
INF3170 / INF4171
Notes on Resolution

Andreas Nakkerud

Autumn 2015

1 Introduction

This is a short description of the Resolution calculus for propositional logic,
and for first order logic. We will only outline the proofs, as only the general
ideas and concepts are part of the course syllabus.

2 Preliminaries

2.1 Conjunctive Normal Form

Every propositional logic formula is equivalent to formulas on both Conjunc-
tive Normal Form (CNF) and Disjunctive Normal Form (DNF). We will only
need the Conjunctive Normal Form.

Definition 1 (Literals and Clauses). Let φ be an atomic formula (proposi-
tional or first order). φ and ¬φ are literals. A clause is a disjunction of
literals. If Ci is a clause of ni literals, and Lj

i are the literals of Ci, we write
Ci = L1

i ∨ . . . ∨ L
ni
i or Ci = {L1

i , . . . , L
ni
i }.

The complement L of a literal L is defined so that if φ is atomic, φ = ¬φ
and ¬φ = φ.

A literal containing no variables is called a ground literal. A clause of
ground literals is called a ground clause.

From Definition 1 we see that a set of literals is read as a disjunction. It
is often useful to write sets in place of disjunctions.

Note that if a formula only contains ground literals, it is essentially a
propositional formula, since we can create one propositional variable for each
ground literal.

1

Definition 2 (Conjunctive Normal Form). A formula φ is on Conjunctive
Normal Form (CNF) if it is a conjunction of clauses. If Ci are clauses, we
usually write φ as {C1, . . . , Cm}.

Set notation is justified, since both ∧ and ∨ are idempotent. In Defini-
tion 2, a set of sets of literals is read as a conjunction of disjunctions. This
is common when it is given that the formulas we work with are on CNF, but
the notation may be ambiguous and should be used with care.

Note also that a first order formula can be on CNF if it is quantifier free
(open).

Example 3. The formula

φ = (Px ∨Rxy ∨ Pa) ∧ (¬Pa ∨Ryz ∨ ¬Rxx) ∧ (¬Pb ∨ Pc)

is on CNF, and we can write it as

{{Px,Rxy, Pa}, {¬Pa,Ryz,¬Rxx}, {¬Pb, Pc}}.

The following result can easily be proven by induction on (quantifier free)
formulas.

Theorem 4. All (quantifier free) formulas are equivalent to a formula on
CNF.

2.2 Prenex Normal Form

Prenex Normal Form is a normal form for first order formulas. It limits the
placement of quantifiers.

Definition 5 (Prenex Normal Form). A first order formula is on Prenex
Normal Form (PNF) if it consists of a string of quantifiers followed by a
quantifier free (open) formula. The string of quantifiers is referred to as the
prefix, and the quantifier free part as the matrix.

In order to bring a formula onto PNF, we first eliminate all occurrences
of → using the identity

φ→ ψ ⇐⇒ ¬φ ∨ ψ.

We then use the following identities to bring all quantifiers to the begin-
ning of the formula.

¬∀xφ ⇐⇒ ∃x¬φ ¬∃xφ ⇐⇒ ∀x¬φ
∀xφ ∧ ψ ⇐⇒ ∀x(φ ∧ ψ) ∃xφ ∧ ψ ⇐⇒ ∃x(φ ∧ ψ)

∀xφ ∨ ψ ⇐⇒ ∀x(φ ∨ ψ) ∃xφ ∨ ψ ⇐⇒ ∃x(φ ∨ ψ)

2

Note that we must make sure not to bind free variables when applying the
above identities. We avoid this by renaming all bound variables so that they
all have names not used elsewhere in the formula. Note also that ∀xφ∧ ψ =
ψ ∧ ∀xφ.

Theorem 6. Every first order formula is equivalent to a formula on PNF.
Furthermore, every formula on PNF is equivalent to a formula on PNF with
its matrix on CNF.

2.3 Skolem Normal Form

After bringing a formula to Prenex Normal Form, we can eliminate all exis-
tential quantifiers to bring the formula to Skolem Normal Form. The Skolem
Normal Form preserves satisfiability.

Example 7. Consider the formula ∀x∃y∀z∃wR(x, y, z, w). When satisfying
this formula, our choice for w may depend on the choice of all the other
variables. We can therefore replace w by some function fw(x, y, z). We then
make a similar transformation for y.

∀x∃y∀z∃wR(x, y, z, w)

⇓
∀x∃y∀zR(x, y, z, f(x, y, z))

⇓
∀x∀zR(x, fy(x), z, fw(x, fy(x), z))

We can interpret fw and fy so that they return the required values for
the above formula to be true, but not every interpretation needs to have this
property. Thus, Skolem Normal Forms need not preserve validity.

We will not go into details about the Skolem Normal Form. You can read
more about this normal form in van Dalen’s Logic and Structure.

2.4 Unification

Unification in the process of making two terms equal under a common sub-
stitution.

Definition 8 (Unification). Let t and s be terms, and σ a substitution. We
call σ a unifier for t and s, and say that σ unifies t and s if tσ and sσ are
the same terms.

If σ is such that every unifier τ for t and s can be written as τ = στ ′,
then σ is a Most General Unifier (MGU) for t and s.

3

Example 9. Let t = f(x, g(y)) and s = f(f(z, z), w), then

σ = {f(z, z)/x, g(y)/w}

is an MGU for t and s.

We will use unifiers to make atomic formulas equal. Therefore, we need
to simultaneously unify multiple pairs of terms. The following algorithm
achieves this.

2.4.1 Unification algorithm

This algorithm is due to Martelli and Montanari.1

Let G be a finite set of potential (desired) equations

G = {s1 =̇ t1, . . . , sn =̇ tn},

where si and tj are terms.
We transform this set into an equivalent set of equations

{x1 =̇ u1, . . . , xm =̇ um},

which can be read as the substitution {u1/x1, . . . , um/xm}. The variables xi
must be distinct, and may not occur in the terms uj.

The set G is modified step by step according to a set of rules. At any
step, the unification may fail. In that case, there is no substitution that
simultaneously unifies each pair in the original G. The modification rules are
as follows:

delete Pairs of equal terms puts no further restrictions on the unification.

G ∪ {t =̇ t} ⇒ G

decompose Composite terms are equal if their parts are equal.

G ∪ {f(s0, . . . , sk) =̇ f(t0, . . . , tk)} ⇒ G ∪ {s0 =̇ t0, . . . , sk=̇tk}

conflict Composite terms constructed with different function symbols can-
not be unified. If this is required, the unification fails.

G ∪ {f(s0, . . . , sk) =̇ g(t0, . . . , tk)} ⇒ ⊥ if f 6= g

1https://en.wikipedia.org/wiki/Unification_(computer_science)

4

https://en.wikipedia.org/wiki/Unification_(computer_science)

swap Left side of potential equations must be variables.

G ∪ {t =̇ x} ⇒ G ∪ {x =̇ t} t is not a variable

eliminate Account a potential equations by substituting in all other equa-
tions.

G ∪ {x =̇ t} ⇒ G[t/x] ∪ {x =̇ t} if x 6∈ vars(t), x ∈ vars(G)

check A variable cannot be replaced by a term containing that variable.

G ∪ {x =̇ f(s0, . . . , sk)} ⇒ ⊥ if x ∈ vars(f(s0, . . . , sk))

Theorem 10. Iterating the above steps on a set G of potential equations
yields an MGU for G, or fails if no unifier exists.

3 Resolution for Propositional Logic

Resolution for Propositional Logic is a calculus for checking if a propositional
formula is satisfiable. We are going to assume the formula is on CNF. Recall
that if F is on CNF, we write

F = {{L1
1, . . . , L

n1
1 }, . . . , {L1

m, . . . , L
nm
m }}.

A valuation v satisfies a clause {Li | 1 ≤ i ≤ n} if it satisfies at least one
Li. A valuation satisfies a formula F = {Ci | 1 ≤ i ≤ n} if it simultaneously
satisfies each Ci. A clause or set of clauses is satisfiable if some valuation
satisfies it.

Note that an empty disjunction is considered contradictory, while an
empty conjunction is considered valid.

Definition 11 (Ground resolvent). Let C1 and C2 be ground clauses. C is
a ground resolvent for C1 and C2 if for some ground literal L, L ∈ C1 and
L ∈ C2, and

C = (C1 \ {L}) ∪ (C2 \ {L})

Lemma 12. Let C1 = {A1, . . . , An, L} and C2 = {B1, . . . , Bm, L} be ground
clauses, where Ai, Bj and L are ground literals. The ground resolvent for C1

and C2 is C = {A1, . . . An, B1, . . . , Bm}. If a valuation v satisfies C1 and C2,
then v also satisfies C.

5

Proof. Exercise to the reader.

Definition 13 (Ground resolution). Let S be a set of ground clauses. The
ground resolution of S, denoted R(S), is the set S together with all the
ground resolvents of all pairs of clauses in S.

Lemma 14. A valuation v satisfies S if and only if it satisfies R(S).

Proof. The only if-direction follows immediately from Lemma ??. For the
other direction, observe that S ⊆ R(S).

We can now iterate the ground resolution.

Definition 15 (n-th resolution). The n-th resolution of S, denoted Rn(S),
is defined as follows:

R0(S) = S

Rn+1(S) = R(Rn(S)).

The resolution process must terminate, since the number of distinct clauses
that can be created from the literals in S is finite.

Theorem 16. If for some n, ∅ ∈ Rn(S), then S is unsatisfiable. Otherwise,
S is satisfiable.

Proof. Using induction on Rn, we can show that v satisfies S if and only if
it satisfies Rn(S). Thus, if ∅ ∈ Rn(S) for some n, S is unsatisfiable, since no
valuation satisfies ∅.

If there is no n such that ∅ ∈ Rn(S), let k be the lowest number such
that Rk+1(S) = Rk(S). Let P1, . . . , Pm be all the atomic formulas occurring
in Rk(S). We now define recursively the set M so that M0 = ∅, and for
each 0 ≤ i < m, Mj+1 is the set Mj ∪ {Pj+1} unless some clause in Rk(S)
consists only of complements of literals in Mj∪{Pj+1}, in which case, Mj+1 =
Mj ∪ {¬Pj+1}. We now define a valuation v, such that v(Pi) = 1 if and only
if Pi ∈Mm. (It follows that v(L) = 1 for all L ∈Mm.)

Claim: v satisfies S. If not, there is a least 0 < j ≤ m such that
some clause C ∈ Rk(S) contains only complements of literals in Mj. This
is only possible if C contains only literals in Mj−1 ∪ {Pj}, and thus, Mj =
Mj−1 ∪ {¬Pj}. By j being least, we know that C contains Pj, but since
Mj = Mj−1 ∪ {¬Pj}, and by j being least, some clause D ∈ Rk(S) must
contain only literals in Mj, including ¬Pj. Since Pj ∈ C and ¬Pj ∈ D, we
can create the resolvent of B of C and D. This resolvent will either be ⊥,
which it cannot be by assumption, or contain only complements of Mj−1,
which contradicts j being least.

6

We can now use the n-th resolvent to define a calculus for determining
whether or not a CNF formula is a contradiction. Theorem 17 can then be
restated as

Theorem 17. Calculating the n-th resolvent to fix-point constitutes a sound
and complete calculus for CNF unsatisfiability.

4 Resolution for First Order Logic

Resolution for First Order Logic works much the same as for Propositional
Logic. One of the major differences is that we can no longer assume the
resolution operation has a fix-point.

We assume that the input formula is always on Skolem and Prenex Normal
Form, with the matrix on Conjunctive Normal Form. We will make use of
the fact that ∀ distributes over ∧:

∀x1 . . . xn(C1 ∧ . . . ∧ Cm) ⇔ ∀x1 . . . xnC1 ∧ . . . ∧ ∀x1 . . . xnCm.

Since we only consider close formulas, and we only have universal quan-
tification, we will no longer write out the quantifiers. We can therefore adopt
the notation of the previous sections:

φ = {C1, . . . , Cm}.

Note that M |= ∀~xφ if and only if M |= ∀~xCj for each j.
We now extend the notion of ground resolvents.

Definition 18 (Resolvent). Let C1 and C2 be clauses. C is a resolvent for
C1 and C2 if

1. L1 ∈ C1 and L2 ∈ C2 are literals,

2. σ is an MGU of L1 and L2, and

3. C = [(C1 \ {L1}) ∪ (C2 \ {L2})]σ.

Lemma 19. Let M be some model. If M |= C1, C2, and C is a resolvent of
C1 and C2, then M |= C.

Proof. Left as an exercise. Note that M |= ∀xφ if and only if M |= φ[t/x]
for any term t, and that M |= ∀xφ(x) if and only if M |= ∀yφ(y) (where
y 6∈ FV (φ(x))). Remember that each variable is universally quantified.

7

We now define the resolution R and n-th resolution Rn in exactly the
same way as before. We prove a set of clauses S to be unsatisfiable if and
only if Rn(S) contains ⊥.

Since validity in First Order Logic is in general undecidable, we cannot
expect to have the guarantee of termination we had for Propositional Logic.
Indeed, there is no guarantee that Rn(S) will ever reach a fix-point for a
satisfiable S. As for Natural Deduction and LK, we have soundness and
completeness, but not decidability.

8

	Introduction
	Preliminaries
	Conjunctive Normal Form
	Prenex Normal Form
	Skolem Normal Form
	Unification
	Unification algorithm

	Resolution for Propositional Logic
	Resolution for First Order Logic

