
Journal of Symbolic Computation 36 (2003) 139–161

www.elsevier.com/locate/jsc

leanCoP: lean connection-based theorem proving

Jens Otten∗, Wolfgang Bibel

Fachgebiet Intellektik, Fachbereich Informatik, Darmstadt University of Technology, Alexanderstr. 10,
64283 Darmstadt, Germany

Received 11 October 2000; accepted 15 May 2001

Abstract

The Prolog program

implements a theorem prover for classical first-order (clausal) logic which is based on the connection
calculus. It is sound and complete (provided that an arbitrarily largeI is iteratively given), and
demonstrates a comparatively strong performance.
© 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

The connection calculus (Bibel, 1983, 1987, 1993), the connection tableau calculus
(Letz et al., 1994) and the similar model elimination calculus (Loveland, 1968) are popular
and successful proof procedures because of their goal-oriented search strategy. Several
proof systems based on one of these approaches have been developed, e.g. KOMET (Bibel
et al., 1994), SETHEO (Letz et al., 1992; Moser et al., 1997) and METEOR(Astrachan and
Loveland, 1991) to name but a few. All these systems have shown to be an appropriate
basis to automate formal reasoning in classical first-order logic.

∗ Corresponding author. Tel.: +49-6151-162100; fax: +49-6151-165326.
E-mail address:jeotten@informatik.tu-darmstadt.de (J. Otten).

0014-5793/03/$ - see front matter © 2003 Elsevier Science Ltd. All rights reserved.
doi:10.1016/S0747-7171(03)00037-3

140 J. Otten, W. Bibel / Journal of Symbolic Computation 36 (2003) 139–161

The Prolog program shown in the abstract has been developed in the context of a
graduate course about “Automated Deduction”. Its main purpose was to demonstrate a
small and easy to use implementation of the (clausal) connection calculus which can
easily be understood and modified by the students themselves. It turned out that the
implementation is not only very compact but also shows surprisingly good performance.

The interest inlean theorem provingarose after the theorem proverleanTAP (Beckert
and Posegga, 1995) became popular.leanTAPimplements a free-variable semantic tableau
calculus and its minimal version consists only of eight lines of Prolog code.leanTAP
showed that it is possible to reach considerable performance by using very compact code,
thus making lean theorem provers an interesting alternative for applications where state-
of-the-art performance is not required. In contrast to huge proof systems using a lot of
sophisticated techniques, lean theorem provers can easily be modified and adapted for
special purposes. Furthermore it is much easier to verify a few lines of Prolog code than to
verify thousands of lines of, e.g., C code.

leanCoP consists only of three Prolog clauses. LikeleanTAP the minimal version
is only a few lines long. The underlying calculus though is entirely different: the
connectedness condition needs a different kind of implementation techniques. Whereas
leanTAP performs well on formulas in negation normal form, the performance can be
considerably improved by the connection-based approach ofleanCoP in particular for
formulas in clausal form.leanCoP even finds proofs for a number of problems which
cannot be solved by current state-of-the-art theorem provers. Thus our prover follows the
tradition of lean theorem proving, giving lean yet efficient code.

Outline of the paper

In Section 2we will explain in detail the Prolog source code ofleanCoP as well as some
basic techniques used within the code.Section 3presents performance results obtained
by extensive experimental tests on problems in the TPTP library. We compareleanCoP
with three other well-known theorem provers based on different calculi: the lean semantic
tableau proverleanTAP (Beckert and Posegga, 1995), the Prolog technology theorem
prover PTTP (Stickel, 1992) and the resolution-based theorem prover OTTER (McCune,
1994). In Section 4we will describe an easy way to refine the depth-bounded search of
leanCoP. In Section 5we will prove completeness and correctness ofleanCoP. To this
end we transform the underlying connection calculus stepwisely into a purely declarative
Prolog program. We conclude with a short summary, some remarks on related work, and a
brief outlook on further research inSection 6.

We assume the reader to be familiar with the basic ideas of Prolog and the connection
calculus. SeeClocksin and Mellish(1981) for an introduction to Prolog andBibel (1993)
for an introduction to the connection calculus.

2. The program

Our prover is based on the simplest version of aconnection calculus(Bibel, 1983,
1987, 1993) and realizes a proof procedure for (full) first-order clause logic. In contrast
to (connection) tableau calculi which generate a number of intermediate formulas from the

J. Otten, W. Bibel / Journal of Symbolic Computation 36 (2003) 139–161 141

original one, calculi based on theconnection methodoperate exclusively on a single copy
of the given formula. If one abstracts from this difference which, however, is important for
efficiency, a connection calculus can be considered as constructing aconnection tableau
(Letz et al., 1994) where open subgoals are selected in a depth-first way.

The process starts by selecting astart clausebeforeextension stepsand reduction
stepsare repeatedly applied. Whereas the extension step connects a subgoal literal to
a complementary literal of a new clause instance, the reduction step connects it to a
complementary literal of the so-calledactive path. The extension step actually realizes
the goal-oriented proof search.

To prove a formula we first need to translate the given first-order formula into a set of
clauses. We use the positive representation throughout the paper, i.e. weprovea formula
in disjunctive normal form which is equivalent to refuting its negation in conjunctive
normal form. Consider for example the following formula, which is problem 21 ofPelletier
(1985): (∃X(p ⇒ f (X)) ∧ ∃X(f (X) ⇒ p)) ⇒ ∃X(p ⇔ f (X)). The translation
to disjunctive skolemized normal form yields(p ∧ ¬ f (a)) ∨ (f (b) ∧ ¬p) ∨ (p ∧
f (X)) ∨ (¬p ∧ ¬ f (X)) which can be directly represented by the clause set ormatrix
{{p,¬ f (a)}, { f (b),¬p}, {p, f (X)}, {¬p,¬ f (X)}}.

We will use Prolog lists to represent sets, Prolog terms to represent atomic
formulas, Prolog variables to represent first-order variables, and “-” to represent
the negation “¬”. Thus the above clause set is represented by the Prolog
list [[p,-f(a)],[f(b),-p],[p,f(X)],[-p,-f(X)]] called Mat in the following
program.

We use the Prolog predicatesprove/2 (with two arguments) andprove/4 (with four
arguments) to implementleanCoP. The first Prolog clause ofprove/2 selects a start
clause from the given clause set. The two Prolog clauses ofprove/4 realize the extension
and reduction steps. A second Prolog clause ofprove/2 (discussed inSection 2.3)
can be added to realize an iterative deepening proof search which is necessary to gain
completeness.

2.1. Selecting a start clause

The Prolog predicate

succeeds if there is a connection proof for the clause setMat whose active path lengths for
all extension steps to first-order clauses, i.e. clauses which contain at least one variable, are
limited byPathLim.

A start clauseCla is selected by the (built-in) predicateappend. Usually append is
used to append two lists, e.g.append([a],[b,c],L) yieldsL=[a,b,c]. If the first two
arguments are uninstantiated, all possible solutions for them are given on backtracking.

142 J. Otten, W. Bibel / Journal of Symbolic Computation 36 (2003) 139–161

For example,append(A,[X|B],[a,b,c]),append(A,B,C) will produce the three
solutionsX=a,C=[b,c], X=b,C=[a,c], andX=c,C=[a,b]. It realizes an easy way to
successively select an element from a list, returning the list without this element.

Since it is sufficient to consider only positive start clauses, we will only select clauses
Cla which do not contain any negative literals, i.e. no literals of the form¬q. Only if Cla
is a positive clause the goal\+member(-_,Cla) succeeds.

Afterwards the predicateprove/4which realizes extension and reduction step is called.
The actual proof search is started using the special literal “!” as the root. Instead of taking
the selected start clause as the first subgoal clause, we start the proof search with the
subgoal containing only “!” and add the literal “¬!” to the original start clause. The literal
“!” should not occur in the clause setMat, so that the original start clause will be used for
the first extension step. This kind of initial step is necessary in order to allow copies of the
start clause later on1. Note that the “!” as used in this context isnot a Prolog cut.

To prove our previous example using a maximal path length of 2, we have to
call the goalprove([[p,-f(a)],[f(b),-p],[p,f(X)],[-p,-f(X)]],2)which will
succeed. Hence our original formula is valid.

2.2. The extension and the reduction step

The Prolog predicate

succeeds if there is a proof for the clause of open subgoalsCla using the clauses inMat and
the activePath where the active path lengths for all extension steps to first-order clauses
are limited byPathLim.

If the clause of open subgoals is empty, we do not have to perform any further search.
In this case the first clause ofprove/4 will succeed. Otherwise the second clause of the
predicateprove/4 matches.

Now we try to find a solution for the literalLit from the open subgoals. AfterNegLit
is bound to the negation ofLit, it is checked whether an application of a reduction step

1 Starting withprove(Cla,Mat1,[],PathLim) instead results in incompleteness.

J. Otten, W. Bibel / Journal of Symbolic Computation 36 (2003) 139–161 143

is possible, i.e. whetherNegLit unifies with an element ofPath, using the (built-in)
predicatemember. For this sound unification has to be used2. If a reduction step is
performed we skip to the last line whereprove/4 is called to find solutions for the
remaining subgoals inCla. Otherwise an extension step is performed which will first select
a clauseCla1 from Mat usingappend as explained before. A copyCla2 of the clause
Cla1 is made (where all variables inCla2 are renamed)3 using the (built-in) predicate
copy term. And an element ofCla2 which unifies withNegLit is selected using again
our “append technique”. Again sound unification has to be used for unifyingNegLit with
an element ofCla2. Cla3 is bound to the remaining literals inCla2.

If the clausesCla1 and Cla2 are (syntactically) identical, i.e. do not contain any
variables,Mat1 is bound to the remaining clauses inMat (without the clauseCla1).
Otherwise the clauseCla1 is included in the setMat1, after it has been checked that
the lengthK of the activePath does not exceed the limitPathLim. Limiting the active
path is necessary to achieve completeness within Prolog’s incomplete depth-first search
strategy. “Goal1 -> Goal2; Goal3” implements the if-then-else construct in Prolog. It
succeeds if eitherGoal1 succeeds and thenGoal2 succeeds or else ifGoal1 fails, and then
Goal3 succeeds. There is no backtracking overGoal1 once it has succeeded (i.e. there is
an implicit cut). Note that we slightly reordered the clauses inMat1. Clauses inMatB,
which have not been investigated during the current extension step, are placed ahead of all
other clauses inMat1. In general this leads to a better arrangement of the search space.

Finally prove/4 is called to find solutions for the new clause of open subgoalsCla3,
whereLit has been added toPath, and for the remaining open subgoals inCla.

2.3. Iterative deepening

If the following clause is added after the first clause ofprove/2

iterative deepening on the proof search depth, i.e. the length of the active path, is performed
yielding completeness for first-order logic. The (built-in) predicatenonground(Mat)
succeeds ifMat does contain at least one (first-order) variable4. In this caseMat represents a
first-order formula and the limitPathLim is increased before the proof search is restarted.
Otherwise, ifMat represents a variable-free orground formula, the predicate fails and
the clause setMat is not valid. Remember that we do not check the length ofPath for
variable-free clauses, so we do not need to increasePathLim for variable-free formulas.
This immediately yields a decision procedure for propositional logic.

For our previous example we start the proof search using iterative deepening by
prove([[p,-f(a)],[f(b),-p],[p,f(X)],[-p,-f(X)]],1). There is no proof with
a path limit of 1, but the second proof attempt using a path limit of 2 will eventually
succeed.

2 In eclipse Prolog sound unification is switched on withset flag(occur check,on).
3 Hence it is not necessary for the set of input clauses to have disjoint variables.
4 In some Prolog dialects has to be used for this purpose instead.

144 J. Otten, W. Bibel / Journal of Symbolic Computation 36 (2003) 139–161

Table 1
Overall performance ofleanCoP on the TPTP library

Number of all tested problems Problems solved within 300 s

2200 (100%) 750 (34.1%)
390 185 121 54
Less than 1 s 1–10 s 10–100 s 100–300 s

Table 2
Performance on TPTP library classified with respect to problem rating

Rating 0.0 0.01–0.32 0.33–0.65 0.66–0.99 1.0 ?
Total 1308 189 326 165 53 159
Solved 673 (51%) 26 (14%) 29 (9%) 5 (3%) 0 (0%) 17 (11%)

3. Performance

We have testedleanCoP on the problems contained in the current version 2.3.0 of
the TPTP library (Sutcliffe and Suttner, 1998). We have tested it on all 2193 propositional
and first-order problems in clausal form which are known to be valid (or unsatisfiable using
negative representation) and all seven propositional problems known to be invalid (or satis-
fiable). No reordering of clauses or literals has been done. When transforming the formulas
into an appropriate input format forleanCoP we translated literals of the form++q into
-q and literals of the form--q into q, respectively, since we use a positive representation.

All tests were performed on a SUN Ultra10 with 128 Mb memory using eclipse Prolog
version 3.5.2. When compilingleanCoP the generation of debug information has been
switched off using “nodbgcomp”. The time limit for all proof attempts was 300 s.

Even though a lot of the problems are rather hard,leanCoP was able to solve 750
problems, 390 of them in less than 1 s (seeTable 1). In the TPTP library the difficulty
of each problem is rated from 0.0 to 1.0 relative to state-of-the-art theorem provers. A
rating of 0.0 means that all state-of-the-art provers can solve the problem, a rating of 1.0
means that no state-of-the-art prover can solve it.leanCoP solves more than half of the
problems rated 0.0.Table 2shows the number of solved problems classified with respect
to the problem rating. Problems rated “?” are those problems which are not rated yet.

leanCoP is able to solve 60 problems rated higher than 0.0. They are compiled in
Table 3. For each of these problems its name and rating is given as well as the timings in
seconds. Five of the problems inTable 3are rated 0.67 which means that most state-of-
the-art provers cannot prove them. Four of them are within the field theory (FLD) domain,
the other (PUZ0034-1.004) is the problem to place four queens on a 4× 4 chess board, so
that no queen can attack another one.

3.1. leanCoP compared to OTTER, PTTPandleanTAP

We have comparedleanCoP with three other well-known theorem provers: OTTER 3.1
(and MACE 1.4), PTTP (Prolog version 2e), andleanTAP(version 2.3). OTTER (McCune,
1994) is a theorem prover based on resolution and paramodulation which has been very

J. Otten, W. Bibel / Journal of Symbolic Computation 36 (2003) 139–161 145

Table 3
TPTP problems solved byleanCoP and rated greater than 0.0

Problem Rating OTTER PTTP leanCoP

BOO012-1 (0.17) 3 51.04 28.53

CAT003-2 (0.50) >300 >300 34.87
CAT003-3 (0.11) >300 113.48 6.76
CAT012-4 (0.17) 1 0.42 46.21

COL002-3 (0.33) >300 0.07 0.03

FLD013-1 (0.67) >300 26.07 1.31
FLD023-1 (0.33) >300 0.47 1.66
FLD025-1 (0.67) >300 25.71 1.31
FLD030-1 (0.33) 1 0.10 0.08
FLD030-2 (0.33) >300 0.13 1.28
FLD037-1 (0.33) >300 0.91 4.45
FLD060-1 (0.67) >300 4.53 1.59
FLD061-1 (0.67) >300 5.78 1.91
FLD067-1 (0.33) >300 0.16 3.95
FLD070-1 (0.33) >300 0.15 6.91
FLD071-3 (0.33) 2 0.12 1.03

GEO026-3 (0.11) 2 >300 129.27
GEO041-3 (0.22) 1 5.65 296.70

GRP008-1 (0.22) 1 95.23 2.31

LCL045-1 (0.20) 119 0.41 1.78
LCL097-1 (0.20) 1 0.85 0.75
LCL111-1 (0.20) 1 0.11 0.25
LCL130-1 (0.20) 1 0.27 0.03
LCL195-1 (0.20) sos-empty 0.57 27.00

NUM283-1.005 (0.20) 1 0.37 0.44
NUM284-1.014 (0.20) 1 >300 290.56

PLA004-1 (0.40) >300 >300 12.44
PLA004-2 (0.40) >300 >300 18.69
PLA005-1 (0.40) >300 >300 1.38
PLA005-2 (0.40) >300 >300 0.38
PLA007-1 (0.40) >300 10.82 0.44
PLA009-1 (0.40) >300 >300 0.19
PLA009-2 (0.40) >300 >300 6.62
PLA011-1 (0.40) >300 >300 0.44
PLA011-2 (0.40) >300 >300 1.38
PLA012-1 (0.40) >300 >300 211.88
PLA013-1 (0.40) >300 >300 0.75
PLA014-1 (0.40) >300 >300 6.56
PLA014-2 (0.40) >300 >300 6.88
PLA016-1 (0.40) >300 5.78 0.25
PLA019-1 (0.40) >300 9.59 0.19
PLA021-1 (0.40) >300 >300 0.56
PLA022-1 (0.40) >300 1.35 1.19
PLA022-2 (0.40) >300 0.14 0.12
PLA023-1 (0.40) >300 >300 231.69

PUZ034-1.004 (0.67) sos-empty 2.86 35.81

(continued on next page)

146 J. Otten, W. Bibel / Journal of Symbolic Computation 36 (2003) 139–161

Table 3
(continued)

Problem Rating OTTER PTTP leanCoP

RNG006-2 (0.20) 5 0.13 0.94
RNG040-1 (0.11) 1 0.16 0.06
RNG040-2 (0.22) 1 1.30 0.75
RNG041-1 (0.22) 1 0.41 159.12

SET016-7 (0.12) >300 0.81 183.31
SET018-7 (0.12) >300 0.86 187.06
SET060-6 (0.12) 1 0.58 0.62
SET060-7 (0.12) 1 0.63 0.69
SET152-6 (0.12) 1 2.24 46.50
SET153-6 (0.12) >300 2.20 9.62
SET187-6 (0.38) >300 >300 238.06
SET231-6 (0.12) >300 0.64 170.50

SYN048-1 (0.20) 1 0.01 0.01
SYN311-1 (0.20) sos-empty 6.51 176.69

successful in proving difficult mathematical problems. PTTP (Stickel, 1988, 1992) is an
implementation of the model elimination theorem-proving procedure that extends Prolog
to the full first-order calculus. It achieves a high inference rate by compiling the input
formula into a Prolog program. Sound unification, iterative deepening, and the reduction
rule are added to gain a complete search procedure. It uses an inference-bounded proof
search (see alsoSection 4). leanTAP (Beckert and Posegga, 1995; Posegga and Schmitt,
1999) is a first-order theorem prover based on free-variable semantic tableaux. Its very
compact Prolog implementation achieves a surprisingly good performance, in particular
for input formulas in non-clausal form.

The timings of OTTER on the TPTP library are regularly published (Argonne National
Laboratory, 2000). They were obtained on a 400 MHz Linux machine which should be
slightly faster than our machine. The timings of PTTP and leanTAP were obtained on
our SUN Ultra10 using eclipse Prolog. All problems have been converted into PTTP and
leanTAP syntax by using the tools provided with the TPTP library. Again no reordering
of clauses or literals has been done. The overall performance of these three provers and
leanCoP is shown inTable 4.

As expected OTTER solves the largest number of problems: 1602 out of the tested 2200
problems, most of them within 1 s. 249 of the solved problems are rated difficult, i.e.
higher than 0.0. On 59 problems OTTER failed because of an empty set-of-support (“sos”)
or due to a lack of memory. OTTER cannot solve 39 of the 60 difficult problems solved
by leanCoP which are shown inTable 3. Most of these problems are within the FLD
domain and the planning (PLA) domain. PTTP solves 999 out of the tested 2200 problems,
121 of them are rated higher than 0.0.leanTAP only solves 135 problems, two of them
(FLD067-1 and SYN048-1) are rated “difficult”.leanCoP solves every problem which is
solved byleanTAPexcept problem SYN350-1.

The problems in the TPTP library are categorized in 28 different domains, e.g. algebra
(ALG), category theory (CAT), combinatory logic (COL), field theory (FLD), geometry

J. Otten, W. Bibel / Journal of Symbolic Computation 36 (2003) 139–161 147

Table 4
Overall performance of OTTER, PTTP, leanTAP, andleanCoP

OTTER PTTP leanTAP leanCoP

Solved (total) 1602 999 137 750

0 to<1 s 1209 590 110 390
1 to<10 s 142 295 10 185
10 to<100 s 209 77 16 121
100 to<200 s 31 26 0 31
200 to 300 s 11 11 1 23

Problems rated 0.0 1230 851 130 673
Problems rated>0.0 249 121 2 60
Problems rated ? 123 27 5 17

Proved 1595 999 135 745
Refuted 7 0 2 5
Timeout (>300 s) 539 1201 1978 1450
Failed (sos/memory) 59 0 85 0

(GEO), group theory (GRP), logic calculi (LCL), planning (PLA), puzzles (PUZ), set
theory (SET), syntactic (SYN). SeeSutcliffe and Suttner(1998) for a detailed description.
Table 5shows the number of problems each prover has successfully solved within each
domain. The last two columns are explained in the next section.

OTTER solves the largest number of problems in most domains. Within the FLD domain
PTTP solves more problems than all other provers.leanCoP solves 25 problems in the
PLA domain which is considerably more than solved by OTTER (five problems), PTTP

(11 problems), andleanTAP (zero problems). Due to its goal-oriented connection-based
approachleanCoP in general performs good onHorn problems, i.e. problems containing
at most one negated literal in each clause. It performs rather bad on problems containing
(only) equality since no special techniques for dealing with equality have been integrated
into leanCoP.

3.2. leanCoP on problems of CASC-17

CASC is a competition where the performance of sound, fully automatic first-order the-
orem proving systems is evaluated. We have runleanCoP on all 135 valid (original) prob-
lems in clausal form selected for the CASC-17. The problems were taken from the TPTP
library where the clause order has been changed randomly.leanCoP is able to solve ten
out of the 135 tested problems. They are compiled inTable 6. More than half of the solved
problems are from the PLA domain. OTTERwas able to solve 14 out of the 135 tested prob-
lems. PTTP solves six problems whereasleanTAPdoes not solve any selected problem.

The selected problems are divided into classes according to the problem characteristics.
The MIX class contains mixed “really-non-propositional theorems” in clausal form. Mixed
means Horn and non-Horn problems, with or without equality, but not unit equality
problems. Really-non-propositional means problems with an infinite Herbrand universe.
leanCoP solves nine problems which belong to the MIX class (all solved problems
except COL020-1). That is one more problem than OTTER was able to solve in this class.

148 J. Otten, W. Bibel / Journal of Symbolic Computation 36 (2003) 139–161

Table 5
Performance on TPTP library ordered with respect to problem domains

Domain OTTER PTTP leanTAP leanCoP leanCoPi leanCoP(i)

ALG 4 0 0 0 0 0
ANA 0 0 0 0 0 0
BOO 59 15 0 8 8 11
CAT 45 26 0 21 25 28
CID 2 0 0 0 0 0
CIV 11 6 0 2 0 2
COL 94 53 0 45 49 49
COM 5 5 0 5 5 5
FLD 68 92 2 37 64 64
GEO 86 53 1 25 47 48
GRA 1 1 1 1 0 1
GRP 238 93 2 83 80 86
HEN 60 28 0 8 15 15
KRS 9 8 3 7 5 7
LAT 19 1 0 1 1 1
LCL 272 129 35 99 118 118
LDA 13 1 0 0 1 1
MGT 0 0 0 0 0 0
MSC 9 7 1 7 5 7
NUM 27 21 4 18 20 21
PLA 5 11 0 25 11 25
PRV 7 4 0 4 4 5
PUZ 45 27 12 28 22 28
RNG 55 19 0 16 17 17
ROB 14 4 0 1 4 4
SET 139 111 4 52 60 66
SYN 310 279 71 252 225 256
TOP 5 5 1 5 4 5

Proved 1595 999 135 745 790 865
Refuted 7 0 2 5 0 5

Total 1602 999 137 750 790 870

For the final results the proof systems have been ranked according to the number of solved
problems and the average runtime for successful solutions.Table 7shows an extract from
the final result summary for the MIX class where the result ofleanCoP has been included.
The number of solved problems as well as the average runtime for successful solutions are
given. Since our machine is about two times faster than the hardware used for CASC-17,
we doubled all proof times ofleanCoP and used a time limit of 250 s instead of the 500 s
used in the competition.leanCoP would have ranked eighth among nine proof systems.

The MIX class is divided into five categories. One of these categories is the HNE
category which contains Horn problems with no equality. Again an extract from the final
result summary for the HNE category is shown inTable 8. From the ten problems solved
by leanCoP all six problems in the PLA domain as well as problem SYN311-1 belong to
this category. This would have been a remarkable sixth rank among nine proof systems.

J. Otten, W. Bibel / Journal of Symbolic Computation 36 (2003) 139–161 149

Table 6
Problems of CASC-17 solved byleanCoP

Problem Rating Time (s)

CAT002-4 (0.17) 8.58
CAT003-2 (0.50) 7.15
COL020-1 (0.00) 0.05
PLA004-2 (0.40) 82.31
PLA005-2 (0.40) 0.36
PLA009-2 (0.40) 1.13
PLA011-2 (0.40) 0.30
PLA014-1 (0.40) 89.34
PLA019-1 (0.40) 4.61
SYN311-1 (0.20) 181.77

Table 7
CASC-17 results for MIX class withleanCoP’s result added

E E-SETHEO . . . BLIKSEM leanCoP Otter

Attempted 75 75 . . . 75 75 75
Solved 57 57 . . . 18 9 8

Average time (s) 79.31 160.53 . . . 65.33 83.46 55.86

Table 8
CASC-17 results for HNE category withleanCoP’s result added

E . . . VAMPIRE leanCoP BLIKSEM OTTER SCOTT

Attempted 15 . . . 15 15 15 15 15
Solved 15 . . . 10 7 3 1 1
Average time (s) 42.40 . . . 8.36 102.81 179.70 79.00 205.60

4. Refining the depth-bounded search

leanCoP uses a depth-first search strategy to explore the search space. After each
extension step the new subgoals are considered first before alternative connections are
checked. A depth-bounded search is necessary in order to investigate the whole search
space up to a certain depth limit. We used the proof depth, i.e. the length of the active
path, to bound the search depth and use iterative deepening to obtain completeness. This
path-boundedstrategy considers only proofs with|Path| < PathLimfor every active path
Pathand given path limitPathLim.

An inference-boundedapproach uses the number of inferences to limit the search depth.
As pointed out inLetz et al.(1994) both bounds have their disadvantages: the path-bounded
method does not sufficiently restrict the number of inferences, whereas the inference-
bounded strategy does not sufficiently limit the depth of the proof, i.e. the length of the
active path. A combination of both approaches seems to be an appropriate compromise.

150 J. Otten, W. Bibel / Journal of Symbolic Computation 36 (2003) 139–161

We want to integrate a “lean” combinedpath- and inference-boundedsearch strategy
into leanCoP. For the number of inferences we will only count extension steps and weight
each extension step with the number of new subgoal literals contained in the new clause.
Let Pathbe the active path,n the number of extension steps, andc1, . . . , cn the clauses to
which a connection step during the proof search has been established. Then we will restrict
the proofs to those with

|Path| +
n∑

i=1

(|ci | − 1) < Limit (1)

whereLimit is the depth bound which is used for the iterative deepening search.

4.1. TheleanCoPi program

We will shortly explain the new versionleanCoPi of our prover realizing the path- and
inference-bounded proof search approach. Only minor changes of the Prolog source code
were necessary. The Prolog predicate

succeeds if there is a connection proof for the clause setMat of a formula F , which
fulfils Eq. (1). The first proof step where a positive start clause is selected remains
unchanged; only a fifth argument is added when calling the actual proof search predicate
prove i/5.

The Prolog predicate

succeeds if there is a proof for the clause of open subgoalsCla using the clauses inMat
and the activePath which fulfils Eq. (1). The updated depth boundLimit1 is returned.
The first clause ofprove i/5 which succeeds for an empty set of open subgoals remains
unchanged. The added fifth argument is bound toLimit since the proof depth and the
number of inferences does not change.

The second clause ofprove i/5 is slightly modified to check the refined depth-
bounded condition expressed inEq. (1). Instead of calculating the term on the left side
of this equation we will subtract|ci | − 1 from Limi t after each extension step and use
the updatedLimi t to continue the search. In case of a reduction step the newLimit3
does not change, i.e. we only add “Limit3 is Limit”. In case of an extension step
we have to add “length(Cla3,N), Limit2 is Limit-N”. Cla3 is the clause used for
the extension step without the “connection literal”NegLit andLimit2 is the new limit.

J. Otten, W. Bibel / Journal of Symbolic Computation 36 (2003) 139–161 151

A fifth argument has to be added for the call ofprove i/5 to prove the remaining subgoals.
Furthermore, we move the check|Path| < Limit, i.e. “length(Path,K), K < Limit” to
the beginning of the Prolog clause. This last modification turned out to be more efficient
when the refined depth-bounded search strategy is used.

In the originalleanCoP program the depth limit is only checked for first-order clauses
making an increase of the depth limit for variable-free problems not necessary. Since
the leanCoPi version restricts the depth limit also for variable-free clauses, we have to
perform iterative deepening also for variable-free problems. This will slightly change the
last Prolog clause which realizes iterative deepening. Note thatleanCoPi is not a decision
procedure for propositional logic anymore.

4.2. Performance ofleanCoPi

We have testedleanCoPi on all relevant problems in the TPTP library. The selected
problems and the test environment are the same as described inSection 3. leanCoPi solves
790 (or 35.9%) of the tested 2200 problems, 22 are rated “?” and 57 of them are rated higher
than 0.0. All 21 of those problems rated higher than 0.0 which are not already solved by
leanCoP are compiled inTable 9(times are given in seconds). Even thoughleanCoPi

proves more problems thanleanCoP, it is in general a bit slower.
Table 5 shows how many problemsleanCoPi solves with respect to the problem

domain. The results are a bit closer to the results of the PTTP prover which also uses
an inference-bounded search. It performs considerably better on domains where PTTP

performs well, e.g. the FLD, GEO or HEN domain. On the other hand it performs
not so well on the PLA domain on whichleanCoP’s performance is excellent. The
last column ofTable 5considers all problems which are proven by eitherleanCoP or
leanCoPi .

5. Proving completeness and correctness

In order to prove completeness and correctness ofleanCoP we express the connection
calculus by a first-order formula so thatprove(M) is a logical consequence of this

152 J. Otten, W. Bibel / Journal of Symbolic Computation 36 (2003) 139–161

Table 9
Problems rated greater than 0.0 solved byleanCoPi but not byleanCoP

Problem Rating OTTER PTTP leanCoPi

CAT001-3 (0.11) 1 >300 19.17
CAT002-3 (0.11) 52 >300 32.92
CAT002-4 (0.17) 2 2.03 11.36
CAT004-4 (0.17) 88 84.72 94.85
CAT012-3 (0.11) 1 7.10 11.35

FLD002-3 (0.67) 1 0.87 283.47
FLD013-4 (0.33) 3 1.09 189.50
FLD016-3 (0.33) 24 0.32 176.94
FLD028-3 (0.33) 25 1.71 197.55
FLD067-3 (0.33) 32 0.14 17.34

GEO058-3 (0.22) 1 0.30 45.06
GEO059-3 (0.22) >300 0.37 26.59
GEO064-3 (0.12) 1 0.59 68.14
GEO065-3 (0.12) 1 0.56 68.28
GEO066-3 (0.12) 1 0.56 68.37

HEN007-6 (0.17) 1 3.73 155.08

LCL064-1 (0.40) 42 0.81 121.26
LCL230-1 (0.40) sos-empty 3.73 110.91
LCL231-1 (0.40) sos-empty 5.43 147.44

SET196-6 (0.12) 17 0.69 142.46
SET197-6 (0.12) 17 0.67 142.59

formula iff there is a derivation for the set of clausesM in the connection calculus.
This formula is then translated into a purely declarative Prolog program. We finally show
that Prolog’s depth-first search is complete for the constructed Prolog program. We will
first concentrate on the propositional case and extend our approach to the first-order case
afterwards.

5.1. Propositional logic

The connection calculus is based on thematrix characterization(Bibel, 1987) of logical
validity. Basic element is the connection, a pair of literals(L, L) with the same predicate
symbol but with different signs, i.e. one literal contains a negation, the other does not. A
pair (L, L) of propositionalliterals iscomplementaryiff they form a connection.

Definition 5.1. Let M be a matrix, i.e. a set of clauses, andC, C1 be clauses, i.e. sets of
literals. LetL, L be literals andP be a path, i.e. a set of literals. The axiom and the rules
of the propositionalconnection calculusare given inFig. 1. A matrix M is provableiff
there is a derivation forM in the connection calculus whose leaves are axioms.(C, M, P)

is provableiff there is a derivation for(C, M, P) in the connection calculus whose leaves
are axioms.

J. Otten, W. Bibel / Journal of Symbolic Computation 36 (2003) 139–161 153

Fig. 1. The connection calculus for propositional logic.

Lemma 5.1. A propositional formula F is valid, iff the matrix M of F is provable in the
propositional connection calculus.

Proof. SeeBibel (1987). �

Each axiom or rule of the form premise
conclusion is translated into an implication

∀ . . . [prove (conclusion)⇐ ∃ . . . prove (premise)] whereas an empty premise is translated
into true.

Definition 5.2. Let positive(C) be true iff the clauseC is positive, i.e. does not contain any
negation, and compl(L, L) be true iff the pair(L, L) is complementary. LetCoCalcbe
the following first-order formula which expresses the axiom and the rules of the connection
calculus inFig. 1.

Lemma 5.2. A matrix M is provable iff the formula CoCalc⇒ prove(M) is valid.

Proof. We show the following:M or (C, M, P) is provable iff there is a proof for
CoCalc � prove(M) or CoCalc � prove(C, M, P), respectively, in the sequent
calculus LK (Gentzen, 1935). Let M be a matrix,P be a path,C, C1 be clauses, and
L, L be literals. LetAxiomM,P be the following derivation in LK

154 J. Otten, W. Bibel / Journal of Symbolic Computation 36 (2003) 139–161

and letStartM,C be the following derivation in LK:

There are similar derivations forReductionM,P,C,L ,L

and forExtensionM,P,C,C1,L ,L in LK:

“⇒”: The proof is by structural induction on the construction of a proofS for M or
(C, M, P) in the connection calculus. Axiom: If the proofS consists only of the axiom-
rule thenC = {} andAxiomM,P is a proof forCoCalc� prove({}, M, P) in LK. Rules:
Let S be a proof forM or (C, M, P) where the start, reduction or extension rule is the last
rule inS, i.e.S has one of the following forms:

According to the induction hypothesis there are derivationsT1,T2,T3 andT4 in LK so that

J. Otten, W. Bibel / Journal of Symbolic Computation 36 (2003) 139–161 155

Fig. 2. A declarative version ofleanCoP for propositional logic.

are proofs forCoCalc� prove(M) or CoCalc� prove(C, M, P), respectively, in the
sequent calculus LK.C is a positive clause inS1, (L, L) is complementary inS2 for some
L ∈ P, and(L, L) is complementary inS3/S4. Thereforepositive(C) in StartM,C and
compl(L, L) in ReductionM,P,C,L ,L andExtensionM,P,C,C1,L ,L are true, and the inferences
∗ and∗∗ are correct.
“⇐”: Every proof forCoCalc � prove(M) or CoCalc � prove(C, M, P) in LK can
be build up only by using the derivationsAxiomM,P, StartM,C, ReductionM,P,C,L ,L, and
ExtensionM,P,C,C1,L ,L . By structural induction on the construction of such a proof in LK a
proof of M or (C, M, P), respectively, in the connection calculus can be constructed.�

The third and fourth implication of the formulaCoCalccan be simplified which yields
the following equivalent formula

which can again be transformed into the equivalent formulaCoCalc∗:

Lemma 5.3. The formula CoCalc∗ ⇒ prove(M) is valid for the matrix M iff the Prolog
program inFig. 2 succeeds for the goalprove(M).

Proof. The formulaCoCalc∗ and the Prolog program inFig. 2 are indeed equivalent,
since the following propositions hold.

156 J. Otten, W. Bibel / Journal of Symbolic Computation 36 (2003) 139–161

1. Implication “⇐”, disjunction “∨”, and conjunction “∧” are expressed in Prolog by
“:-”, “ ;”, and “,”, respectively. All variables occurring in the head of a Prolog
clause are implicitly quantified by universal quantifiers.

2. We can consider sets of literals and sets of clauses as ordered multisets. Ordered
multisets can be expressed by Prolog lists.

3. ∃X ∈ S (S1 = X\S∧ q(X, S1, S)) is true iff the Prolog goal “append(A, [X|B],S),
append(A,B,S1), q(X,S1,S)” succeeds.X, S, S1 correspond toX, S, S1, andA, B
are fresh variables not occurring elsewhere.

4. positive(C) is true iff the goal “\+member(-_,C)” succeeds.
5. compl(L, L) is true iff “-NegLit=Lit;-NegLit\=Lit,-Lit=NegLit” succeeds.
6. ∃X ∈ S is true iff the goal “member(X,S)” succeeds.
7. q(S) ⇔ ∃X ∈ S(r (X)∧q(S\X)) is equivalent toq({X f }∪Sf) ⇔ (r (X f)∧q(Sf))

whereX f is the first element of the (ordered) set{X f } ∪ Sf andS is a non-empty
set.

We assume the Prolog system to be correct and that sound unification is switched on5.
According to the semantics of a Prolog programP the following hold: if goal(...)
succeeds thenP ⇒ goal(. . .) is valid. If P ⇒ goal(. . .) is valid andgoal(...) termi-
nates, thengoal(...)will succeed. Note that the termination condition is essential, since
Prolog uses an incomplete depth-first search. Therefore our lemma is true, if the Prolog
program inFig. 2terminates for every goal “prove(M)” and matrixM.

append as well asmember terminate for all inputs. Thereforeprove(M) terminates
for every matrixM if prove(C,M,P) terminates for every clauseC, matrixM, and pathP.
The first clause ofprove(C,M,P) always terminates. Let #(C, M, P) := |C| + |M|
be the size of a goalprove(C,M,P) where |M| is defined as|M| := ∑

c∈M |c|.
Then the sizes of the twoprove goals within the second clause ofprove(C,M,P)
are #(C1\L, M\C1, P) = |C1| − 1 + |M| − |C1| = |M| − 1 < |C| + |M| and
#(C\L, M, P) = |C| − 1 + |M| < |C| + |M|. Since the size of these goals decreases
for each call and this size is always non-negative, i.e. #(C, M, P) ≥ 0 for all C, M, P,
every goalprove(C,M,P) terminates. �

Theorem 5.1. Let F be a (propositional) formula andM its matrix. The formula F is valid
iff prove(M) succeeds for the Prolog program inFig. 2.

Proof. Follows immediately fromLemmas 5.1–5.3, and the equivalence ofCoCalcand
CoCalc∗. �

5.2. First-order logic

The approach used for the propositional logic can easily be extended to prove com-
pleteness and correctness in the first-order case. Two more concepts have to be integrated
into the calculus: appropriate clauses of the given matrix have to be copied and the search
depth has to be limited to achieve completeness within Prolog’s incomplete search strategy.

5 Assuming sound unification for propositional logic is not necessary, but simplifies the proof.

J. Otten, W. Bibel / Journal of Symbolic Computation 36 (2003) 139–161 157

Fig. 3. The connection calculus for first-order logic.

Like for propositional logic the connection calculus for first-order logic is based on com-
plementary connections. A connection(σ (L), σ (L)) of first-order literals iscomplemen-
tary under a (first-order) substitutionσ iff their arguments are identical underσ .

Definition 5.3. Let M be a matrix,C, C1, C2 be clauses,L, L be literals,P be a path,
and σ be a substitution. The axiom and the rules of the connection calculus for first-
order logic are given inFig. 3. The extension rule is split into two versions: the usual
one for variable-free clausesC and a new one extension∗ for first-order clausesC, i.e.
clauses which contain variables. A matrixM is provable iff there is a substitutionσ , a
derivation forM in the connection calculus whose leaves are axioms, and all connections
are complementary underσ .

The calculus slightly differs from the one presented inBibel (1987) in the way copies
of clauses are made.

Lemma 5.4. A (first-order) formula F is valid, iff the matrix M of F is provable in the
first-order connection calculus.

Proof. SeeBibel (1987). �

Definition 5.4. Like for the propositional case we can transform the first-order calculus
into a formulaCoCalc1st (which has already been simplified):

wherecopy(C1, C2) is true iff the clauseC2 is a copy ofC1 where all variables inC2 have
been renamed.prop(C2) is true iff C2 is a propositional or variable-free clause.

158 J. Otten, W. Bibel / Journal of Symbolic Computation 36 (2003) 139–161

Lemma 5.5. A matrix M is provable iff there is a substitutionσ so that the formula
CoCalc1st ⇒ prove(M) is valid.

Proof. The proof is similar to the propositional case, i.e. we show by structural induction
that there is a proof forM in the connection calculus iff there is a proof forCoCalc1st �
prove(M) in the sequent calculusLK underσ . �
Lemma 5.6. The formula CoCalc1st ⇒ prove(M) is valid for the matrix M and some
substitutionσ iff prove(M) succeeds for theleanCoP program shown inSection2.

Proof. The formula CoCalc1st is equivalent to leanCoP without the added
arguments/predicates to restrict the search depth. In addition to the propositions given in
the proof ofLemma 5.3the following hold:

1. prove(C, M, {}) is true iff the goal “prove([!],[[-!|C]|M1],[])” succeeds with
C∈ M and M1= M\C. The start step implemented in Prolog uses a variable-free
start clauseC only once which will reduce the search space.

2. copy(C1, C2) is true iff the goal “copy term(C1,C2)” succeeds.
3. copy(C1, C2) ∧ ((prop(C2), q(. . .)) ∨ (¬prop(C2), r (. . .))) is true iff

copy term(C1,C2),(C1==C2 ->q(...); r(...)) succeeds.
4. The substitutionσ is calculated implicitly by Prolog.
5. Predicates within a (declarative) Prolog program can be reordered.
6. The goal “(-NegLit=Lit;-NegLit\=Lit,-Lit=NegLit),...” succeeds iff

“(-NegLit=Lit;-Lit=NegLit) -> ...” (which contains an implicit cut)
succeeds.

Sound unification has to be used in Prolog. Finally we show that Prolog’s depth-first search
is complete for theleanCoP program:prove(M,I) terminates for every matrixM and
path limit I. Similar to the propositional case we define the size ofprove(C,M,P,I) as
a tuple, i.e. #(C, M, P, I):= (|C| + |M|, |P|) with |M| := ∑

c∈M |c|. For each call the
first element of #(C, M, P, I) decreases or the second one increases. Whenever the first
element does not decrease, i.e.|P| is increased, it is checked whether|P| is smaller than
the given path limitI . Since|C| + |M| is non-negative, every goalprove(C,M,P,I)
terminates and thereforeprove(M,I) terminates. Performing iterative deepening onI
yields completeness for the first-order case.�
Theorem 5.2. Let F be a formula andM its matrix. The formula F is valid iffprove(M)
succeeds for the Prolog programleanCoP shown inSection2.

Proof. Follows immediately fromLemmas 5.4–5.6. �

6. Conclusion, related work and outlook

We have presented a compact Prolog theorem prover for first-order (clause) logic
which implements the basic connection calculus. It is sound, complete, and a decision
procedure for propositional logic. Due to the compact code the program can easily be
modified for special purposes or applications. On the other hand the Prolog program gives
a short declarative description of the connection calculus. The goal-oriented approach

J. Otten, W. Bibel / Journal of Symbolic Computation 36 (2003) 139–161 159

yields an astonishing performance, in particular for Horn problems without equality. We
ran leanCoP on a subset of the TPTP library and compared its performance with the
resolution-based prover OTTER, the compilation-based prover PTTP, and the tableau-based
proverleanTAP. Even though the performance of OTTER, a much larger and sophisticated
system, is in general better,leanCoP is able to solve several difficult problems for which
OTTER does not find a proof. PTTP is a much smaller implementation, though the source
code (including comments) still fills about 18 pages. It translates a given set of clauses
into a Prolog program and then uses Prolog’s inference system to carry out the actual
proof search. This yields an inference rate which is an order of magnitude higher than the
inference rate achieved withleanCoP. Still leanCoP and the refined versionleanCoPi

are able to solve almost as many problems from the TPTP library as PTTP does.leanTAP’s
source code has a size very similar to the size ofleanCoP, but behaves rather poor on
problems in clausal form. For problems in non-clausal formleanTAP’s performance is
expected to be much closer to that ofleanCoP. We integrated a combined path- and
inference-boundedsearch intoleanCoP which improves its behaviour on the TPTP library.
Finally we proved completeness and correctness by stepwisely transforming the connection
calculus into an equivalent declarative Prolog program.

Even thoughleanCoP is able to solve hard problems from the TPTP library, it is not
intended to be a state-of-the-art prover. To solve, e.g., difficult mathematical problems,
theorem provers like OTTER or E-SETHEO (Stenz and Wolf, 2000) are more appropriate.
But for a lot of applications state-of-the-art performance is not required. For example,
for interactive proof editors the integration of fully automatic provers can assist humans
to find proofs. Lean provers can easily be integrated and modified by people who do
not have a deep knowledge about fully automatic provers. Since it is much easier (and
faster) to understand a few lines of Prolog code than several thousand lines of, e.g., C
code, lean theorem provers are also very well suited for teaching purposes. Finally, for the
same reason it is also much easier to verify completeness and correctness of lean theorem
provers.

In Neugebauer and Schaub(1991) a pool-basedconnection calculus together with an
one-page Prolog program is described. Though the underlying calculus is similar, the actual
implementation technique is different. Furthermore the positive-start-clause technique as
well as the restriction of clause copies to first-order clauses are missing. In contrast to
leanCoP it is not a decision procedure for propositional formulas. Another lean prover for
classical logic is SATCHMO (Manthey and Bry, 1988) which is a short model-generation
prover written in Prolog. Input clauses are modified within the Prolog database making an
extensive use ofassert andretract necessary, which destroys the declarative semantics
of the Prolog program. SATCHMO does essentially ground level reasoning and performs
rather poor on the problems in the TPTP library.

Due to its compact size new techniques can easily be integrated intoleanCoP’s code.
This makes experimental evaluations of novel techniques very easy. We have, for example,
implemented a slightly modified version ofleanCoP where the given set of clauses is
stored in Prolog’s database (i.e. one Prolog clause for each literal) instead of representing
it as a Prolog list. This technique combines the advantages of “Prolog technology” theorem
provers (like e.g. PTTP) and “lean” theorem provers by using Prolog’s fast inference
machine to find connections without losing readability, modifiability, and flexibility of

160 J. Otten, W. Bibel / Journal of Symbolic Computation 36 (2003) 139–161

lean implementations. Experimental results showed that it improves the performance
of leanCoP considerably (e.g. SET016-7 fromTable 3 is proved in 1.87 s instead of
183.31 s). On average the timings for solving problems of the TPTP library are about ten
times faster. Other possible improvements include the integration of factorization, lemmata
or the folding up rule (Letz et al., 1994) as well as avoiding the use of contrapositives
(Baumgartner and Furbach, 1994).

We have also implemented a leannon-clausalversion of leanCoP for propositional
logic. It does not need the input formula to be in clausal form but preserves its structure
throughout the entire proof search, thus combining the advantages of non-clausal tableau
calculi and goal-oriented connection-based provers. The extension to first-order logic
though needs some efforts, since copying of appropriate subformulas cannot be done so
easily in a lean way. A non-clausal connection-based prover can also be extended to some
non-classical logics, like intuitionistic, modal or linear logic (Otten and Kreitz, 1996b;
Kreitz and Otten, 1999). We only have to add an additional prefix unification procedure
(Otten and Kreitz, 1996a) leaving the actual proof search procedure unchanged. Similar
approaches using labels or prefixes have already been used to implement lean provers
based on free-variable semantic tableaux for intuitionistic logic (Otten, 1997), modal logics
(Beckert and Gor´e, 1997), and linear logic (Mantel and Otten, 1999). ThusleanCoP can
serve as a basis for lean connection-based theorem provers for logics for which up to now
only lean tableau-based provers have been realized.

The source code ofleanCoP together with more information can be found at
http://www.leancop.de.

Acknowledgements

The authors would like to thank the referees for their useful comments.

References

Argonne National Laboratory, Mathematics and Computer Science Division, 2000. Otter and MACE
on TPTP v2.3.0.http://www-unix.mcs.anl.gov/AR/otter/tptp230.html.

Astrachan, O., Loveland, D., 1991. METEORS: high performance theorem provers using model
elimination. In: Boyer, R. (Ed.), Automated Reasoning, Essays in Honour of Woody Bledsoe.
Kluwer.

Baumgartner, P., Furbach, U., 1994. Model elimination without contrapositives. In: 12th CADE,
LNAI, vol. 814. Springer, pp. 87–101.

Beckert, B., Gor´e, R., 1997. Free variable tableaux for propositional modal logics. In: TABLEAUX’
97, LNAI, vol. 1227. Springer, pp. 91–106.

Beckert, B., Posegga, J., 1995.leanTAP: lean tableau-based deduction. Journal of Automated
Reasoning 15, 339–358. Kluwer.

Bibel, W., 1983. Matings in matrices. Communications of the ACM 26, 844–852.
Bibel, W., 1987. Automated Theorem Proving, second ed., Vieweg, Wiesbaden.
Bibel, W., 1993. Deduction: Automated Logic. Academic Press, London.
Bibel, W., Brüning, S., Egly, U., Rath, T., 1994. KoMeT. In: 12th CADE, LNAI, vol. 814. Springer,

pp. 783–787.
Clocksin, W., Mellish, C., 1981. Programming in Prolog. Springer, Berlin, Heidelberg, New York.

http://www.leancop.de.
http://www-unix.mcs.anl.gov/AR/otter/tptp230.html

J. Otten, W. Bibel / Journal of Symbolic Computation 36 (2003) 139–161 161

Gentzen, G., 1935. Untersuchungen ¨uber das logische Schließen. Mathematische Zeitschrift 39,
176–210, 405–431.

Kreitz, C., Otten, J., 1999. Connection-based theorem proving in classical and non-classical logics.
Journal of Universal Computer Science 5, 88–112. Springer.

Letz, R., Mayr, K., Goller, C., 1994. Controlled integration of the cut rule into connection tableaux
calculi. Journal of Automated Reasoning 13, 297–337. Kluwer.

Letz, R., Schumann, J., Bayerl, S., Bibel, W., 1992. SETHEO: a high-performance theorem prover.
Journal of Automated Reasoning 8, 183–212. Kluwer.

Loveland, D., 1968. Mechanical theorem proving by model elimination. Journal of the ACM 15,
236–251.

Mantel, H., Otten, J., 1999.linTAP: a tableau prover for linear logic. In: TABLEAUX’ 99, LNAI,
vol. 1617. Springer, pp. 217–231.

Manthey, R., Bry, F., 1988. SATCHMO: a theorem prover implemented in Prolog. In: 9th CADE,
LNCS, vol. 310. Springer, pp. 415–434.

McCune, W., 1994. OTTER 3.0 reference manual and guide, Technical Report ANL-94/6, Argonne
National Laboratory.

Moser, M., Ibens, O., Letz, R., Steinbach, J., Goller, C., Schumann, J., Mayr, K., 1997. SETHEOand
E-SETHEO– The CADE-13 systems. Journal of Automated Reasoning 18, 237–246. Kluwer.

Neugebauer, G., Schaub, T., 1991. A pool-based connection calculus. Technical Report AIDA-91-02,
Intellektik, TH Darmstadt.

Otten, J., 1997.ileanTAP: An intuitionistic theorem prover. In: TABLEAUX’ 97, LNAI, vol. 1227.
Springer, pp. 307–312.

Otten, J., Kreitz, C., 1996a. T-string-unification: Unifying prefixes in non-classical proof methods.
In: Proceedings of the 5th TABLEAUX Workshop, LNAI, vol. 1071. Springer, pp. 244–260.

Otten, J., Kreitz, C., 1996b. A uniform proof procedure for classical and non-classical logics.
In: KI-96: Advances in Artificial Intelligence, LNAI, vol. 1137. Springer, pp. 307–319.

Pelletier, F., 1986. Seventy-five problems for testing automatic theorem provers. Journal of
Automated Reasoning 2, 191–216. Kluwer.

Posegga, J., Schmitt, P., 1999. Implementing semantic tableaux. In: D’Agostino, M., Gabbay, D.,
Hähnle, R., Posegga, J. (Eds.), Handbook of Tableau Methods. Kluwer, pp. 581–629.

Stenz, G., Wolf, A., 1997. E-SETHEO: an automated theorem prover. In: TABLEAUX 2000, LNAI,
vol. 1847. Springer, pp. 436–440.

Stickel, M., 1988. A Prolog technology theorem prover: implementation by an extended Prolog
compiler. Journal of Automated Reasoning 4, 353–380. Kluwer.

Stickel, M., 1992. A Prolog technology theorem prover: a new exposition and implementation in
Prolog. In: Theoretical Computer Science, vol. 104. Elsevier Science, pp. 109–128.

Sutcliffe, G., Suttner, C., 1998. The TPTP problem library—CNF release v1.2.1. Journal of
Automated Reasoning 21, 177–203. Kluwer.

	leanCoP: lean connection-based theorem proving
	Introduction
	Outline of the paper

	The program
	Selecting a start clause
	The extension and the reduction step
	Iterative deepening

	Performance
	leanCoP compared to OTTER, PTTP and leanTAP
	leanCoP on problems of CASC-17

	Refining the depth-bounded search
	The leanCoPi program
	Performance of leanCoPi

	Proving completeness and correctness
	Propositional logic
	First-order logic

	Conclusion, related work and outlook
	Acknowledgements
	References

