$INF3170 - Logikk$

Forelesning 7: Description Logic 2

Espen H. Lian

Institutt for informatikk, Universitetet i Oslo

19. november 2013

- [Complexity theory](#page-6-0)
- [Description logics](#page-11-0)

1 [Introduction](#page-2-0)

- [Complexity theory](#page-6-0)
- [Description logics](#page-11-0)

Introduction Description Logics

- **Description logics** are a class of decidable logics primarily used for knowledge representation.
- The language consists of **concepts** of an application domain,
- and the hierarchical structure of the application domain is expressed through terminological axioms.
- Some examples of terminological axiom about animals are:
	- \bullet Wolf \sqsubset Carnivore
		- $'$ A wolf is a carnivore")
	- **2** Carnivore \equiv Animal \Box Feats: Animal
		- ("The definition of a carnivore is an animal that eats animals")
- • Being decidable, description logics can be classified according to their complexity.

Introduction Complexity Theory

- **Complexity theory** classifies problems according to how much resources are necessary/sufficient to solve them.
- In our case, the problems are **reasoning** problems, such as: Does one concept subsume another concept?
- An example of subsumption is:
	- \bullet Does Wolf \sqsubset Animal follow from the axioms? ("Is a wolf an animal?")
- Given the terminological axioms on the previous foil (also to the right), it follows that a wolf is an animal:
	- A wolf is a carnivore (1st axiom), and
	- a carnivore is an animal (follows from the 2nd),
- • In general, reasoning is hard.

Introduction Description Logic and Their Complexity

- The more expressive the logic, the higher the complexity of reasoning.
- The goal when designing a language is to maximize the expressivity while staying within a certain complexity class.
- Earlier, one tried to maximize the expressivity while retaining decidability.
- Now, it is more common to try to maximize the expressivity while staying within a certain (typically tractable) complexity class.
- We will consider different logics that have been designed with this in mind.
- \bullet Last time we saw ALC , a logic with a simple syntax: Boolean connectives, value restriction and existential quantication.

[Introduction](#page-2-0)

2 [Complexity theory](#page-6-0)

[Description logics](#page-11-0)

Classes

- A complexity class is a set of decision problems that can be decided within some specic bound on the size of the input in some computational model.
- The bounds are usually on
	- time, or
	- space.
- The computational model is usually
	- a deterministic Turing machine (DTM), or
	- a non-deterministic Turing machine (NDTM).
- E.g., NP is the class of decision problems solvable in polynomial time on a non-deterministic Turing machine.
- \bullet In addition, $AC₀$ is a circuit complexity class consisting of constant-depth unlimited-fanin circuits.

Classes

Institutt for informatikk (UiO) $INF3170 - Logikk$ 19.11.2013 9 / 39

Relationships

The following are the known relationships between the classes.

 $AC_0 \subseteq L \subseteq NL$ \subset P \subset NP \subset PSPACE \subset EXPTIME \subset NEXPTIME \subset 2EXPTIME \subset 2NEXPTIME

- Tractable problems are those in P
- **•** Furthermore,

 $AC_0 \subset L$ $NL \subset PSPACE$ $P \subset EXPTIME$

Completeness

- A reduction translates one problem into another.
- \bullet A problem is C-hard (under a given type of reduction, typically polynomial time or logarithmic space for NP and up) if every problem in $\mathcal C$ can be reduced to it.
- \bullet A problem is $\mathcal C$ -complete if it is
	- \bullet in $\mathcal C$ (upper bound) and
	- C-hard (lower bound).
- It follows that a problem is
	- \bullet is not harder than $\cal C$ if it reduces to some problem in $\cal C$, and
	- \bullet C-hard if some C-hard problem reduces to it.
- If we only consider the ABox as input, we say that a problem is $\mathcal C$ -complete in data complexity.
- \bullet Else we say that a problem is $\mathcal C$ -complete in combined complexity.

[Introduction](#page-2-0)

[Complexity theory](#page-6-0)

3 [Description logics](#page-11-0)

[OWL 2](#page-24-0)

Institutt for informatikk (UiO) 1NF3170 - Logikk 19.11.2013 12 / 39

Logics ALC

Concept satisfiability of \cal{ALC} is intractable:

- **PSPACE-complete for an empty TBox**
- EXPTIME-complete for a general TBox

Intractability of ALC raises two questions:

- \bullet Can we extend \cal{ALC} without getting an even more intractable logic?
- **2** Are there less complex description logics that are useful in practice?

The answer to both these questions is "yes."

Logics Complex roles

Before we introduce additional complex concepts, we introduce complex roles (and one concept):

The semantics of the first three is as follows.

\n- \n
$$
U^{\mathfrak{A}} = \Delta \times \Delta
$$
\n
\n- \n
$$
(R^{-})^{\mathfrak{A}} = (R^{\mathfrak{A}})^{-} = \{ \langle b, a \rangle \in \Delta \times \Delta \mid \langle a, b \rangle \in R^{\mathfrak{A}} \}
$$
\n
\n- \n
$$
(\neg R)^{\mathfrak{A}} = \Delta \times \Delta \setminus R^{\mathfrak{A}}
$$
\n
\n

Institutt for informatikk (UIO) $INF3170 - Logikk$ 19.11.2013 14 / 39

What are the following equal to?

$$
\bullet \ (U^-)^{\mathfrak{A}}
$$

- $(-U)^{\mathfrak{A}}$
- $(\exists U.\top)^{\mathfrak{A}}$
- $(\forall U.\top)^{\mathfrak{A}}$
- Role composition lets us create a new role by composing two old roles.
- **•** The semantics is as follows.

$$
(R \circ S)^{\mathfrak{A}} = S^{\mathfrak{A}} \circ R^{\mathfrak{A}}
$$

= { $\{\langle a, c \rangle \in \Delta \times \Delta \mid \langle a, b \rangle \in R^{\mathfrak{A}} \text{ and } \langle b, c \rangle \in S^{\mathfrak{A}} \text{ for some } b \in \Delta \}$

This lets us express certain concepts that the two-variable nature of concepts won't less us do, such as "is the uncle of:"

hasBrother \circ hasChild \sqsubset isUncleOf

- Local reflexivity lets us express the "diagonal."
- The semantics is as follows.

$$
(\exists R.\mathsf{Self})^{\mathfrak{A}} = \{a \, | \, \langle a, a \rangle \in R^{\mathfrak{A}}\}
$$

• This lets us express, e.g., the concept "narcissist."

9likes:Self

Observe that Self itself is not a concept, thus the syntax is a bit misleading.

In addition to a TBox and an ABox, we may have an $RBox$, a finite set of role axioms, of the form,

- $R \sqsubseteq S$ (inclusions)
- \bullet $R \equiv S$ (equalities)

for roles R and S (given some restrictions).

An interpretation $\mathfrak A$ satisfies

•
$$
R \sqsubseteq S
$$
 if $R^{\mathfrak{A}} \subseteq S^{\mathfrak{A}}$

 $R \equiv S$ if $R^{\mathfrak{A}} = S^{\mathfrak{A}}$

With local reflexivity, we can express the following properties of a role R :

- reflexivity $\top \sqsubset \exists R.\mathsf{Self}$ • irreflexivity $\top \sqsubset \neg \exists R.\mathsf{Self}$
-

With inclusions on complex roles, we can express the following properties of a role R:

- \bullet symmetry $R^- \sqsubset R$
- **•** transitivity $R \circ R \sqsubset R$
- • disjointness (with S) $R \sqsubseteq \neg S$

Logics Logics

Some basic logics are the following.

- $AL \rightarrow$ intersection
	-
	- universal restriction
	- limited existential quantification $\exists R.\top$
- $\mathcal{E}\mathcal{L}$ **e** intersection
	- universal concept
	- full existential quantification $\exists R.C$
- $SR \rightarrow$ contains ALC
	- role inclusions
	- disjointness

• atomic negation \Box \Box \Box \Box an atomic concept C

The naming convention for constructing new languages is as follows.

C complex concept negation \Box \Box \Box for any concept C

- $\mathcal O$ nominals $\{a\}$
- $\mathcal I$ role inverse
- Q qualified number restrictions $\leq n R.C$ and $\geq n R.C$
- U concept union $C \sqcup D$
- $\mathcal E$ full existential quantification $\exists R.C$

```
R^-
```
Logics Constructing languages

- Now we can construct more expressive logics.
- \bullet ALC is AL extended with complex concept negation,
- \bullet " $\mathcal{ALC} = \mathcal{AL} + \mathcal{C}$ " :

 $T \equiv C \sqcup \neg C$ $\exists R.C = \neg \forall R.\neg C$ $C \sqcup D \equiv \neg(\neg C \sqcap \neg D)$

This way of constructing languages is not unique, e.g., \bullet " $\mathcal{ALC} = \mathcal{AL} + \mathcal{U} + \mathcal{E}$ "

- Nominals are singleton concepts, i.e. of the form $\{a\}$ for some individual a.
- The semantics is as follows.

$$
\{\mathsf{a}\}^\mathfrak{A}=\{\mathsf{a}^\mathfrak{A}\}
$$

Using union and nominals, one may express enumerations such as

 $\text{Magi} \equiv \{\text{Melchior}\}\sqcup \{\text{Caspar}\}\sqcup \{\text{Balthazar}\}\$

Then

$$
\mathsf{Magi}^\mathfrak{A}=\{\mathsf{Melchior}^\mathfrak{A}, \mathsf{Caspar}^\mathfrak{A}, \mathsf{Balthazar}^\mathfrak{A}\}
$$

 $\frac{1}{10}$ Institutt for informatikk (UiO) $\frac{1}{10}$ INF3170 $\frac{1}{2}$ Logikk 19.11.2013 23 / 39

Logics Q : Qualified number restrictions

- Qualied number restrictions, i.e. concepts of the form
	- \bullet \leq n R.C and
	- $\bullet \geqslant n R.C,$

let us restrict the number of individuals related by a role R .

• The semantics is as follows.

$$
\leq n R.C^{\mathfrak{A}} = \{x \in \Delta \mid |R^{\mathfrak{A}}(x) \cap C^{\mathfrak{A}}| \leq n\}
$$

$$
\geq n R.C^{\mathfrak{A}} = \{x \in \Delta \mid |R^{\mathfrak{A}}(x) \cap C^{\mathfrak{A}}| \geq n\}
$$

- \bullet "A monotheist worships exactly one deity":
	- Monotheist $\sqsubseteq \leqslant 1$ worships. Deity
	- Monotheist $\sqsubseteq \geqslant 1$ worships. Deity
- Observe that $\geqslant 1$ R.C is equivalent to $\exists R.C.$

[Introduction](#page-2-0)

- [Complexity theory](#page-6-0)
- [Description logics](#page-11-0)

Logics OWL 2

OWL 2 (The Web Ontology Language) is an ontology language for the Semantic Web, based on description logic.

- OWL 2 DL
	- \bullet based on the logic \mathcal{SROIQ}
	- high expressivity, but also high complexity
- OWL 2 QL is a fragment of OWL 2 DL
	- based on the logic \mathcal{DL} Lite \mathcal{R}
	- low data complexity of query answering: suitable for querying relational databases (without altering them)
- **OWL 2 EL** is a fragment of OWL 2 DL
	- \bullet based on the logic \mathcal{EL}^{++}
	- low combined complexity of subsumption: suitable for large TBoxes

Institutt for informatikk (110) INF3170 $-$ Logikk 19.11.2013 26 / 39.11.2013 26 / 39.11.2013 26 / 39.11.2013 26 / 39.11.2013 26 / 39.11.2013 26 / 39.11.2013 26 / 39.11.2013 26 / 39.11.2013 26 / 39.11.2013 19.11.2013 26

Logics OWL 2 DL: SROIQ

- \bullet SROIQ = SR + O + I + O
- \bullet Hence \mathcal{SROIO} contains \mathcal{ALC} .
- **•** Being so expressive, the complexity of \mathcal{SROIQ} is high.
- Concept satisfiability of \mathcal{SROIQ} is $2NEXPTIME$ -complete, thus harder that \mathcal{ALC} .
- \bullet But there are extensions of \cal{ALC} that are not harder than \cal{ALC} itself.
- \bullet E.g., satisfiability of \cal{ALCQ} concepts (\cal{ALC} extended with qualified number restrictions) is not harder than \cal{ALC} .

Logics OWL 2 DL: SROIQ

A role R being **non-simple** in a TBox $\mathcal T$ is given by the following rules:

- If $S \circ T \sqsubset R \in \mathcal{T}$, then R is non-simple;
- R^- is non-simple if R is non-simple;
- \bullet S is non-simple if R is non-simple and
	- \bullet $R \sqsubseteq S \in \mathcal{T}$ or
	- $R \equiv S \in \mathcal{T}$ or
	- $S \equiv R \in \mathcal{T}$.

A role is simple in a TBox $\mathcal T$ if it is not non-simple in $\mathcal T$.

Simple roles are required in the following concepts and axioms:

- \bullet $\exists R.$ Self, $\leq n R.C$ and $\geq n R.C$
- disjointness

Institutt for informatikk (UiO) INF3170 - Logikk 19.11.2013 28 / 39.11.2013 28 / 39.11.2013 28 / 39.11.2013 28

Logics OWL 2 QL: D.C-Lite

- \bullet DL-Lite is a family of DLs with low complexity.
- We consider $\mathcal{DL}\text{-}$ Lite_{\mathcal{R}} (OWL 2 QL), where $B\sqsubseteq C$ is a concept inclusion, given the grammar:

$$
B \longrightarrow A | \exists Q
$$

$$
C \longrightarrow B | \neg B | \exists Q.C
$$

and $Q \sqsubseteq R$ is a role inclusion, given the grammar:

$$
Q \longrightarrow P \mid P^{-}
$$

$$
R \longrightarrow Q \mid \neg Q
$$

- \bullet $\exists Q$ is equivalent to $\exists Q.\top$.
- There is no unique name assumption (UNA).

Logics OWL 2 QL: DL-Lite

Thus you cannot have $\exists Q.C$ on the left-hand side of an inclusion.

 \checkmark $B \sqsubseteq \exists Q.C$ $X \exists Q.C \sqsubseteq B$

But we don't really need $\exists Q.C$ on the right-hand side either.

Just replace $B\sqsubseteq \exists\, Q.C$ with

where P is a fresh atomic role.

- We now consider the reasoning problem of query answering.
- An atom is either of the form
	- \bullet $A(x)$, where A is an atomic concept, or
	- $P(x, y)$, where P is an atomic role.
- Recall that a conjunctive query (CQ) is a FO formula of the form

$$
\exists \vec{x}.\varphi(\vec{x},\vec{y})
$$

where $\varphi(\vec{x}, \vec{y})$ is a conjunction of atoms with free variables \vec{y} .

A union of conjunctive queries (UCQ) is a disjunction of conjunctive queries:

$$
\exists \vec{y}_1.\varphi(\vec{x}_1,\vec{y}_1) \vee \cdots \vee \exists \vec{y}_n.\varphi(\vec{x}_n,\vec{y}_n)
$$

 $\frac{1}{10}$ Institutt for informatikk (UiO) $\frac{1}{10}$ INF3170 $\frac{1}{2}$ Logikk 19.11.2013 31 / 39.11.2013

- UCQ answering in a description logic is **FO-rewritable** if it can be reduced to FO query (basically SQL) over the ABox considered as a relational database, where the $\overline{\text{TBox}}$ is "baked" into the query.
- \bullet FO query answering over a relational database is in AC_0 .
- UCQ answering of $D{\cal L}$ Lite_R is FO-rewritable.
- Thus UCQ answering of $D\mathcal{L}$ -Lite_R is in AC_0 in data complexity.
- P is not tractable when it comes to query answering.
- • UCQ answering of \mathcal{DL} -Lite_R is **NP**-complete in combined complexity. Hardness follows from hardness of CQ answering over relational databases.

A \mathcal{DL} -Lite_R knowledge base $\mathcal{K}_2 = \langle \mathcal{T}_2, \mathcal{A}_2 \rangle$:

Example

TBox \mathcal{T}_2 ("An employee works for at least one project")

- **Employee** \subseteq 3worksFor ("Employees work for something")
- \bullet \exists worksFor \sqsubseteq Project ("The thing one works for is a project")

 AB ox A_2

- **Employee (OPPENHEIMER)**
- worksFor(BOB; OPTIQUE)
- **• Project(MANHATTAN)**

Now

- \bullet $\mathcal{K}_2 \models$ Project(MANHATTAN), but also
- \bullet $K_2 \models$ Project(OPTIQUE).

Thus the answer to the conjunctive query

• Project (x)

over K_2 is

 \bullet {MANHATTAN, OPTIQUE}

Because \mathcal{DL} -Lite_R is FO-rewritable, the query can be transformed into another query over just the ABox, with the same answer:

```
• Project(x) \vee \exists y.worksFor(y, x)
```
- Allowing full existential quantication to the lefthand side of inclusion assertions increases the complexity of \mathcal{DL} Lite $_{\mathcal{R}}$ enough to lose FO-rewritability.
- We show this by reducing Reachability to instance checking, which is not easier than query answering.

Definition (Reachability)

Let $\langle V, E \rangle$ be a directed graph, ie.

- *V* is a set of nodes, and
- $E \subseteq V \times V$ a set of edges between nodes.

Given two nodes s, $t \in V$, Reachability is the problem of deciding whether there is a path from s to t.

- Reachability is NL-hard, and $AC_0 \subset NL$.
- Thus by reducing Reachability to instance checking, we show that instance checking is not in AC_0 .

Proposition

Let
$$
G = \langle V, E \rangle
$$
 be a directed graph. Then

•
$$
\langle \mathcal{T}, \mathcal{A} \rangle \models A(s)
$$
 iff there is a path from s to t in G,

where

\n- \n
$$
\mathcal{T} = \{ \exists R.A \sqsubseteq A \};
$$
\n
\n- \n
$$
\mathcal{A} = \{ A(t) \} \cup \{ R(x, y) \mid \langle x, y \rangle \in E \}.
$$
\n
\n

• Consider the following example graph.

- Is c reachable from a given node?
- In any case, the ABox is as follows:

$$
\mathcal{A}_c = \{A(c), R(a, b), R(a, d), R(b, c)\}
$$

- Is c reachable from a? \checkmark $\langle \mathcal{T}, \mathcal{A}_c \rangle \models A(a)$
- Is c reachable from d? X $\langle \mathcal{T}, \mathcal{A}_c \rangle \not\models A(d)$

Logics EL

- \bullet Another low complexity logic is \mathcal{EL} , which is a fragment of \mathcal{EL}^{++} (OWL 2 EL).
- The complexity is low for subsumption, not for query answering.
- \bullet In \mathcal{EL} you have the following concept constructors.
	- \bullet \top (universal concept)
	- $C \sqcap D$ (intersection)
	- \bullet $\exists R.C$ (existential quantification)
- \bullet UCQ answering in \mathcal{EL} is
	- P-complete in data complexity, and
	- NP-complete in combined complexity.
- Thus UCQ answering in \mathcal{EL} is not FO-rewritable.
- • But subsumption wrt. general TBoxes is in P, i.e. tractable.

Logics OWL 2 EL: \mathcal{EL}^{++}

- \bullet $\mathcal{E}\mathcal{L}^{++}$ extends $\mathcal{E}\mathcal{L}$ with
	- \perp (bottom concept)
	- nominals: $\{a\}$
	- concrete domains (e.g., the natural numbers)
	- and more.
- Subsumption wrt. general TBoxes is still in **P**, i.e. tractable.
- The clinical healthcare terminology **SNOMED CT**, with about 500,000 concepts, can be expressed in \mathcal{EL}^{++} :

Appendicitis \Box Inflammation \Box BhasLocation. Appendicitis Tissue \Box Disease \Box \bot

- \bullet There are \mathcal{EL}^{++} reasoners that can classify SNOMED CT in <1 min.
- \bullet UCQ answering in \mathcal{EL}^{++} is undecidable.