doubly exponential time	$2^{2^{n}}$
2NEXPTIME	NDTM	doubly exponential time	
Institutt for informatikk (UiO)		INF3170 – Logikk	19.11.2013 9 / 39

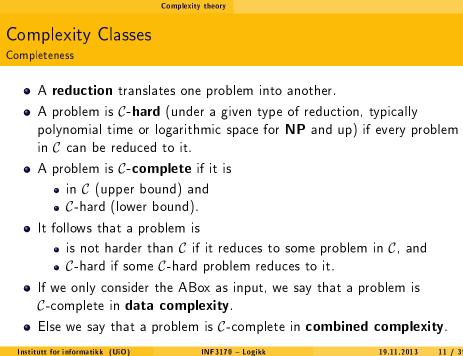
Complexity theory

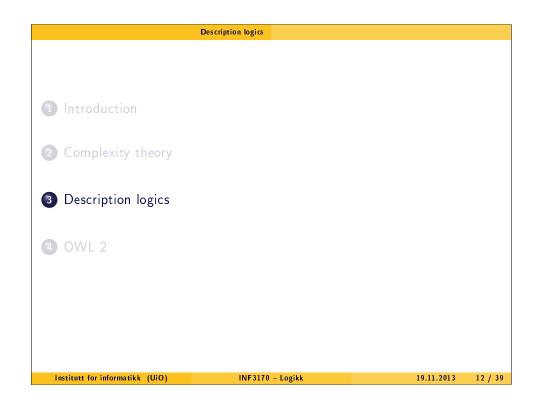
Complexity Classes

Relationships

• The following are the known relationships between the classes.

 $AC_0 \subset L \subset NL$ $\subseteq \mathbf{P} \subseteq \mathbf{NP} \subseteq \mathbf{PSPACE}$ \subset **EXPTIME** \subset **NEXPTIME** \subseteq **2EXPTIME** \subseteq **2NEXPTIME** • Tractable problems are those in P • Furthermore. $AC_0 \subset L$ NL C PSPACE $\mathbf{P} \subset \mathbf{EXPTIME}$ Institutt for informatikk (UiO) 19.11.2013 INF3170 - Logikk 10 / 39





Description logics

Logics ALC

Concept satisfiability of ALC is intractable:

- **PSPACE**-complete for an **empty** TBox
- **EXPTIME**-complete for a general TBox

Intractability of ALC raises two questions:

- **①** Can we extend \mathcal{ALC} without getting an even more intractable logic?
- **2** Are there less complex description logics that are useful in practice?

The answer to both these questions is "yes."

Institutt for informatikk (UiO)

19.11.2013

Description logics Logics Complex roles What are the following equal to? (U[−])^𝔅 • $(\neg U)^{\mathfrak{A}}$ • $(\exists U.\top)^{\mathfrak{A}}$ • $(\forall U.\top)^{\mathfrak{A}}$ Institutt for informatikk (UiO) INF3170 - Logikk 19.11.2013 15 / 39

INF3170 - Logikk

Description logics

Logics

Complex roles

Before we introduce additional complex concepts, we introduce complex roles (and one concept):

• U	universal role
• R ⁻	inverse role
 ¬R 	negated role
• <i>R</i> • <i>S</i>	role composition
• $\exists R.$ Self	local reflexivity

The semantics of the first three is as follows.

•
$$U^{\mathfrak{A}} = \Delta \times \Delta$$

• $(R^{-})^{\mathfrak{A}} = (R^{\mathfrak{A}})^{-} = \{ \langle b, a \rangle \in \Delta \times \Delta \mid \langle a, b \rangle \in R^{\mathfrak{A}} \}$
• $(\neg R)^{\mathfrak{A}} = \Delta \times \Delta \setminus R^{\mathfrak{A}}$
Institutt for informatikk (UiO) INF3170 - Logikk 19.11.2013 14 / 39

Description logics Logics Complex roles • Role composition lets us create a new role by composing two old roles. • The semantics is as follows. $(R \circ S)^{\mathfrak{A}} = S^{\mathfrak{A}} \circ R^{\mathfrak{A}}$ $= \{ \langle a, c \rangle \in \Delta \times \Delta \mid \langle a, b \rangle \in R^{\mathfrak{A}} \text{ and } \langle b, c \rangle \in S^{\mathfrak{A}} \text{ for some } b \in \Delta \}$ • This lets us express certain concepts that the two-variable nature of

concepts won't less us do, such as "is the uncle of:" hasBrother \circ hasChild \Box isUncleOf

13 / 39

Institutt for informatikk (UiO)

Description logics

Logics Complex roles

- Local reflexivity lets us express the "diagonal."
- The semantics is as follows.

$$(\exists R.\mathsf{Self})^\mathfrak{A} = \{ a \, | \, \langle a, a
angle \in R^\mathfrak{A} \}$$

• This lets us express, e.g., the concept "narcissist:"

∃likes.Self

• Observe that <u>Self</u> itself is not a concept, thus the syntax is a bit misleading.

Institutt for informatikk (UiO)

INF3170 - Logikk

Description logics

Logics

Complex roles

With local reflexivity, we can express the following properties of a role R:

- reflexivityirreflexivity
- $\top \sqsubseteq \exists R.Self$ $\top \sqsubset \neg \exists R.Self$

With inclusions on complex roles, we can express the following properties of a role R:

- symmetry $R^- \sqsubseteq R$
- transitivity $R \circ R \sqsubseteq R$
- disjointness (with S) $R \sqsubseteq \neg S$

Description logics

Logics Complex roles

In addition to a TBox and an ABox, we may have an **RBox**, a finite set of **role axioms**, of the form,

- $R \sqsubseteq S$ (inclusions)
- $R \equiv S$ (equalities)

for roles R and S (given some restrictions).

An interpretation \mathfrak{A} satisfies

• $R \sqsubseteq S$ if $R^{\mathfrak{A}} \subseteq S^{\mathfrak{A}}$ • R = S if $R^{\mathfrak{A}} = S^{\mathfrak{A}}$

Institutt for informatikk (UiO)

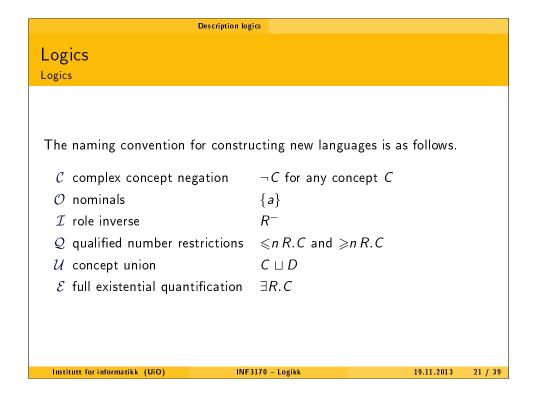
INF3170 – Logikk

19.11.2013 18 / 39

Description logics					
Logics	CS				
0					
Some	basic logics are the following.				
\mathcal{AL}	• intersection				
	 atomic negation universal restriction 	$\neg C$ for an atomic concept C			
	• limited existential quantification	$\exists R. \top$			
EL	intersectionuniversal concept				
	 full existential quantification 	∃R.C			
\mathcal{SR}					
	role inclusionsdisjointness				
	-				
Institu	tt for informatikk (UiO) INF3170 – Logiki	19.11.2013 20 / 39			

19.11.2013

17 / 39



Logics

 \mathcal{O} : Nominals

• Nominals are singleton concepts, i.e. of the form {*a*} for some individual *a*.

Description logics

• The semantics is as follows.

 $\{a\}^{\mathfrak{A}} = \{a^{\mathfrak{A}}\}$

• Using union and nominals, one may express enumerations such as

$$\mathsf{Magi} \equiv \{\mathsf{Melchior}\} \sqcup \{\mathsf{Caspar}\} \sqcup \{\mathsf{Balthazar}\}$$

• Then

$$\mathsf{Magi}^{\mathfrak{A}} = \{\mathsf{Melchior}^{\mathfrak{A}}, \mathsf{Caspar}^{\mathfrak{A}}, \mathsf{Balthazar}^{\mathfrak{A}}\}$$

Description logics

Logics Constructing languages

- Now we can construct more expressive logics.
- $\bullet~\mathcal{ALC}$ is \mathcal{AL} extended with complex concept negation,
- " $\mathcal{ALC} = \mathcal{AL} + \mathcal{C}$ ":

 $\top \equiv C \sqcup \neg C$ $\exists R. C \equiv \neg \forall R. \neg C$ $C \sqcup D \equiv \neg (\neg C \sqcap \neg D)$

- This way of constructing languages is not unique, e.g.,
- " $\mathcal{ALC} = \mathcal{AL} + \mathcal{U} + \mathcal{E}$ "

Institutt for informatikk (UiO)

INF3170 – Logikk

19.11.2013 22 / 39

Description logics

Logics

Q: Qualified number restrictions

- Qualified number restrictions, i.e. concepts of the form
 - $\leq n R.C$ and
 - $\geq n R.C$,

let us restrict the number of individuals related by a role R.

• The semantics is as follows.

$$\leq n R. C^{\mathfrak{A}} = \{ x \in \Delta \mid |R^{\mathfrak{A}}(x) \cap C^{\mathfrak{A}}| \leq n \}$$
$$\geq n R. C^{\mathfrak{A}} = \{ x \in \Delta \mid |R^{\mathfrak{A}}(x) \cap C^{\mathfrak{A}}| \geq n \}$$

INF3170 - Logikk

- "A monotheist worships exactly one deity":
 - Monotheist $\sqsubseteq \leqslant 1$ worships.Deity
 - Monotheist $\sqsubseteq \geqslant 1$ worships.Deity
- Observe that $\geq 1 R.C$ is equivalent to $\exists R.C$.

Logics OWL 2 DL: SROIQ

- SROIQ = SR + O + I + Q
- Hence \mathcal{SROIQ} contains \mathcal{ALC} .
- Being so expressive, the complexity of \mathcal{SROIQ} is high.
- Concept satisfiability of \mathcal{SROIQ} is **2NEXPTIME**-complete, thus harder that \mathcal{ALC} .
- \bullet But there are extensions of \mathcal{ALC} that are not harder than \mathcal{ALC} itself.

OWL 2 OWL 2 DL

• E.g., satisfiability of \mathcal{ALCQ} concepts (\mathcal{ALC} extended with qualified number restrictions) is not harder than \mathcal{ALC} .

OWL 2

Logics

OWL 2 (The **W**eb **O**ntology Language) is an ontology language for the Semantic Web, based on description logic.

• OWL 2 DL

- based on the logic \mathcal{SROIQ}
- high expressivity, but also high complexity
- OWL 2 QL is a fragment of OWL 2 DL
 - \bullet based on the logic $\mathcal{DL}\text{-}\mathsf{Lite}_\mathcal{R}$
 - low data complexity of query answering: suitable for querying relational databases (without altering them)
- OWL 2 EL is a fragment of OWL 2 DL
 - \bullet based on the logic \mathcal{EL}^{++}
 - low combined complexity of subsumption: suitable for large TBoxes

INF3170 - Logikk

Institutt for informatikk (UiO)

OWL 2 OWL 2 DL

Logics

OWL 2 DL: SROIQ

A role R being **non-simple** in a TBox \mathcal{T} is given by the following rules:

- If $S \circ T \sqsubseteq R \in \mathcal{T}$, then R is non-simple;
- R^- is non-simple if R is non-simple;
- S is non-simple if R is non-simple and
 - $R \sqsubseteq S \in \mathcal{T}$ or
 - $R\equiv S\in \mathcal{T}$ or
 - $S \equiv R \in \mathcal{T}$.

A role is **simple** in a TBox \mathcal{T} if it is not non-simple in \mathcal{T} .

Simple roles are required in the following concepts and axioms:

INF3170 - Logikk

- $\exists R.Self, \leq n R.C \text{ and } \geq n R.C$
- disjointness

28 / 39

19.11.2013

26 / 39

INF3170 – Logikk

OWL 2 OWL 2 QL

Logics OWL 2 QL: *DL*-Lite

- \mathcal{DL} -Lite is a family of DLs with low complexity.
- We consider \mathcal{DL} -Lite_{\mathcal{R}} (OWL 2 QL), where $B \sqsubseteq C$ is a concept inclusion, given the grammar:

 $B \longrightarrow A \mid \exists Q$ $C \longrightarrow B \mid \neg B \mid \exists Q.C$

and $Q \sqsubseteq R$ is a role inclusion, given the grammar:

$$egin{array}{ccc} Q \longrightarrow P \mid P^- \ R \longrightarrow Q \mid \neg Q \end{array}$$

OWL 2 OWL 2 QL

- $\exists Q$ is equivalent to $\exists Q.\top$.
- There is no unique name assumption (UNA).

Institutt for informatikk (UiO)

INF3170 – Logikk

19.11.2013

29 / 39

Logics

 $\mathcal{DL} extsf{-Lite}$ and FO-rewritability

- We now consider the reasoning problem of query answering.
- An **atom** is either of the form
 - A(x), where A is an atomic concept, or
 - P(x, y), where P is an atomic role.
- \bullet Recall that a conjunctive query (CQ) is a FO formula of the form

$\exists \vec{x}. \varphi(\vec{x}, \vec{y})$

where $\varphi(\vec{x}, \vec{y})$ is a conjunction of atoms with free variables \vec{y} .

• A union of conjunctive queries (UCQ) is a disjunction of conjunctive queries:

```
\exists \vec{y}_1.\varphi(\vec{x}_1,\vec{y}_1) \lor \cdots \lor \exists \vec{y}_n.\varphi(\vec{x}_n,\vec{y}_n)
```

OWL 2 OWL 2 QL

```
Logics
OWL 2 QL: DL-Lite
```

Thus you cannot have $\exists Q.C$ on the left-hand side of an inclusion.

 $\checkmark B \sqsubseteq \exists Q.C$ $\bigstar \exists Q.C \sqsubseteq B$

But we don't really need $\exists Q.C$ on the right-hand side either.

Just replace $B \sqsubseteq \exists Q.C$ with

$B \sqsubseteq \exists P$	every B is P-related to someth	ing					
$\exists P^- \sqsubseteq C$	the range of P is C						
${\sf P}\sqsubseteq {\sf Q}$	P is a subrole of Q						
where P is a fresh atomic role.							
Institutt for informatikk (UiO)	INF3170 – Logikk	19.11.2013	30 / 39				

OWL 2 OWL 2 QL

Logics

$\mathcal{DL}\text{-Lite}$ and FO-rewritability

- UCQ answering in a description logic is **FO-rewritable** if it can be reduced to FO query (basically SQL) over the ABox considered as a relational database, where the TBox is "baked" into the query.
- \bullet FO query answering over a relational database is in $\boldsymbol{AC}_0.$
- $\bullet~$ UCQ answering of $\mathcal{DL}\text{-}\mathsf{Lite}_\mathcal{R}$ is FO-rewritable.
- \bullet Thus UCQ answering of $\mathcal{DL}\text{-Lite}_{\mathcal{R}}$ is in \textbf{AC}_0 in data complexity.
- P is **not** tractable when it comes to query answering.
- UCQ answering of \mathcal{DL} -Lite_R is **NP**-complete in combined complexity. Hardness follows from hardness of CQ answering over relational databases.

OWL 2 OWL 2 QL

Logics

 $\mathcal{DL} extsf{-Lite}$ and FO-rewritability

A \mathcal{DL} -Lite_{\mathcal{R}} knowledge base $\mathcal{K}_2 = \langle \mathcal{T}_2, \mathcal{A}_2 \rangle$:

Example

- TBox \mathcal{T}_2 ("An employee works for at least one project")
- Employee ⊑ ∃worksFor ("Employees work for something")
- \exists worksFor⁻ \sqsubseteq Project ("The thing one works for is a project") ABox A_2
 - Employee(OPPENHEIMER)
 - worksFor(BOB, OPTIQUE)
 - Project(MANHATTAN)

Institutt for informatikk (UiO)

INF3170 – Logikk

Logics

 \mathcal{DL} -Lite and FO-rewritability

• Allowing full existential quantification to the lefthand side of inclusion assertions increases the complexity of \mathcal{DL} -Lite_{\mathcal{R}} enough to lose FO-rewritability.

OWL 2 OWL 2 QL

• We show this by reducing Reachability to instance checking, which is not easier than query answering.

Definition (Reachability)

Let $\langle V, E \rangle$ be a directed graph, ie.

- V is a set of nodes, and
- $E \subseteq V \times V$ a set of edges between nodes.

Given two nodes $s, t \in V$, Reachability is the problem of deciding whether there is a path from s to t.

19.11.2013 35 / 39

19.11.2013

33 / 39

Logics

\mathcal{DL} -Lite and FO-rewritability

Now

- $\mathcal{K}_2 \models \mathsf{Project}(\mathsf{MANHATTAN})$, but also
- $\mathcal{K}_2 \models \mathsf{Project}(\mathsf{OPTIQUE}).$

Thus the answer to the conjunctive query

Project(x)

over \mathcal{K}_2 is

• {MANHATTAN, OPTIQUE}

Because \mathcal{DL} -Lite_{\mathcal{R}} is FO-rewritable, the query can be transformed into another query over just the ABox, with the same answer:

- $Project(x) \lor \exists y.worksFor(y, x)$
- Institutt for informatikk (UiO)

19.11.2013 34 / 39

OWL 2 OWL 2 QL

INF3170 - Logikk

Logics

DL-Lite and FO-rewritability

- Reachability is NL-hard, and $AC_0 \subset NL$.
- Thus by reducing Reachability to instance checking, we show that instance checking is not in **AC**₀.

Proposition

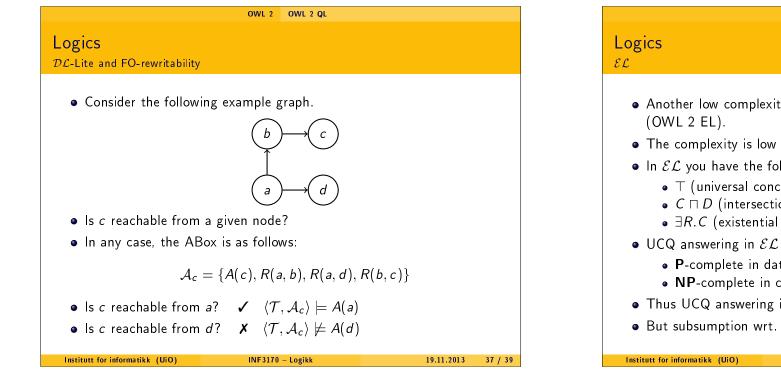
Let $G = \langle V, E \rangle$ be a directed graph. Then

• $\langle \mathcal{T}, \mathcal{A} \rangle \models \mathcal{A}(s)$ iff there is a path from s to t in G,

where

- $\mathcal{T} = \{ \exists R.A \sqsubseteq A \};$
- $\mathcal{A} = \{A(t)\} \cup \{R(x,y) \mid \langle x, y \rangle \in E\}.$

Institutt for informatikk (UiO)



- Another low complexity logic is \mathcal{EL} , which is a fragment of \mathcal{EL}^{++}
- The complexity is low for subsumption, not for query answering.
- In \mathcal{EL} you have the following concept constructors.
 - \top (universal concept)
 - $C \sqcap D$ (intersection)
 - $\exists R.C$ (existential quantification)
- UCQ answering in \mathcal{EL} is
 - P-complete in data complexity, and
 - **NP**-complete in combined complexity.
- Thus UCQ answering in \mathcal{EL} is not FO-rewritable.
- But subsumption wrt. general TBoxes is in **P**, i.e. tractable.

INF3170 - Logikk

19.11.2013 38 / 39

