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Individuals and Domains

In Predicate logic we express statements about some collection
of objects or individuals.

Individuals: a, b, c , a1, a2, a3, . . ..

Variables: x , y , z , x1, x2, x3, . . ..

A set of individuals is called a domain, and is denoted D.

Note: To make a more thurough distinction between
representation and meaning, we sometimes use different
symbols for the individuals depending on the context. When
refering to domain individual a in a formula, one would use the
modified symbol a to make the distiction.
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Atmoic formulas: Properties and Relations

The atomic formulas or Predicate Logic are assertions about
properties and relations.

P(a): Individual a has property P .

Q(a, b): Individuals a and b are related through relation
Q.

If we let P represent the property “prime number”, then we
can claim that 4 and 17 are primes as follows:

P(4) P(17).

Note: If we use separate symbols for meaning and
representation, then in a formula we would write P(4) and
P(17).
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If a is a person, b is a car, and Q represents ownership, then
we can say that a owns b as follows:

Q(a, b).

Using 3-place relations, we can also express more complex
relationships. For example

C (E16,Oslo,Bergen)

can represent the statement that E16 connects Oslo and
Bergen.

When given a domain D, we can build and interpretation I
that determines the truth of assertions about properties and
relationships. (We’ll get back to this in detail.)
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Predicates

Predicates are an essential part of Predicate Logic.

We informally define a predicate as an atomic formula
(property or relation expression) with at least one variable in
place of an individual. The predicates are important types of
atmoic formulas.

P(x): x is a prime number.

Q(a, z): a owns z .

C (x ,Oslo, y): x connects Oslo to y .

Even with an interpretation of all the properties and relations,
the above formulas can be either true of false, depending on
what the variables represent.
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Atomic Formulas

Properties can be seen as special unary relations. Relations
that relate two objects are call binary. Relations that relate n
objects are called n-ary.

Definition

Atmoic formula Let P be an n-ary property (or predicate
symbol), C a set of constants, V a set of variables, and
d1, . . . , dn be a list of n symbols from C ∪ V (with possible
repetitions). Then

P(d1, . . . , dn)

is an atomic formula.
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Models

A model consists of a domain D and an interpretation function
I. The function I must map every constant c ∈ C to some
individual in the domain. I must also contain information
about when a relation assertion is true.
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Consider the formula C (a, b, c) and the domain
D = {Bergen,E6,E16,Oslo,Trondheim}. Define I1 so that

I1(a) = E16, I1(b) = Oslo, I1(c) = Bergen

and I2 so that

I2(a) = E16, I2(b) = Oslo, I2(c) = Trondheim.

If I iterprets C according to the Norwegian road network, we
have that I1 |= C (a, b, c), while I2 6|= C (a, b, c).

How do we specify how I interprets relations?
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Modelling Properties

The interpretation of a unary relation P defines for which
domain elements d that P(d) is true. Let PI ⊆ D. We say
that I |= P(c) if and only if cI ∈ PI , where cI = I(c).

For binary relations Q we let QI ⊆ D ×D. That is, QI is a
set of pairs over D. Now I |= Q(a, b) if and only if
〈aI , bI〉 ∈ QI .
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Returning to the road example, I1 can be written as

aI1 = E16

bI1 = Oslo

cI1 = Bergen

C I1 = {〈E16,Oslo,Bergen〉,
〈E16,Bergen,Oslo〉
〈E6,Oslo,Trondheim〉
〈E6,Trondheim,Oslo〉}.

We have that I1 |= C (a, b, c). We also have

I1 |= C (E6,Trondheim,Oslo).

In the last formula, we have introduced symbols for domain
elements we didn’t have any constants for.
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Interpretation

Definition (Interpretation)

Let D be a domain, C a set of constants, and P a set of
relation (predicate) symbols. An interpretation I is an
interpretation function defined so that

cI ∈ D for every c ∈ C, and

PI ⊆ Dn for every n-ary P ∈ P .

If P ∈ P is an n-ary relation symbol and c1, . . . , cn ∈ C are
constants, then I |= P(c1, . . . , cn) if and only if
〈c1, . . . , cn〉 ∈ PI .

Interpretations determine the truth of variable-free atomic
formulas. If c ∈ D, then we require cI = c for all I. That is,
all interpretations must respect the dedicated domain
constants.
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Universal Quantification

Sometimes we want to express universal truths about
individuals. For example, we may want to express that if x is
prime, that is P(x), then x is also odd, O(x).

We can write P(x)→ O(x), but when does this hold? In
order to state that the formula holds whatever x is, we use the
quantifier ∀ followed by the variable the quantifier is applied to:

∀x [P(x)→ Q(x)] .
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Existential Quantification

It is usefull to express that some individual has a property
without having to specify the individual. For example, we may
want to say that at least one number x i even, E (x).

For this, we use the quantifier ∃:

∃xE (x).
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Substitutions

The set of terms is the set T = C ∪ V of constants and
variables. When we introduce functions, the set of terms will
become larger.

Definition (Substitution)

A substitution is a partial function σ : V → T . If σ maps
variables x1, . . . , xn to terms t1, . . . , tn, we often write it as
[t1/x1, . . . , tn/xn].

Note: A substitution σ can be extended to a total function by
letting it map all variables it does not allread map to a term to
the variables themselves.
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We can apply a subsitution σ to a formula. The result is a
new formula, where we simultaneously replace each variable x
with σ(x). Constants are not changed by substitutions.

Example

We define a substitution σ = [a/x , b/y , x/z ]. We now have

P(x)σ = P(a)

Q(x , b)σ = Q(a, b)

Q(x , z)σ = Q(a, x)

R(x , y , z)σ = R(a, b, x).
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Syntax of Predicate Logic

Definition (Formula)

The set FORM of formulas is the smallest set such that

P(t1, . . . , tn) ∈ FORM , where P is an n-ary predicate
symbol and ti are terms,

and ff F ,G ∈ FORM and x is a variable, then

(¬F ), (F ∧ G ), (F ∨ G ), (F → G ) ∈ FORM , and

(∀xF ), (∃xF ) ∈ FORM .

We define the semantics of Predicate Logic in terms of
interpretations, but we need some tools before we are ready.
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Free variables

Definition

We define the function FV : FORM → P(V) recursively as
follows:

FV (P(t1, . . . , tn)) is the set of all variables occurring in
the terms ti ,

FV (¬φ) = FV (φ),

FV (φ1�φ2) = FV (φ1) ∪ FV (φ2), where � ∈ {∧,∨,→},
FV (∀xφ) = FV (φ) \ {x}, and

FV (∃xφ) = FV (φ) \ {x}.

Note: If a variable is not free, it is often said to be bound.

Definition

A formula with no free variables is a sentence.
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Substitutions revisited

We can now define the actions of substitutions on non-atomic
formulas. We restrict ourselves to the case where the
substitution maps only one variable: [t/x ]. The definition can
be generalised with a bit of notation juggling, but we will not
need the general definition.

Definition

The result of applying the substitution [t/x ] to a non-atomic
formula is as follows (Q ∈ {∀,∃}):

(¬φ)[t/x ] = (¬φ[t/x ]),

(φ1�φ2)[t/x ] = (φ1[t/x ]�φ2[t/x ]),

(Qyφ)[t/x ] =

{
(Qyφ), if x = y ,

(Qyφ[t/x ]), otherwise.



Predicates Models Quantifiers Syntax Semantics

Interpretations revisited

Definition (Truth and satisfaction)

Let I be an interpretation with domain D, and φ be an atomic
formula. We have defined the conditions for I |= φ. We now
extend this definition to all sentences (variable-free formulas):

I |= (¬φ) iff I 6|= φ,

I |= (φ1 ∧ φ2) iff I |= φ1 and I |= φ2,

I |= (φ1 ∨ φ2) iff I |= φ1 or I |= φ2,

I |= (φ1 → φ2) iff I |= φ1 implies that I |= φ2,

I |= (∀xφ) iff I |= φ[c/x ] for any c ∈ D, and

I |= (∃xφ) iff I |= φ[c/x ] for some c ∈ D

Note: There are several ways of extending interpretations to
formulas with variables if needed.
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A simple tautology

Prove that ∃x∀yR(x , y)→ ∀y∃xR(x , y) is a tautalogy (is
valid). That is, it is true under any interpretation.

Proof.

From the definition, we know that I |= φ1 → φ2 if and only if
I |= φ1 implies I |= φ2. We therefore assume that
I |= ∃x∀yR(x , y). Then, there must be some d ∈ D so that
I |= ∀yR(d , y). It follow that for any e ∈ D, I |= R(d , e).
Now, I |= ∃xR(x , e) for any e ∈ D. An so,
I |= ∀y∃xR(x , y).

This proof illustrates that our definitions of I and |= match
our intuition about truth and quantification, at least in some
cases.
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Counter models

The formula ∀x∃yR(x , y)→ ∃y∀xR(x , y) is not valid. We
show this with a counter model.

Let D = {a, b}, and RI = {〈a, b〉, 〈b, a〉}. I |= ∀x∃yR(x , y).
There are two similar cases for ∀, we look at the first:
I |= ∃yR(a, y). This is true, since I |= R(a, b).

On the other hand, I 6|= ∃y∀xR(x , y). Again, we must show
both cases since we must show that no choise for y will work.
We look at the first option: I 6|= ∀xR(x , a). This is true, since
I 6|= R(a, a).
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