IV

Modal Logic

1 Possibility and Necessity; Knowledge or Belief

Formal modal logics were developed to make precise the mathematical properties
of differing conceptions of such notions as possibility, necessity, belief, knowledge
and temporal progression which arise in philosophy and natural languages. In the
last twenty—five years modal logics have emerged as useful tools for expressing
essential ideas in computer science and artificial intelligence.

Formally, modal logic is an extension of classical propositional or predicate logic.
The language of classical logic is enriched by adding of new “modal operators”.
The standard basic operators are traditionally denoted by [J and ¢. Syntactically,
they can be viewed as new unary connectives. (We omit a separate treatment of
propositional logic and move directly to predicate logic. As we noted for classical
logic in 11.4.8, propositional logic can be viewed as a subset of predicate logic
and so is subsumed by it. The same translation works for modal logic.)

Definition 1.1: If £ is a language for (classical) predicate logic (as defined in I1.2),

we extend it to a modal language L0, ¢ by adding (to Definition I1.2.1) two
new primitive symbols [J and ¢. We add a new clause to the definition (I1.2.5)
of formulas:

(iv) If ¢ is a formula, then so are ((¢) and (O¢).

The definitions of all other related notions such as subformula, bound variable
and sentence are now carried over verbatim.

When no confusion is likely to result we drop the subscripts and refer to £ o
as simply the (modal) language L .

Interpretations of modal languages were originally motivated by philosophical
considerations. Common readings of [J and ¢ are “it is necessary that” and “it
is possible that”. Another is “it will always be true that” and “it will eventually
be true that”. One should note that the intended relation between (0 and ¢
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is like that between V and 3. They are dual operators in the sense that the
intended meaning of Q¢ is usually -[J—¢. The two interpretations just mentioned
have ordinary names for both operators. At times it is natural to use just one.
Interpretations involving knowledge or belief, for example, are typically phrased
in a language with just the operator [0 (which could be denoted by £) and Oy
is understood as “I know ¢” or “I believe that ”. It is also possible to add on
additional modal operators [J; and ¢; and provide various interpretations. We
prefer to read [0 and ¢ simply as “box” and “diamond” so as not to prejudge
the intended interpretation.

The semantics for a modal language £ ¢ is based on a generalization of the
structures for classical predicate logic of I1.4 known as Kripke frames. Intuitively,
we consider a collection W of “possible worlds”. Each world w € W constitutes
a view of reality as represented by a structure C(w) associated with it. We adopt
the notation of forcing from set theory and write wlky to mean ¢ is true in the
possible world w. (We read wikp as “w forces ¢” or “p is true at w”.) If ¢
is a sentence of the classical language £ , this should be understood as simply
asserting that ¢ is true in the structure C{w). If [ is interpreted as necessity, this
notion can be understood as truth in all possible worlds; the notion of possibility
expressed by ¢ would then mean truth in some possible world.

Temporal notions, or assertions of the necessity or possibility of some fact ¢ given
some preexisting state of affairs, are expressed by including an accessibility (or
successor) relation S between the possible worlds. Thus we write w I-[J¢ to mean
that ¢ is true in all possible successor worlds of w or all worlds accessible from
w. This is a reasonable interpretation of “p is necessarily true in world w”.

Before formalizing the semantics for modal logic in §2, we give some additional
motivation by considering two types of applications to computer science.

The first area of application is to theories of program behavior. Modalities are
implicit in the works of Turing [1949, 5.7], Von Neumann [1961, 5.7], Floyd
[1967, 5.7], Hoare [1969, 5.7}, and Burstall [1972, 5.7] on program correctness.
The underlying systems of modal logic were brought to the surface by many
later workers. Examples of the logics recently developed for the analysis of pro-
grams include algorithmic logic, dynamic logic, process logic and temporal logic.
Here are the primitive modalities of one system, the dynamic logic of sequential
programs.

Let a be a sequential (possibly nondeterministic) program and let s be a state of
the machine executing a. Let ¢ be a predicate or property of states. We introduce
modal operators [, and Q, into the description of the execution of the program
o with the intended interpretation of [, being that ¢ is necessarily or always
true after « is executed. The meaning of O, is intended to be that ¢ is sometimes
true when o is executed (i.e., there is some execution of o that makes ¢ true).
Thus [l is & modal necessity operator and {, is a modal possibility operator.

We can make this language more useful by invoking the ideas of possible worlds
as described above. Here the “possible worlds” are the states of the machine and
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the accessibility relation is determined by the possible execution sequences of the
program o. More precisely, we interpret forcing assertions about modal formulas

as follows:

s I Oy asserts that ¢ is true at any state s’ such that there exists a
legal execution sequence for & which starts in state s and eventually
reaches state s'.

s IF Qo asserts that  is true at (at least) one state s’ such that
there exists a legal execution sequence for a which starts in state s
and eventually reaches state s'.

Thus, the intended accessibility relation, Sy, is that s’ is accessible from s, $5,¢’,
if and only if some execution of program « starting in state s ends in state s'.

We could just as well introduce separate operators O, {4 for each program a.
A modal Kripke semantics could then be developed with distinct accessibility
relations S, for each pair of operators [, and Q. Such a language is very useful
in discussing invariants of programs and, in general, proving their correctness.
After all, correctness is simply the assertion that, no matter what the starting
state, some situation ¢ is always true when the execution of « is finished: [y .
(See, for example, Goldblatt [1982, 5.6], (1992, 5.6] and Harel (1979, 5.7].)

Many interesting and useful variations on this theme have been proposed. One
could, for example, interpret s I O, to mean that o is true at every state s’ that
can be visited during an execution of a starting at s. In this vein, s I+ ¢4 would
mean that o is true at some state s’ which is reached during some execution of
a starting at s. We have simply changed the accessibility relation and we have
what is called process logic. This interpretation is closely related to temporal
logic. In temporal logic, (¢ means that ¢ is always true and ¢y means that
¢ will eventually (or at some time) be true. This logic can be augmented in
various ways with other modal operators depending on one’s view of time. In a
digital sequential machine, it may be reasonable to view time as ordered as are
the natural numbers. In this situation, for example, one can introduce a modal
operator ¢ and read ti- o ¢ as ¢ is true at the moment which is the immediate
successor of t. Various notions of fairness, for example, can be formulated in
these systems (even without o): every constantly active process will eventually
be scheduled (for execution or inspection etc.) — Up(c) ~ O(c); every process
which is ever active is scheduled at least once — ¢(c) — Qv(c); every process
active infinitely often will be scheduled infinitely often — [Qp(c) — I0v(c);
etc. Thus these logics are relevant to analyses of the general behavior and, in
particular, the correctness of concurrent or perpetual programs. (Another good
reference here is Manna and Waldinger [1985, 5.6].)

A quite different source of applications of modal logic in computer science is
in theories of knowledge and belief for A1. Here we may understand Ogp as
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“some (fixed) agent or processor knows ¢ (i.e., that ¢ is true)” or Opyp as “some
(fixed) agent or processor believes ¢ (i.e., that ¢ is true)”. Again, we may wish
to discuss not one processor but many. We can then introduce modal operators
such as Ok o to be understood as “processor o knows ¢”. Thus, for example,
Oxk,oClk g says that o knows that 8 knows ¢; Og o — Ok gt says that if
o knows o, then 3 knows 1. (A general reference for Al logics is Turner [1984,
5.6].)

This language clearly allows one to formulate notions about communication and
knowledge in distributed or concurrent systems. Another related avenue of inves-
tigation considers attempts to axiomatize belief or knowledge in humans as well
as machine systems. One can then deduce what other properties of knowledge or
belief follow from the axioms. On the basis of such deductions, one may either
modify one’s epistemological views or change the axioms about knowledge that
one is willing to accept. The view of modal logic as a logic of belief or knowledge
is particularly relevant to analyses of database management. In this light, it is
also closely related to nonmonotonic logic as presented in II1.7. (See Fagin et al.
[1995, 5.6] for a survey of logics of knowledge and beliefs and Thayse [1989, 5.6]
for a thorough treatment of modal logic aimed at deductive databases and Al

applications.)

In the next sections we give a formal semantics for modal logic (§2) and a tableau
style proof system (§3). In §4 we prove soundness and completeness theorems for
our proof system. Many applications of modal logic concern systems in which
there are agreed (or suggested) restrictions on the interpretations corresponding
to varying views of the properties of necessity, knowledge, time, etc., that one
is trying to capture. We devote 85 to the relation between restrictions on the
accessibility relation, adding axioms about the modal operators to the underlying
logic and adjoining new tableau proof rules. The final section (§6) describes a
traditional Hilbert-style system for modal logic extending that presented for

classical logic in IL.8.

2 Frames and Forcing

For technical convenience, we make a couple of modifications to the basic notion
of a (modal) language £ . First, we omit the connective « from our formal lan-
guage and view ¢ « 1 as an abbreviation for ¢ — ¥ A — . Second, we assume
throughout this chapter that every language £ has at least one constant sym-
bol but no function symbols other than constants. (The elimination of function
symbols does not result in a serious loss of expressiveness. We can systematically
replace function symbols with relations. The work of a binary function symbol
f(z,y), for example, can be taken over by a ternary relation symbol Rs(z,y, 2)
whose intended interpretation is that f(z,y) = z. A formula ¢(f(z,y)) can then
be systematically replaced by the formula 3z(Rg(z,y, 2) A ¢(2)).)
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We now present the precise notion of a frame used to formalize the semantics
of modal logic. As we have explained, a frame consists of a set W of “possible
worlds”, an accessibility (or successor) relation S between the possible worlds
and an assignment of a classical structure C(p) to each p € W. We have chosen
to require that the domains C(p) of the structures C(p) be monotonic in the
successor relation, i.e., if g is a successor world of p, pSq, then C(p} C C(g).
This weak monotonicity requirement is not a serious restriction. As even the
atomic predicates are not assumed to be monotonic, i.e. an element c of C(p)
can have some property R in C(p) but not in C(g), any object can be declared
to no longer be in the domain of a particular database or other predicate. One
can provide frame semantics that do not incorporate this restriction but there
are many difficulties involved that we wish to avoid. For example, if all objects
cease to exist, i.e., some C(g) = 0, we have entirely left the realm of classical
predicate logic which is formulated only for nonempty domains.

Definition 2.1: Let C = (W, S, {C(p)}pew) consist of a set W, a binary relation S on
W and a function that assigns to each p in W a (classical) structure C(p) for £ (in
the sense of Definition I1.4.1). To simplify the notation we write C = (W, 5,C(p))
instead of the more formally precise version, C = (W, S, {C(p)}pew). As usual,
we let C(p) denote the domain of the structure C(p). We also let L£(p) denote
the extension of £ gotten by adding on a name ¢, for each element a of C(p)
in the style of the definition of truth in I1.4. We write either pSq or (p,q) € S
to denote the fact that the relation S holds between p and ¢. We also describe
this state by saying that g is accessible from (or a successor of) p. We say that
C is a frame for the language £, or simply an L-frame if, for every p and ¢ in
W, pSq implies that C(p) C C(¢) and the interpretations of the constants in
L(p) C L(q) are the same in C(p) as in C{q).

‘We now define the forcing relation for L-frames. While reading the definition and
working through the later examples, it may help to keep in mind the following
paradigm interpretation: each p € W is a possible world; pS¢ means that ¢ is a
possible future of p; p IF ¢ means that ¢ is true in the world p; Uy means that
o will always be true and ¢y means that ¢ will be true sometime in the future.

Definition 2.2 (Forcing for frames): Let € = (W, 8,C(p)) be a frame for a langnage
L, pbein W and ¢ be a sentence of the language £(p). We give a definition of
p forces , written plk¢ by induction on sentences ¢.
(i) For atomic sentences @, plt¢ & @ is true in C(p).

(ii) plF (¢ — ¥) & plt p implies p I .

(ili) pF —~p & p does not force ¢ (written p i ©).

(iv) pl- (Vz)p(z) « for every constant ¢ in L£(p), p It ¢(c).

(v} pl+ (3z)(z) « there is a constant ¢ in L{p) such that p I ¢(c).



226 IV. Modal Logic
vi) plk(pAY) & plkypand plk 9.
(vii) plF(pVY) @ plrporplk .
(viii) pl- Oy < for all ¢ € W such that pSq, ¢ I+ .

(ix) plF- Qp <« there is a ¢ € W such that pSq and ¢ I .

If we need to make the frame explicit, we say that p forces ¢ in C and write
plke .

Definition 2.3: Let ¢ be a sentence of the language £ . We say that ¢ is forced in
the L—frame C, k¢ o, if every p in W forces . We say ¢ is valid, k= o, if ¢ is
forced in every L—frame C.

Example 2.4: For any sentence ¢, the sentence Oy — —Q—¢ is valid: Consider any
frame C = (W, S,C(p)) and any p € W. We must verify that p IF Og — —0-¢
in accordance with Clause (ii) of Definition 2.2. Suppose then that p I+ . If
p ¥ —0—¢, then p I O~¢p (by (iil)). By Clause (ix), there is a ¢ € W such
that pSq and ¢ IF —¢. Our assumption that p IF Oy and Clause (viii) then tell
us that ¢ I+ ¢, contradicting Clause (iii). Exercise 1 shows that the converse,
== — D, is also valid.

Example 2.5: We claim that OVzp(z) — VzOp(z) is valid. If not, there is a frame
C and a p such that p I- OVzp(z) but p ¥ VeDep(z). If p ¥ VzOp(z), there is,
by Clause (iv), a ¢ € L{p) such that p ¥ Op(c). There is then, by Clause (ix),
a ¢ € W such that pSq and g ¥ ¢(c). As p I OVzp(z), q Ik Vzp(z) by (ix).
Finally, g I+ ¢(c) by (iv) for the desired contradiction. Note that the assumption
that the domains C(p) are monotonic, in the sense that pSq = C(p) € C(g),
plays a key role in this argument.

Example 2.6: [p(c) — @(c) is not valid: Consider any frame in which the atomic
sentence @(c) is not true in some C(p) and there is no ¢ such that pSq. In such
a frame p I Op(c) but p ¥ ¢(c).

Example 2.7: Vzp(z) — OVze(z) is not valid: Let C be the frame in which W =
{p.q}, S = {(p.9)}, C(p) = {c}, C(q) = {c,d}, C(p) F p(c) and C(q) F ¢(c) A
—p(d). Now p I+ Yzp(z) but p ¥ OVze(x) as g ¥ ¢(d). It is crucial in this
example that the domains C(p) of a frame C are not assumed to all be the same.
Modal logic restricted to constant domains is considered in Exercise 4.8.

Note that validity as defined here coincides with that for classical predicate logic
for sentences ¢ with no modal operators (Exercise 10).
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Some care must be taken now in the definition of “logical consequence” for modal
logic. If one keeps in mind that the basic structure is the entire frame and not
the individual worlds within it, one is led to the following definition:

Definition 2.8: Let £ be a set of sentences in a modal language £ and ¢ a single
sentence of L.  is a logical consequence of Z, T E o, if ¢ is forced in every £
frame C in which every 9 € T is forced.

Warning: This notion of logical consequence is not the same as requiring that,
in every L~frame C, y is true (forced) at every world w at which every ¢ € £ is
forced (Exercise 11). In particular, the deduction theorem (Exercise I1.7.6) fails
for modal logic as can be seen from Examples 2.7 and 2.9.

Example 2.9: Vrp(z) F OVzy(z) : Suppose C is a frame in which p I- Vap(z) for
every possible world p € W. If ¢ € W, we claim that ¢ IF OVzp(z). If not, there
would be a p € W such that ¢Sp and p ¥ Vzp(z) contradicting our assumption.

Example 2.10: If ¢ is an atomic unary predicate, Og(c) ¥ Qp(c): Consider a frame
C in which § = @ and in which C(p) ¥ ¢(c) and so p ¥ p(c) for every p. In C,
every p forces Cip(c) but none forces ¢(c) and so none forces Qp(c).

There are other notions of validity (and so of logical consequence) that result
from putting further restrictions on the set W of possible worlds or (more fre-
quently) on the accessibility relation S. For example, it is often useful to consider
only reflexive and transitive accessibility relations. We discuss several such al-
ternatives in §5.

One should be aware that although [0 and ¢ are treated syntactically as proposi-
tional connectives, their semantics involves quantification over all possible acces-
sible worlds. [Jp says that, no matter what successor world one might move to, ¢
will be true there. Qi says that there is some successor world to which one could
move and make @ true. The construction of tableaux appropriate to such seman-
tics will involve, of course, the introduction of new worlds and instantiations for
elements of old ones.

FExercises

Prove, on the basis of the semantic definition of validity in Definition 2.3, that
the following are valid modal sentences.

1. =0=¢ — O (for any sentence ).
2. VzOp(z) — Jz0p(z) (for any formula ¢(z) with only z free).

Prove that the following are not, in general, valid modal sentences. Let ¢ be any
modal sentence.
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3. — Op.
4. ¢ — .
5. Qg — .

Verify the following instances of logical consequence for modal sentences ¢:

6. ¢ E Q.
7. (¢ — Op) E (Op — O0p).

Give frames that demonstrate the following failures of logical consequence:

8. Op ¥ p.
9. (Op — @) ¥ (Op — O0p).

10. If p is a sentence with no occurrences of (] or {, prove that validity for ¢
in the sense of Definition 3.1 coincides with that of I1.4.4.

11. We say that ¢ is a local consequence of ¥ if, for every L—frame C =
(W, $,C(p)), ¥p € W[(V9 € Z)(p - $) — pIF o).

(i) Prove that if ¢ is a local consequence of X, then it is a logical conse-
quence of X.

(i) Prove that the converse of (i) fails, i.e., ¢ may be a logical consequence
of £ without being a local consequence.

3 Modal Tableaux

We describe a proof procedure for modal logic based on a tableau-style system
like that used for classical logic in I1.6. In classical logic, the plan guiding tableau
proofs is to systematically search for a structure agreeing with the starting signed
sentence. We either get such a structure or see that each possible analysis leads
to a contradiction. When we begin with a signed sentence Fy, we thus either
find a structure in which ¢ fails or decide that we have a proof of ¢. For modal
logic we instead begin with a signed forcing assertion Tp - ¢ or Fpl- ¢ (¢ is
again a sentence) and try either to build a frame agreeing with the assertion or
decide that any such attempt leads to a contradiction. If we begin with Fp I ¢,
we either find a frame in which p does not force ¢ or decide that we have a modal
proof of ¢.

The definitions of tableau and tableau proof for modal logic are formally very
much like those of I1.6 for classical logic. Modal tableaur and tableau proofs are
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labeled binary trees. The labels (again called the entries of the tableau) are now
either signed forcing assertions (i.e., labels of the form Tp I ¢ or Fg I+ ¢ for
@ a sentence of any given appropriate language) or accessibility assertions pSq.
We read T'p Il  as p forces  and Fp I ¢ as p does not force .

As we are using ordinary predicate logic within each possible world, the atomic
tableaux for the propositional connectives V,A,— and — are as in the classical
treatment in 1.4 or I1.6 except that their entries are now signed forcing assertions.
The atomic tableaux for the quantifiers V and 3 are designed to reflect both the
previous concerns in predicate logic as well as our monotonicity assumptions
about the domains of possible worlds under the accessibility relation. Thus we
still require that only “new” constants be used as witnesses for a true existen-
tial sentence or as counterexamples to false universal ones. Roughly speaking, a
“new” constant is one for which no previous commitments have been made, e.g.,
one not in £ or appearing so far in the tableau. Consider, on the other hand,
a true universal sentence, T'p I Vzp(z). In classical predicate logic we could
substitute any constant at all for the universally quantified variable z. Here we
can conclude T'p I {c) only for constants ¢ which we know to be in C(p) or in
C(q) for some world ¢ from which p is accessible, gSp. This idea translates into
the requirement that ¢ is in £ or has appeared in a forcing assertion on the path
so far that involves p or some ¢ for which ¢Sp has also appeared on the path
so far. The point here is that, if ¢Sp and c is in C(g), then by monotonicity it
must be in C(p) as well. In the description of modal tableaux, we refer to these
constants as “any appropriate ¢”. Of course, the formal definitions of both “new”
and “appropriate” constants are given along with the definition of tableaux.

The other crucial element is the treatment of signed forcing sentences beginning
with [J or ¢. In classical logic, the elements of the structure built by developing
a tableau were the constant symbols appearing on some path of the tableau. We
are now attempting to build an entire frame. The p’s and ¢’s appearing in the
entries of some path P through our tableau constitute the possible worlds of the
frame. We must also specify some appropriate accessibility relation S along each
path of the tableau. It is convenient to include this information directly orn the
path. Thus we allow as entries in the tableau facts of the form pSq for possible
worlds p and ¢ that appear in signed forcing assertions on the path up to the
entry. Entries of this form are put on the tableau by some of the atomic tableaux
for [0 and ¢. For example, from Tp I+ {y we can (semantically) conclude that
Tq I+ ¢ for some ¢ such that pSq. Thus the atomic tableau for Tp I Q¢ puts
both pSq and Tq I ¢ on the path for some new ¢ (i.e., one not appearing in the
tableau so far). On the other hand, the atomic tableau for Tp Il Oy reflects the
idea that the meaning of p I+ Oy is that ¢ is true in every world ¢ such that
pSq. It puts on the path the assertion T'q I+ ¢ for any appropriate g, i.e., any
g for which we already know that pSq by virtue of the fact that pSq has itself
appeared on the path so far. In this way, we are attempting to build a suitable
frame along every path of the tableau.
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We now formally specify the atomic tableauz.

Definition 3.1 (Atomic tableauz): We begin by fixing a modal language £ and an
expansion to L¢ given by adding new constant symbols ¢; for i € N. We list
in Figure 43 the atomic tableaux (for the language £). In the tableaux in the
following list, ¢ and v, if unquantified, are any sentences in the language L¢ .
If quantified, they are formulas in which only z is free.

Warning: In (TO) and (FQ) we allow for the possibility that there is no
appropriate g by admitting T'p I+ O¢ and Fp I Q¢ as instances of (TU) and
(F9Q), respectively.

The formal definition of tableaux is now quite similar to that for classical logic
in I1.3.

Definition 3.2: We continue to use our fixed modal language £ and its extension
by constants Lc. We also fix a set {p;| i € N} of potential candidates for the
p’s and ¢’s in our forcing assertions. A modal tableau (for L) is a binary tree
labeled with signed forcing assertions or accessibility assertions; both sorts of
labels are called entries of the tableau. The class of modal tableaux (for £) is
defined inductively as follows.

i) Each atomic tableau 7 is a tableau. The requirement that ¢ be new in cases
(T3) and (FV) here simply means that c is one of the constants ¢; added on
to L to get Lo which does not appear in . The phrase “any appropriate
¢’ in (F3) and (TV) means any constant in £ or in . The requirement
that g be new in (F(J) and (TQ) here means that ¢ is any of the p; other
than p. The phrase “any appropriate ¢” in (TO) and (FQ) in this case
simply means that the tableau is just T'p IF Oy or Fp I Oy as there is no
appropriate g.

it) If 7 is a finite tableau, P a path on 7, E an entry of 7 occurring on P and
7' is obtained from 7 by adjoining an atomic tableau with root entry E to
7 at the end of the path P, then 7’ is also a tableau.

The requirement that ¢ be new in cases (T3) and (FV) here means that it
is one of the ¢; (and so not in £) that do not appear in any entry on 7.
The phrase “any appropriate ¢” in (F3) and (TV) here means any ¢ in £
or appearing in an entry on P of the form Tq IF % or Fgq I ¢ such that
gSp also appears on P.

In (FO) and (T¢) the requirement that ¢ be new means that we choose a
p; not appearing in 7 as g. The phrase “any appropriate ¢” in (TO) and
(FO) means we can choose any g such that pSq is an entry on P.

iii) If 79, 71,...,7n, ... is a sequence of finite tableaux such that, for every n > 0,
Tn+1 is constructed from 7, by an application of (ii), then 7 = Uy is also
a tableau.
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As in the previous definitions, we insist that the entry F in Clause (ii) formally be
repeated when the corresponding atomic tableau is added on to P to guarantee
the property corresponding to a classical tableau being finished. The atomic
tableaux for which they are actually needed are (F3), (TV), (TO) and (FQ).
However, we generally omit the repetition of the root entry in our examples as a
notational convenience. The definition of tableau proofs now follows the familiar

pattern.

Definition 3.3 (Tableau Proofs): Let 7 be a modal tableau and P a path in 7.

i} P is contradictory if, for some forcing assertion p I+ ¢, both T'p I ¢ and
Fp I+ p appear as entries on P.

i) 7 is contradictory if every path through 7 is contradictory.

iii) 7 is a proof of ¢ if 7 is a finite contradictory modal tableau with its root
node labeled Fp IF o for some p. @ is provable, - ¢, if there is a proof of .

Note that, as in classical logic, if there is any contradictory tableau with root node
Fp I ¢, then there is one that is finite, i.e., a proof of ¢ : Just terminate each
path when it becomes contradictory. As each path is now finite, the whole tree
is finite by Koénig's lemma. Thus, the added requirement that proofs be finite
(tableaux) has no effect on the existence of proofs for any sentence. Another
point of view is that we could have required that the path P in Clause (ii) of
the definition of tableaux be noncontradictory without affecting the existence
of proofs. Thus, in practice, when attempting to construct proofs we mark any
contradictory path with the symbol ® and terminate the development of the
tableau along that path.

Before dealing with the soundness and completeness of the tableau method for
modal logic, we look at some examples of modal tableau proofs. Remember that
we are abbreviating the tableaux by generally not repeating the entry that we
are expanding. We also number the levels of the tableau on the left and indicate
on the right the level of the atomic tableau whose development produced the

line.

Example 3.4: There is a natural correspondence between the tableaux of classical
predicate logic and those of modal logic beginning with sentences without modal
operators. One goes from the modal tableau to the classical one by replacing
signed forcing assertions Tp I+ ¢ and Fp I+ ¢ by the corresponding signed
sentences T'¢ and Fp, respectively. (Formally one must account for the alternate
notion of new constant used in I1.6.1 when going in the other direction.) Note
that this correspondence takes proofs to proofs. (See Exercise 1.)

Example 3.5: ¢ — Oy, sometimes called the scheme of necessitation, is not valid.
Figure 44 gives an attempt at a tableau proof.
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1 Fwlk g —Op

2 Twlr by 1

3 FwlFOg by 1

4 wSv foranewwv by3

5 Fylk by 3
FIGURE 44.

This failed attempt at a proof suggests a frame counterexample C for which
W = {w, v}, § = {{w, v)} and structures such that ¢ is true at w but not at v.
Such a frame demonstrates that ¢ — Dy is not valid as in this frame, w does
not force ¢ — L.

Example 3.6: Similarly Oy — ¢ is not valid as can be seen from the attempted proof
in Figure 45.

1 Fwlk D<p —

2 Tw k- Op by 1

3 Fwlk e by 1
FIGURE 45.

The frame counterexample suggested here consists of a one world W = {w} with
empty accessibility relation 5 and ¢ false at w. It shows that [y — ¢ is not
valid.

Various interpretations of [] might tempt one to think that [y — ¢ should be
valid. For example, probably all philosophers would agree that if ¢ is necessarily
true, it in fact is true. On the other hand, most but perhaps not all epistemol-
ogists would argue that if I know ¢, it must also be true. Finally, few people
would claim that (for any ¢) if I believe ¢, then ¢ is true. Op — ¢ is tradi-
tionally called “T” or the “knowledge axiom”. Under many interpretations of (],
it should be valid. A glance at the attempted proof above shows us that, if we
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knew that wSw, we could quickly get the desired contradiction. Thus, there is a
relation between T' and the assumption that the accessibility relation is reflexive.
In fact, not only is T valid in all frames with reflexive accessibility relations, but
conversely any sentence valid in all such frames can be deduced from T'. We make
this correspondence and others like it precise in §5.

Example 3.7: We show in Figure 46 that O(Vz)p(z) — (Vz)Op(z) is provable.

1 FwliF OVz)p(z) — (Y2)Op(z)
2 Tw Ik OVz)e(x) by 1
3 Fwlk (Vz)Op(x) by 1
4 Fw I Og(c) by 3
5 wSv by 4
6 Fulk ¢(e) by 4
7 Tv i+ (Vz)p(z) by 2, 5
8 Tv I+ o(c) by 7
® by 6, 8
FIGURE 46.

Note the use of monotonicity in the derivation of lines 6 and 8 corresponding to
the semantic argument in Example 2.5.

Example 3.8: Figure 47 gives a tableau proof of

O(p — ¢) — (Op — Oy).
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F’U)”‘D((p—rq[))-—r([](ﬁ——»l:}’t/l)

Tw k- O(p — )
FuwlkOp — 0Oy
TwlF Qg
Fwir Oy

wSv new v
Fvlk vy
Tvlk
Tl —
N
Fuik ¢ Tl
| |
® ®

FIGURE 47.

by 1

by 1

by 3

by 3

by 5

by 5

by 4, 6

by 2, 6

by 9

by 8, 7
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(The scheme illustrated in Figure 47 plays an important role in the Hilbert—style
systems of modal logic presented in §6.)

Example 3.9: Figure 48 gives an incorrect proof of Yzl (z) — OVzp(z).

1 Fwlr (Vz)0p(z) — O(Vz)p(z)

2 Tw Ik (V&)Op(z) by 1
3 Fwlk O(Ve)p(z) by 1
4 wSv by 3
5 FulF (V2)p(z) by 3
6 Fuvlk ¢(c) new ¢ by 5
7 Tw I Op(c) by 2
8 Tv Ik ¢(c) by 7

®
FIGURE 48.

The false step occurs at line 7. On the basis of line 6 we can use c for instantiations
in forcing assertions about v or any world accessible from v but we have no
basis to use it in assertions about w. As in Example 2.7, such a move would be
appropriate for an analysis of constant domain frames. (See Exercise 4.8.)

Example 3.10: (Vr)-Oyp — —O(3z)p is not valid. The tableau in Figure 49 that
begins with this formula is not a proof. It does, however, suggest how to construct
a frame counterexample. Let it have the constant domain C = {c, d}; two worlds
w and v with v accessible from w; no atomic sentences true at w and the sentence
@(d) true at v. This frame provides the required counterexample.
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1 Fw ik (Vz)-Op — -0(3z)e
2 Tw Ik (Vz)-Oy by 1
3 FwlF ~0(3x)e by 1
4 Tw i+ O(3z)e by 3
5 Tw I =Ogp(c) by 2
6 FwiF Cele) by &
7 wSv by 6
8 Fulk ¢(c) by 6
9 Tyl (3z)p by 4, 7
10 Tv It @(d) new d by 9
FIGURE 49.

As with the semantic definition of logical consequence, one must take care in
defining the notion of a modal tableau proof from a set ¥ of sentences (which
we often call premises). We must match the intuition that we are restricting
our attention to frames in which the premises are forced. To do this, we allow
the insertion in the tableau of entries of the form T'p I+ ¢ for any appropriate
possible world p and any ¢ € £.

Definition 3.11: The definition of modal tableaur from %, a set of sentences of a
modal language called premises, is the same as for simple modal tableaux in
Definition 3.2 except that we allow one additional formation rule:

(ii’) If 7 is a finite tableau from ¥, ¢ € X, P a path in 7 and p a possible world
appearing in some signed forcing assertion on P, then appending Tp I+ ¢
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to the end of P produces a tableau 7’ from .

The notions used to define a tableau proof are now carried over from Definition
3.3 to tableau proofs from ¥ by simply replacing “tableau” by “tableau from £”.
We write X | ¢ to denote that ¢ is provable from L, i.e., there is a proof of ¢
from %.

Example 3.12: Figure 50 gives a tableau proof of OVzy(z) from the premise Yzo(z).

1 Fpl-O(Vz)p(z)

2 pSq by 1

3 FglF (Vz)p(z) by 1

4 FqlFk¢(c) newe by3

5 Tg Ik (Vz)p(z) premise
6 Tq i+ o(c) by 5

®
FIGURE 50.

FEzxercises

1. Make precise the correspondence described in Example 3.4 and show that
it takes tableau proofs in classical predicate logic to ones in modal logic.
Conversely, if 7 is a modal tableau proof of a sentence ¢ of classical logic,
describe the appropriate transformation in the other direction and show
that it takes T to a classical proof of ¢.

In Exercises 2-8, let ¢ and ¥ be any formulas with either no free variables or
only z free as appropriate. Give modal tableau proofs of each one.

2. Q- — Q.



