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Last time

– As we saw last time, description logics allows us to model knowledge in a natural
way.

– Today we will see why we make the restrictions, and what makes exactly these
restrictions important.
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Assumptions

Before we introduce the tableau algorithm for DLs, we will first make a few
assumptions, which we will eliminate towards the end of the talk.

First, we will make the following assumptions:

– We only allow equivalence axioms, A ≡ D, where A is atomic and D is not
atomic. Each atomic concept should only occur once on a left-hand side.

– We only allow acyclic TBoxes, so e.g. no A ≡ ∃R.D, where D is defined in terms
of A.

– We only allow ABox axioms on the form A(c) for atomic concepts A (and R(a, b)
as usual). (Not really a restriction, as D(c) for complex D can be expressed as
AD ≡ D and AD(c) for some fresh concept name AD)
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Example ontology in ALCN

TBox:

Animal ≡ ≤ 2 hasParent u ≥ 2 hasParent

Donkey ≡ Animal u Stubborn

Horse ≡ Animal u ¬Stubborn
Mule ≡ Animal u ∃hasParent.Horse u ∃hasParent.Donkey

ABox:

Horse(mary) Mule(peter) Horse(hannah)

hasParent(peter, mary) hasParent(peter, carl)
hasParent(sven, hannah) hasParent(sven, carl)
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Problems

For concepts C and D:

– Satisfiability of concepts (C is satisfiable w.r.t T if there exist a model I of T
such that CI is nonempty).

– Subsumption of concepts (C is subsumed by D w.r.t T , written T � C v D, if
CI ⊆ DI for every model I of T ).

– Equivalence of concepts (C is equivalent to D w.r.t T , written T � C ≡ D, if
CI ≡ DI for every model I of T ).

– Disjointness of concepts (C is disjoint from D w.r.t T , if CI ∩ DI = ∅ for every
model I of T ).

For knowledge bases K = 〈A, T 〉:
– Instance checking (whether for some concept C and individual a, K � C (a)).

– ABox consistency (whether A is consistent w.r.t. T ).
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Reductions

Theorem
For concepts C and D, we have

(i) C is subsumed by D ⇔ C u ¬D is unsatisfiable;

(ii) C and D are equivalent ⇔ both (C u ¬D) and (¬C u D) are unsatisfiable;

(iii) C and D are disjoint ⇔ C u D is unsatisfiable.
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Removing the TBox

For reasoning in KBs with acyclic TBoxes T , we can in fact remove the TBox by
extending the ABox. This is done as follows:

– First expanding T by replacing every definition A ≡ D in T , with A ≡ D ′, where
D ′ is obtained by recursively replacing every name concept C in D with C ′ if
C ≡ C ′ is in T . We call the extended TBox T ′. E.g.:

Donkey ≡ Animal u Stubborn 

Donkey ≡ ≤ 2 hasParent u ≥ 2 hasParent u Stubborn

– Then we replace every assertion A(a) with D ′(a) in A, if A ≡ D ′ is in T ′. E.g.:

Donkey(peter) 

(≤ 2 hasParent u ≥ 2 hasParent u Stubborn)(peter)
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Important results

Theorem
Assume C ≡ D is replaced by C ≡ D ′ in an expansion of 〈A, T 〉 to 〈A′, ∅〉. Then:

(i) C is satisfiable w.r.t. T ⇔ {D ′(x)} is consistent.

(ii) A is consistent w.r.t. T ⇔ A′ is consistent.

(iii) 〈A, T 〉 � C (a)⇔ A′ ∪ {¬D ′(a)} is inconsistent.
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Negated Normal Form

For our reasoning algorithm, we need our concepts in Negated Normal Form (NFF):

¬(C u D) ¬C t ¬D
¬(C t D) ¬C u ¬D
¬∃R.C  ∀R.¬C
¬∀R.C  ∃R.¬C
¬ ≤ n R  ≥ (n + 1)R

¬ ≥ n R  ≤ (n − 1)R



13/36

Contents

Assumptions

Reasoning problems

Tableau algorithm for ALCN

Soundness, Completeness and Termination

Removing the assumptions

Complexity



14/36

Tableau algorithm for ALC
(i) Start with a set S0 = {A0} (on NNF).

(ii) While a rule is applicable to an element A ∈ Si :
– Apply rule to A resulting in SA = {A1,A2, . . . ,An}.
– Set Si+1 = (Si\{A}) ∪ SA.

u-rule Condition: A contains (C1 u C2)(x), but not both C1(x) and C2(x).
Action: A′ = A ∪ {C1(x),C2(x)}.

t-rule Condition: A contains (C1 t C2)(x), but neither C1(x) nor C2(x).
Action: A′ = A ∪ {C1(x)}, A′′ = A ∪ {C2(x)}.

∃-rule Condition: A contains (∃R.C )(x), but there is no z such that C (z) and
R(x , z) in A.

Action: A′ = A ∪ {C (y),R(x , y)}, y fresh.

∀-rule Condition: A contains (∀R.C )(x) and R(x , y), but not C (y).
Action: A′ = A ∪ {C (y)}.
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Extension with N

≥-rule Condition: A contains (≥ n R)(x), but there are no z1, . . . , zn such that
R(x , zi ) (1 ≤ i ≤ n) and zi 6= zj (1 ≤ i < j ≤ n) are in A.

Action: A′ = A ∪ {R(x , yi ) | 1 ≤ i ≤ n} ∪ {yi 6= yj | (1 ≤ i < j ≤ n)},
distinct and fresh y1, . . . , yn.

≤-rule Condition: A contains (≤ n R)(x) and R(x , y1), . . . ,R(x , yn+1) for distinct
names y1, . . . , yn+1, but not yi 6= yj for some i 6= j .

Action: Ai ,j = A[yi/yj ], for each pair yi , yj such that i > j and
yi 6= yj is not in A.
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Example derivation(1)

We want to check whether the concept

∀R.(¬C t D) u ∃R.(C u D)

is satisfiable. (We write Ak
n for the k-th set in An)

A0 = {{(∀R.(¬C t D) u ∃R.(C u D))(x0)}}
A1 = {A1

0 ∪ {(∀R.(¬C t D))(x0), (∃R.(C u D))(x0)}} by u-rule
A2 = {A1

1 ∪ {R(x0, y), (C u D)(y)}} by ∃-rule
A3 = {A1

2 ∪ {(¬C t D)(y)}} by ∀-rule
A4 = {A1

3 ∪ {(¬C )(y)}, A1
3 ∪ {D(y)}} by t-rule

A5 = {A1
4 ∪ {C (y),D(y)}, A2

4} by u-rule
A6 = {A1

5, A2
5 ∪ {C (y),D(y)}} by u-rule

Now no more rules apply.
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Example derivation(2)

We want to check whether the concept

≤ 1 R u ≥ 2 R

is satisfiable.

A0 = {{(≤ 1 R u ≥ 2 R)(x0)}}
A1 = {A1

0 ∪ {(≤ 1 R)(x0), (≥ 2 R)(x0)}} by u-rule
A2 = {A1

1 ∪ {R(x0, y1),R(x0, y2), y1 6= y2}} by ≥-rule
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Example derivation(3)

We want to check whether the concept

≤ 1 R u ∃R.C u ∃R.D

is satisfiable.

A0 = {{(≤ 1 R u ∃R.C u ∃R.D)(x0)}}
A1 = {A1

0 ∪ {(≤ 1 R)(x0), (∃R.C )(x0), (∃R.D)(x0)}} by u-rule
A2 = {A1

1 ∪ {R(x0, y1),C (y1)}} by ∃-rule
A3 = {A1

2 ∪ {R(x0, y2),D(y2)}} by ∃-rule
A4 = {A1

3[y2/y1]} by ≤-rule
= {A1

2 ∪ {R(x0, y1),D(y1)}
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Definitions

Definition

(i) The algorithm terminates on one ABox A when no rules are applicable. Such an
ABox is then called complete.

(ii) A clash is an obvious contradiction, that is, A contains a clash if either:

– ⊥(x) ∈ A, or
– {C (x),¬C (x)} ⊆ A, or
– {(≤ n R)(x)} ∪
{R(x , yi ) | 1 ≤ i ≤ n + 1} ∪
{yi 6= yj | (1 ≤ i < j ≤ n + 1)} ⊆ A.
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Soundness and completeness

Let Ŝ be the set of complete ABoxes resulting from applying the tableau algorithm to
{A}.

Theorem (Soundness)

If A has a model, then at least one of the ABoxes of Ŝ has a model.

Proof.
Done by induction on the proofs, showing that each rule preserves consistency.

Theorem (Completeness)

If at least one of the ABoxes, Â of Ŝ is clash free, then at A has a model.

Proof.
Done by constructing a model for A from Â.
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Assumptions

– We only allow equivalence axioms, A ≡ D, where A is atomic and D is not
atomic. Each atomic concept should only occur once on a left-hand side.

– We only allow acyclic TBoxes, so e.g. no A ≡ ∃R.D, where D is defined in terms
of A.

– We only allow ABox axioms on the form A(c) for atomic concepts A (and R(a, b)
as usual). (Not really a restriction, as D(c) for complex D can be expressed as
AD ≡ D and AD(c) for some fresh concept name AD)

– New: We only allow ABoxes on the form {C (x0)} as input to the tableau
algorithm.
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Terminaton on single concept

Theorem (Termination)

If C0 is an ALCN -concept, then the tableau algorithm terminates on {{C0(x0)}}, that
is, there cannot be an infinite sequence of rule applications

{{C0(x0)}} → S1 → S2 → . . .
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Proof-sketch of termination

To prove termination, we do the following:

– We first define a function f mapping each state S in the proof (each set of
ABoxes) to a set Q for which there is a strict well-ordering <.

– Then, we prove that if S ′ is the result of applying a rule to a state S, then
f (S ′) < f (S).

– The result then follows from the fact that any strictly decreasing sequence in a
well-ordered set is finite.
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Proof-sketch of termination

Lemma
Let A be an ABox contained in Si for some i ≥ 1.

– For every individual x 6= x0 occuring in A, there is a unique sequence R1, . . . ,Rl

(l ≥ 1) of role names and a unique sequence x1, . . . , xl−1 of individual names such
that {R1(x0, x1),R2(x1, x2), . . . ,Rl(xl−1, x)} ⊆ A. In this case, we say that x
occurs on level l in A.

– If C (x) ∈ A for an individual x on level l , then the maximal role depth of C
(i.e. the maximal nesting of constructors involving roles) is bounded by the
maximal role depth of C0 minus l . Consequently, the level of any individual in A
is bounded by the maximal role depth of C0.
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Proof-sketch of termination

Lemma (Cont.)

– If C (x) ∈ A then C is a subdescription of C0. Consequently, the number of
different concept assertions on x is bounded by the size of C0.

– The number of different role successors of x in A (i.e. individuals y such that
R(x , y) ∈ A for a role name R) is bounded by the sum of of the numbers
occuring in the at-least restrictions in C0 pluss the number of different existential
restrictions in C0.
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Finite tree model property

The facts stated in this lemma imply the following:

– The canonical interpretation constructed by the tableaux algorithm has the shape
of a finite tree;

– the depth of the tree is linearly bounded by the size of C0;

– the branching factor of the tree is bounded by the sum of the numbers occuring in
the at-least restrictions pluss the number of different existential restrictions in C0.

– This means that ALCN enjoys the finite tree model property, that is, any
satisfiable concept C0 is satisfiable in a finite interpretation that has the shape of
a tree whose root belongs to C0.
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Extension to ABox problems

What happens if we apply the algorithm to a general extended ALCN -ABox?

It might
not terminate:

A0 = {R(a, a), (≤ 1R)(a), (∀R.∃R.A)(a)}
A1 = A0 ∪ {(∃R.A)(a)}
A2 = A1 ∪ {R(a, x0),A(x0)}
A3 = A2 ∪ {(∃R.A)(x0)}
A4 = A3 ∪ {R(x0, x1),A(x1)}
A4 = A1 ∪ {A(a),R(a, x1),A(x1)}

...
Ai = A1 ∪ {A(a),R(a, xj),A(xj)}

However, if we restrict the ∃-rule and the ≥-rule to only be applicable when no other
rules are, then we can guarantee termination also for general ALCN -ABoxes.
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Other extensions
Atomic Inclusions

– If we allow (acyclic) Aboxes with inclusions of the form A v C where A is a base
name, then we can just make a fresh concept Anew and extend the inclusion to a
definition, by replacing it with A ≡ C u Anew .

E.g.

Donkey v Animal u Stubborn

↓
Donkey ≡ Animal u Stubborn u Donkeynew
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Other extensions
General Inclusions

– If we allow TBoxes with general inclusions of the form C v D for complex
concepts C and D, then it is enough to only handle the inclusion

> v (¬C1 t D1) u (¬C2 t D2) u · · · u (¬Cn t Dn)

where {Ci v Di |1 ≤ i ≤ n} are all the inclusions in the TBox.

– Thus, for any individual x in the ABox, we can just add

((¬C1 t D1) u (¬C2 t D2) u · · · u (¬Cn t Dn))(x)

whenever they are introduced.

– However, we now lose termination, for instance for the knowledge base with ABox
{>(x0)} and TBox {> v ∃R.>}.

– This can be fixed with blocking.
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Other extensions
Inclusions: Blocking

Definition
We will say that a variable y is an ancestor of a variable x if there exists some R where
either R(y , x), or there exists some variable z where z is an ancestor of x and R(y , z).

Definition
We say that an application of a ∃-rule or a ≥-rule to a variable x is directly blocked by
a variable y if

{D|D(x) ∈ A} ⊆ {D ′|D ′(y) ∈ A}

and y is an ancestor of x .

Definition
We say that an application of a ∃-rule or a ≥-rule to a variable x is blocked if it is
direcly blocked, or if an ancestor of x is directly blocked.
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Complexity of algorithm on empty TBox

Theorem
Satisfiability of ALCN -concepts and consistency checking of ALCN -ABoxes is
PSpace-complete for acyclic TBoxes.

Proof (Sketch).
In PSpace: If we alter the algorithm accordingly:

(i) Apply ∀-, u- and t-rules as long as possible, and look for clashes of the form ⊥(x) and
A(x),¬A(x).

(ii) Generate new individuals with the ∃- and ≥-rules.

(iii) Identify equivalences with the ≤-rule, and check for ≤-clashes.

(iv) Successively handle the successors in the same way.

Generated successors can be treated sepparately, so we only need to store one path of the tree.
Furthermore, we do not need to generate all n individuals for every (≥ n R)(x).

PSpace-hard: Can be reduced to validity of Quantified Boolean Formula.
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More complexity results

DL Combined complexity Data complexity
ALC ExpTime-complete NP-complete
ALCN ExpTime-complete NP-complete
SHIQ ExpTime-complete NP-complete
SHOIN (D) NExpTime-complete NP-hard
SROIQ N2ExpTime-complete NP-hard
EL P-complete P-complete
RL P-complete P-complete
DLLite In P In LOGSpace
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More info

For more info see:

– F. Baader and W. Nutt’s chapter Basic Description Logics from The Description
Logic Handbook.

– P. Hitzler, M. Krötzsch, and S. Rudolph’s book Foundations of Semantic Web
Technologies.

Thanks for listening!
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