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Overview

– Description logics are formal languages designed for knowledge representation and
reasoning, and most of these are decidable fragments of FOL.

– Each description logic describes a language, and each language differ in
expressibility vs. reasoning complexity, defined by allowing or disallowing different
constructs (e.g. conjunction, disjunction, negation, quantifiers, etc.) in their
language.

– Expressiveness: Propositional logic → Description logics → First order logic
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History and motivation

– Description logic comes from a merging of two traditions.

– Knowledge Representation (KR)

– Application oriented
– Represent ‘knowledge’ in some way
– ‘Frames,’ like classes, with relations and attributes
– Try to add some ‘semantics’ in order to do some ‘reasoning’

– Automated Reasoning, Modal Logic

– Had theorems and algorithms

– Cross-fertilisation of applications and theory

– Today: large impact on Semantic Web (sign up for INF3580/4580!)
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Knowledge bases

In description logics one works with three different types of elements:

– individuals/constants (e.g. james, sensor1)

– concepts/unary relations (e.g. Person, Sensor)

– roles/binary relations (e.g. isFatherOf , isConnectedTo)

Knowledge is represented as a knowledge base, K = 〈A, T 〉 where:

– A is a set of assertions about named individuals, called the ABox (e.g.
Person(james), isFatherOf (james, peter))

– T is a set of terminology definitions (i.e. complex descriptions of concepts or
roles), called the TBox (e.g. Human v Mammal , Mother ≡ Parent uWoman)
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ALC: Syntax

The description logic ALC (Attribute Language with general Complement) allows the
following concepts:

C ,D → A | (atomic concept)
> | (universal concept)
⊥ | (bottom concept)
¬C | (negation)
C t D | (union)
C u D | (intersection)
∃R.C | (existential restriction)
∀R.C | (universal restriction)

where A is an atomic concept, C and D are concepts, and R is a role. We allow

– ABox assertions: C (a) and R(a, b) for individuals a, b, concepts C and roles R;

– TBox axioms: C v D for concepts C and D.
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Examples

Complex concepts:

C u (D t E )

∃R.(A u B)

¬∀R.∃P.(A u ∃Q.>)

TBox axioms:

C t D v E

∃R.A v B

F u G v ⊥
H v ∀P.I

L u J v ¬K
∃P.B v ¬∀R.∃P.(A u ∃Q.>)
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ALC: Semantics

A model M for a knowledge base K consists of

– a nonempty set ∆, and

– an interpretation function M, such that:

– for every constant c , cM ∈ ∆,
– for every atomic concept A, AM ⊆ ∆,
– for every atomic role R, RM ⊆ ∆×∆,
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ALC: Semantics

M is extended inductively as

>M = ∆

⊥M = ∅
(¬C )M = ∆\CM

(C t D)M = CM ∪ DM

(C u D)M = CM ∩ DM

(∀R.C )M =
{
a ∈ ∆ | ∀b ∈ ∆

(
〈a, b〉 ∈ RM → b ∈ CM

)}
(∃R.C )M =

{
a ∈ ∆ | ∃b ∈ ∆

(
〈a, b〉 ∈ RM ∧ b ∈ CM

)}
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ALC: Semantics

An interpretation M satisfies

– C (a), denoted M � C (a), iff aM ∈ CM;

– C v D, denoted M � C v D, iff CM ⊆ DM;

– R v P, denoted M � R v P, iff RM ⊆ PM.

As usual, we will write K � ψ if for any model M we have that M � K ⇒M � ψ.

We will use the following shorthand notation:

– C ≡ D instead of the two axioms C v D and D v C ;

– A � ψ instead of 〈∅,A〉 � ψ;

– T � ψ instead of 〈T , ∅〉 � ψ.
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Example
Assume K = 〈A, T 〉, where T is the TBox:

Animal v LivingThing

Donkey ≡ Animal u ∀hasParent.Donkey

Horse ≡ Animal u ∀hasParent.Horse

Mule ≡ Animal u ∃hasParent.Horse u ∃hasParent.Donkey

∃hasParent.Mule v ⊥

and A is the ABox:

Horse(mary) Horse(peter) Donkey(sven) Animal(hannah) Animal(carl)

hasParent(hannah,mary) hasParent(hannah, sven)
hasParent(carl ,mary) hasParent(carl , peter)

Then we have K � Mule(hannah), but K 2 Horse(carl).
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Translation to First order logic
The function π map concepts to first-order formulae:

πx(A) = A(x)

πx(¬C ) = ¬πx(C )

πx(C t D) = πx(C ) ∨ πx(D)

πx(C u D) = πx(C ) ∧ πx(D)

πx(∃R.C ) = ∃y (R(x , y) ∧ πy (C ))

πx(∀R.C ) = ∀y (R(x , y)→ πy (C ))

We can then map axioms: Π(C v D) := ∀x(πx(C )→ πx(D)).

Theorem
aI ∈ CI iff I |=FOL πx(C )[a/x ], and I � C v D iff I |=FOL Π(C v D).

E.g.:

πx (Animal u ∀hasParent.Donkey) = Animal(x) ∧ ∀y(hasParent(x , y)→ Donkey(y))

Π(Animal v LivingThing) = ∀x(Animal(x)→ LivingThing(x))
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Reasoning problems

The following problems are of interest with respect to a TBox T :

– Given a concept C , is C satisfiable (〈T , {C (x0)}〉 has a model);

– Given two concepts C and D, is C subsumed by D (T � C v D);

– Given two concepts C and D, are C and D equivalent (T � C ≡ D);

– Given two concepts C and D, are C and D disjoint (T � C u D v ⊥);

The following problems are of interest with respect to knowledge bases K = 〈T ,A〉:
– Is K consistent (K has a model);

– Given a concept C and an individual a, does K entail C (a) (K � C (a));

– Given a concept C , find all individuals a such that K entails C (a).
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Naming conventions

– As we have seen ALC is the Attribute Language with general Complement.

– The C actually denotes an extension of a more restrictive language AL.

– In a similar way, we have the following possible extensions of our logic:

– H: Role hierarchies;
– R: Complex role hierarchies;
– N : Cardinality restrictions;
– Q: Qualified cardinality restrictions;
– O: Closed classes;
– I: Inverse roles;
– D: Datatypes;
– ...

– We name the languages by adding the letters of the features to ALC. So
e.g. ALCN is ALC extended with cardinality restrictions and ALCHI is ALC
extended with role hierarchies and inverse roles.

– It is common to shorten ALC (extended with transitive roles) to just S for more
advanced languages, so e.g. SHOIN is ALC +H+O + I +N .
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Normal extensions

– H – Role Hierarchies: We allow TBox axioms on the form R v P for atomic roles.
Semantics:

M � R v P ⇔ RM ⊆ PM

e.g. hasFather v hasParent;

– R – Complex role hierarchies: We allow roles on the form R ◦ P and TBox axioms
on the form R ◦ P v P and R ◦ P v R for any two roles. Semantics:

(R ◦ P)M :=
{
〈a, b〉 ∈ ∆M ×∆M | ∃c ∈ ∆M

(
〈a, c〉 ∈ RM ∧ 〈c , b〉 ∈ PM

)}
and

M � R v P ⇔ RM ⊆ PM

e.g. friendOf ◦ enemyOf v enemyOf .
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Normal extensions

– N – Cardinality restrictions: We allow concepts on the form ≤ n R and ≥ n R for
any natural number n. Semantics1:

(≤ n R)M := {a ∈ ∆M | #{b ∈ ∆M | 〈a, b〉 ∈ RM} ≤ n}
(≥ n R)M := {a ∈ ∆M | #{b ∈ ∆M | 〈a, b〉 ∈ RM} ≥ n}

e.g. Mammal v ≤ 2 hasParent;

– Q – Qualified cardinality restrictions: We allow concepts on the form ≤ n R.C
and ≥ n R .C for any natural number n. Semantics:

(≤ n R.C )M := {a ∈ ∆M | #{b ∈ ∆M | 〈a, b〉 ∈ RM ∧ b ∈ CM} ≤ n}
(≥ n R.C )M := {a ∈ ∆M | #{b ∈ ∆M | 〈a, b〉 ∈ RM ∧ b ∈ CM} ≥ n}

e.g. ≥ 2 owns.House v RichPeople.

1We let #S be the cardinality of the set S
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Normal extensions

– O – Closed classes: We allow concepts on the form {a1, a2, . . . , an} where ai are
individuals. Semantics

({a1, a2, . . . , an})M := {aM1 , aM2 , . . . , aMn }

e.g. Days ≡ {monday , tuesday ,wednesday , thursday , friday , saturday , sunday};

– I – Inverse roles: We allow roles on the form R−. Semantics:

(R−)M := {〈a, b〉 ∈ ∆M ×∆M | 〈b, a〉 ∈ RM}

e.g. hasParent− v hasChild ;

– D - Datatypes: We introduce a set of datatypes: int, string, float, boolean, and
so on. They all have a fixed interpretation, that is, the same for all models.



20/37

Normal extensions

– O – Closed classes: We allow concepts on the form {a1, a2, . . . , an} where ai are
individuals. Semantics

({a1, a2, . . . , an})M := {aM1 , aM2 , . . . , aMn }

e.g. Days ≡ {monday , tuesday ,wednesday , thursday , friday , saturday , sunday};
– I – Inverse roles: We allow roles on the form R−. Semantics:

(R−)M := {〈a, b〉 ∈ ∆M ×∆M | 〈b, a〉 ∈ RM}

e.g. hasParent− v hasChild ;

– D - Datatypes: We introduce a set of datatypes: int, string, float, boolean, and
so on. They all have a fixed interpretation, that is, the same for all models.



20/37

Normal extensions

– O – Closed classes: We allow concepts on the form {a1, a2, . . . , an} where ai are
individuals. Semantics

({a1, a2, . . . , an})M := {aM1 , aM2 , . . . , aMn }

e.g. Days ≡ {monday , tuesday ,wednesday , thursday , friday , saturday , sunday};
– I – Inverse roles: We allow roles on the form R−. Semantics:

(R−)M := {〈a, b〉 ∈ ∆M ×∆M | 〈b, a〉 ∈ RM}

e.g. hasParent− v hasChild ;

– D - Datatypes: We introduce a set of datatypes: int, string, float, boolean, and
so on. They all have a fixed interpretation, that is, the same for all models.



21/37

Examples

OnlyChild v Person u ¬∃hasSibling .>

Animal v ≤ 2 hasParent.Animal u ≥ 2 hasParent.Animal
Pet u Person v ⊥

Person v ∃loves.{mary}
Norwegian v ∃comesFrom.{norway}
{adam} v ¬{eve}

hasFather ◦ hasBrother v hasUncle

∃R.> v C Domain
> v ∀R.C Range

R ◦ R v R Transitivity
> v ≤ 1R.> Functionality
R v R− Symmetry
R v ¬R− Asymmetry
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Complexity results

http://www.cs.man.ac.uk/~ezolin/dl/

http://www.cs.man.ac.uk/~ezolin/dl/
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Common restricted languages: EL

The description logic EL allow the following concepts:

C ,D → A | (atomic concept)
> | (universal concept)
⊥ | (bottom concept)
{a} | (singular enumeration)
C u D | (intersection)
∃R.C | (existential restriction)

with the following axioms:

– C v D and C ≡ D for concept descriptions D and C .

– P v Q and P ≡ Q for roles P,Q.

– C (a) and R(a, b) for concept C , role R and individuals a, b.
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Common restricted languages: EL

Not supported (excerpt):

– negation, (only disjointness of classes: C u D v ⊥),

– disjunction,

– universal quantification,

– cardinalities,

– inverse roles,

– plus some role characteristics.

– Captures language used for many large ontologies.

– Checking ontology consistency, class expression subsumption, and instance
checking is in P.

– “Good for large ontologies.”
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Common restricted languages: DL-Lite

The description logic DL-LiteR allows the following concepts:

C → A | (atomic concept)
∃R.> | (existential restriction with > only)

D → A | (atomic concept)
∃R.D | (existential restriction)
¬D | (negation)
D u D ′ | (intersection)

with the following axioms:

– C v D for concept descriptions D and C (and C ≡ C ′).

– P v Q and P ≡ Q for roles P,Q.

– C (a) and R(a, b) for concept C , role R and individuals a, b.
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Common restricted languages: DL-Lite

Not supported (excerpt):

– disjunction,

– universal quantification,

– cardinalities,

– functional roles, keys,

– enumerations (closed classes),

– subproperties of chains, transitivity

– Captures language for which queries can be translated to SQL.

– Conjunctive queries over a DL-Lite knowledge base can be expanded with the
TBox to a conjunctive query that can be answered over the Abox alone. This
is called first order rewritability.

– “Good for large datasets.”
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Common restricted languages: RL

The description logic RL (also called DLP) allow the following concepts:

C → A | (atomic concept)
C u C ′ | (intersection)
C t C ′ | (union)
∃R.C | (existential restriction)

D → A | (atomic concept)
D u D ′ | (intersection)
∀R.D | (universal restriction)

with the following axioms:

– C v D, C ≡ C ′, > v ∀P.D, > v ∀P−.D, P v Q, P ≡ Q− and P ≡ Q for roles
P,Q and concept descriptions D and C .

– C (a) and R(a, b) for concept C , role R and individuals a, b.
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OWL and the Semantic Web

– OWL (The Web Ontology Language) is a set of ontology languages with
semantics based on description logics.

– They combine Web technology with description logic to make an intelligent web
of data.

– In OWL, all individuals, concepts and roles are assigned a URI (Unique Resource
Identifier).

– These URIs can be URLs, hence they can state where we can find more
information about an item.

– URIs can be set to be equal, so we can link two ontologies together by
stating which URIs denote the same thing in different contexts.

– OWL provides a concrete syntax for writing axioms, implementations of reasoners
over the axioms, and a query language that applies the reasoners for knowledge
extraction.
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OWL 2 Profiles

– OWL has various profiles that correspond to different DLs.

– OWL Lite: SHIF(D);

– OWL DL: corresponds to SHION (D);

– OWL 2 DL: corresponds to SROIQ(D) and is the “normal” OWL 2
(sublanguage): “maximum” expressivity while keeping reasoning problems
decidable—but still very expensive;

– (Other) profiles are tailored for specific ends, e.g.,

– OWL 2 QL: Corresponds to DL-LiteR, and is specifically designed for efficient
database integration;

– OWL 2 EL: Corresponds to EL, and is a lightweight language with
polynomial time reasoning;

– OWL 2 RL: Corresponds to RL, and is designed for compatibility with
rule-based inference tools.

– OWL Full (not a proper DL): Anything goes: classes, relations, individuals, highly expressive, not decidable. But we want OWL’s reasoning

capabilities, so stay away if you can—and you almost always can.
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What cannot be expressed in DLs: Brothers

– Given terms
hasSibling Male

– . . . a brother is defined to be a sibling who is male

– In FOL: ∀x∀y (hasSibling(x , y) ∧Male(y)↔ hasBrother(x , y))

– Best try:
hasBrother v hasSibling
> v ∀hasBrother .Male
∃hasSibling .Male v ∃hasBrother .>

– Not enough to infer that all male siblings are brothers
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What cannot be expressed in DLs: Diamond Properties

– A semi-detached house has a left and a right unit

– Each unit has a separating wall

– The separating walls of the left and right units are the same

– In FOL:

∀x(SemiDetached(x)↔
∃y∃z(hasLeftUnit(x , y) ∧ Unit(y) ∧ hasRightUnit(x , z) ∧ Unit(z)∧
∃w(Wall(w) ∧ hasSeparatingWall(x ,w) ∧ hasSeparatingWall(y ,w)))

– “diamond property”

– Try

SemiDetached ≡ ∃hasLeftUnit.(Unit u ∃hasSeparatingWall .Wall) u
∃hasRightUnit.(Unit u ∃hasSeparatingWall .Wall)

– No way of stating that the walls are the same.
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What cannot be expressed in DLs: Connecting Properties

– Given terms
Person hasChild hasBirthday

– A twin parent is defined to be a person who has two children with the same
birthday.

– Try. . .
TwinParent ≡ Person u ∃hasChild .∃hasBirthday [. . .]

u ∃hasChild .∃hasBirthday [. . .]

– No way to connect the two birthdays to say that they’re the same.

– (and no way to say that the children are not the same)

– Try. . .
TwinParent ≡ Person u ≥2hasChild .∃hasBirthday [. . .]

– Still no way of connecting the birthdays
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Reasoning about Numbers

– Reasoning about natural numbers is undecidable in general.

– DL Reasoning is decidable

– Therefore, general reasoning about numbers can’t be “encoded” in DL

– For instance, there is no largest prime number:

∀n.∃p.(p > n ∧ ∀k , l .p = k · l → (k = 1 ∨ l = 1))

– Could try. . .
Number(zero)

Number v ∃hasSuccessor .Number
> v ≤ 1 hasSuccessor .>
hasSuccessor v lessThan

lessThan ◦ lessThan v lessThan
lessThan v ¬lessThan−

– Cannot encode addition, multiplication, etc.

– Note: a lot can be done with other logics, but not with DLs

– Outside the intended scope of Description Logics
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FO-rewritability
Assume TL is the set of TBoxes over the language L, and that UCQ is the set of
queries that are unions of conjunctive queries, and let

K � q1 ∨ q2 ⇔ K � q1 or K � q2

K � q1 ∧ q2 ⇔ K � q1 and K � q2

A description logic L enjoys first order rewritability if there exists a rewriting function
ρ : TL × UCQ → UCQ, such that for any knowledge base K = 〈T ,A〉 over L and any
conjunctive query q(~x) over K we have that

A � ρ(T , q(~a))⇔ K � q(~a)

This allows us to divide the querying up into two stages: i) translation of the query,
and ii) ABox querying. This is useful for e.g. translating a query from a DL query to
an SQL query where the ABox is a relational database.

E.g. let T := {C1 v D,C2 v D,A v C1} and q(x) := D(x) we have that for any Abox A that

A � D(a) ∨ C1(a) ∨ C2(a) ∨ A(a)⇔ 〈T ,A〉 � D(a)
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