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Intuitionistic Logic

1 Intuitionism and Constructivism

During the past century, a major debate in the philosophy of mathematics has
centered on the question of how to regard noneffective or nonconstructive proofs
in mathematics. Is it legitimate to claim to have proven the existence of a number
with some property without actually being able, even in principle, to produce
one? Is it legitimate to claim to have proven the existence of a function without
providing any way to calculate it? L. E. J. Brouwer is perhaps the best known
early proponent of an extreme constructivist point of view. He rejected much
of early twentieth century mathematics on the grounds that it did not provide
acceptable existence proofs. He held that a proof of pV ¢ must consist of either a
proof of p or one of ¢ and that a proof of 3xP(z) must contain a construction of
a witness ¢ and a proof that P(c) is true. At the heart of most nonconstructive
proofs lies the law of the excluded middle: For every sentence A, AV —A is true.
Based on this law of classical logic one can prove that 3zP(z) by showing that
its negation leads to a contradiction without providing any hint as to how to find
an z satisfying P. Similarly, one can prove p V ¢ by proving —(—p A —gq) without
knowing which of p and q is true.

Example 1.1: We wish to prove that there are two irrational numbers ¢ and b such

that a® is rational. Let ¢ = v3“2. If ¢ is rational, then we may take a = v3 = b.
On the other hand, if ¢ is not rational, then ¢¥? = 2 is rational and we may take
a = ¢ and b = V2. Thus, in either case, we have two irrational numbers a and b
such that a® is rational. This proof depends on the law of the excluded middle
in that we assume that either c is rational or it is not. It gives us no clue as to
which of the two pairs contains the desired numbers.

Example 1.2: Consider the proof of Konig’s lemma (Theorem 1.1.4). We defined the

infinite path by induction. At each step we knew by induction that one of the
finitely many immediate successors had infinitely many nodes below it. We then
“picked” one such successor as the next node in our path. We had proved by
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induction that a disjunction is true and then simply continued the argument “by
cases”. As we had not in any way established which successor had infinitely many
nodes below it, we had no actual construction of (no algorithm for defining) the
infinite path that we proved to exist. Similar considerations apply to our proofs
of completeness, compactness and other theorems.

A formal logic that attempts to capture Brouwer’s philosophical position was
developed by his student Heyting. This logic is called intuitionistic logic. It is an
important attempt at capturing constructive reasoning. In particular, the law
of the excluded middle is not valid in intuitionistic logic.

A number of paradigms have been suggested for explaining Brouwer’s views.
Each one can provide models or semantics for intuitionistic logic. One paradigm
considers mathematical statements as assertions about our (or someone’s) knowl-
edge or possession of proofs. A sentence is true only when we know it to be so
or only after we have proven it. At any moment we cannot know what new facts
will be discovered or proven later. This interpretation fits well with a number
of situations in computer science involving both databases and program verifi-
cation. In terms of databases, one caveat is necessary. We view our knowledge
as always increasing so new facts may be added but no old ones removed or
contradicted. This is a plausible view of the advance of mathematical knowledge
but in many other situations it is not accurate. Much of the time this model
can still be used by simply attaching time stamps to facts. Thus the database
records what we knew and when we knew it. The intuitionistic model is then a
good one for dealing with deductions from such a database.

In terms of program verification, intuitionistic logic has played a basic role in
the development of constructive proof checkers and reasoning systems. A key
idea here is that, in accordance with Brouwer’s ideas, the proof of an existential
statement entails the construction of a witness. Similarly, the proof that for every
x there is a y such that P(z,y) entails the construction of an algorithm for com-
puting a value of y from one for z. The appeal of such a logical system is obvious.
On a practical level, there are now implementations of large-scale systems that
(interactively) provide intuitionistic proofs of such assertions. The systems can
then actually extract the algorithm computing the intended function. One then
has a verified algorithm since the proof of existence is in fact a proof that the
algorithm specified actually runs correctly. One such system is NUPRL developed
at Cornell University by R. Constable [1986, 5.6] and others.

In this chapter, we present the basics of intuitionistic logic including a semantics
developed by Kripke that reflects the “state of knowledge” interpretation of
Heyting’s formalism. In addition to the intuitive considerations, the claim that
this choice of semantics adequately reflects constructivist reasoning is confirmed
by the fact that the following disjunction and existence properties hold:

Theorem 2.20: If (¢ V ¥) is intuitionistically valid, then either ¢ or ¢ is intuition-
istically valid.
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Theorem 2.21: If Jzp(x) is intuitionistically valid, then so is p(c) for some con-
stant c.

We then develop an intuitionistic proof theory based on a tableau method like
that for classical logic and prove the appropriate soundness and completeness
theorems. Of course, the completeness theorem converts the above theorems
into ones about provability. We can (intuitionistically) prove ¢ V ¢ only if we
can prove one of them. We can prove 3zp(z) only if we can prove o(c) for some
explicit constant c.

The presentation in this chapter is designed to be independent of Chapter IV.
Thus there is some overlap of material. For those readers who have read Chapter
IV, we supply a guide comparing classical, modal and intuitionistic logics in §6.

2 Frames and Forcing

Our notion of a language is the same as that for classical predicate logic in
Chapter II except that we make one modification and two restrictions that sim-
plify the technical details in the development of forcing. The modification is that
we formally omit the logical connective « from our language. We instead view
@ > 1 as an abbreviation for (¢ — ¥) A (¥ — ). Our restrictions are on the
nonlogical components of our language. We assume throughout this chapter that
every language L has at least one constant symbol but no function symbols other

than constants.

We now present a semantics for intuitionistic logic that formalizes the “state of
knowledge” interpretation.

Definition 2.1: Let C = (R, <, {C(p)}per) consist of a partially ordered set (R, <)
together with an assignment, to each p in R, of a structure C(p) for £ (in the
sense of Definition 11.4.1). To simplify the notation, we write C = (R, <,C(p))
instead of the more formally precise version, C = (R, <, {C(p)}per). As usual,
we let C(p) denote the domain of the structure C(p). We also let £(p) denote the
extension of £ gotten by adding on a name ¢, for each element a of C(p) in the
style of the definition of truth in I1.4. A(p) denotes the set of atomic formulas
of L(p) true in C(p). We say that C is a frame for the language L , or simply
an L-frame if, for every p and ¢ in R, p < ¢ implies that C(p) C C(qg), the
interpretations of the constants in L(p) C £L(g) are the same in C(p) as in C(q)
and A(p) C Alq).

Often p < q is read “g extends p ”, or “q is a future of p ”. The elements of R
are called forcing conditions, possible worlds or states of knowledge.

We now define the forcing relation for frames.
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Definition 2.2 (Forcing for frames): Let C = (R, <,C(p)) be a frame for a language

L, p be in R and ¢ be a sentence of the language L(p). We give a definition of
p forces p , written p I ¢ by induction on sentences .

(i) For atomic sentences @, plF ¢ « ¢ is in A(p).
(ii) piF (¢ — ¢) & forall ¢ > p, ¢ F ¢ implies g I .

(iii) plF —~¢p <« for all ¢ > p, g does not force ¢ .

(iv) p I (Vx)p(x) <> for every ¢ > p and for every constant ¢ in L(g), g IF ¢(c).
(v) plF (3z)p(z) ¢ there is a constant c in L(p) such that p I ¢(c).

(vi) pl-(pAY) © plkyandpl-y.

(vii) pl-(pVY) & plhyporpl- 9.

If we need to make the frame explicit, we say that p forces ¢ in C and write
p ll'c Q.

Definition 2.3: Let ¢ be a sentence of the language £. We say that ¢ is forced in the

L-frame C if every p in R forces . We say ¢ is intustionistically valid if it is
forced in every L—frame.

Clauses (ii), (iii) and (iv) defining p I+ ¢ — ¢, p IF —p and p I+ (Vz)p(z),
respectively, each have a quantifier ranging over elements of the partial ordering,
namely, “for all ¢, if ¢ > p, then ...”. Clause (ii) says that p forces an implication
¢ — 1 only if any greater state of knowledge g which forces the antecedent ¢
also forces the consequent 1. This is a sort of permanence of implication in the
face of more knowledge. Clause (iii) says p forces the negation of ¢ when no
greater state of knowledge forces . This says that —¢ is forced if ¢ cannot be
forced by supplying more knowledge than p supplies. Clause (iv) says p forces
a universally quantified sentence only if in all greater states of knowledge all
instances of the sentence are forced. This is a permanence of forcing universal
sentences in the face of any new knowledge beyond that supplied by p. Another
aspect of the permanence of forcing that says the past does not count in forcing,
only the future, is given by the following lemma. (Note that the logic of our
metalanguage remains classical throughout this chapter. Thus, for example, in
Clause (ii) “implies” has the same meaning it had in Chapter I.)

Lemma 2.4: (Restriction lemma) Let C = (R, <, {C(p)}pecr) be a frame, let q be in R

and let Ry ={r € R|r > q}. Then
Cq = (Rq’ S) C(p))

is a frame, where < and the function C(p) are restricted to Ry. Moreover, forr
in Rq, r forces ¢ in C iff r forces ¢ in Cq.
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Proof: By an induction on the length of formulas which we leave as Exercise 7.

Consider the classical structures C(p) in an L~frame C. As we go from p to a
g > p, we go from the classical structure C(p) associated with p to a (possibly)
larger one C(q) associated with ¢ with more atomic sentences classically true, and
therefore fewer atomic sentences classically false. Clauses (i), (v), (vi) and (vii)
for the cases of atomic sentences, “and”, “or” and “there exists”, respectively,
are exactly as in the definition of truth in C(p) given in I1.4.3. The other clauses
have a new flavor and indeed the classical truth of ¢ in C(p) and p’s forcing ¢
do not in general coincide. They do, however, in an important special case.

Lemma 2.5: (Degeneracy lemma) Let C be a frame for a language L and ¢ a sentence
of L . If p is a mazimal element of the partial ordering R associated with C, then
p is classically true in C(p), i.e., C(p) E @, if and only if p I+ ¢. In particular, if
there is only one state of knowledge p in R, then C(p) F ¢ if and only if pI- .

Proof: The proof proceeds by an induction on formulas. For a maximal element p of R
the clauses in the definition of p I ¢ coincide with those in 11.4.3 for C(p) F ¢. In
Clauses (ii), (iii) and (iv) the dependence on future states of knowledge reduces
simply to the classical situation at p. Consider, for example, the case of Clause
(ii): pIF (¢ = ¥) © (Vg > p)(q I+ ¢ implies ¢ I 9). Since p is maximal in R,
g = p is the same as ¢ = p. Thus Clause (ii) reduces to (pl- ¢ — Y iff p I ¢
implies p I v) which is the analog as the corresponding clause, 11.4.3(v), for
classical implication. We leave the verification that all the other clauses are also

equivalent as Exercise 8. 0

Theorem 2.6: Any intuitionistically valid sentence is classically valid.

Proof: By the degeneracy lemma (Lemma 2.5), every classical model is a frame model
with a one-element partially ordered set in which forcing and classical truth are
equivalent. As a sentence is classically valid if true in all classical models, it is
valid if forced in every frame. O

It remains to see which classically valid sentences are intuitionistically valid and
which are not. We show how to verify that some classically valid sentences are not
intuitionistically valid by constructing frame counterexamples. Before presenting
the examples, we want to establish some notational conventions for displaying
frames. All the examples below have orderings that are suborderings of the full
binary tree. We can therefore view the associated frames as labeled binary trees
with the label of a node p being the structure C(p), or equivalently, the pair
consisting of C(p) and A(p). We thus draw frames as labeled binary trees in
our usual style and display the labels in the form (C(p), A(p) ). The theoretical
development of tableaux and the proof of their completeness requires somewhat
more general trees but we leave that for the next section.
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In the examples below of sentences that are not intuitionistically valid (2.7-
2.11), ¢ and ¥ denote atomic formulas of £ with no free variables or only z
free as displayed. In each of these examples, C(B), the structure associated with
the bottom node # of our partial ordering, is C with all the constants of £
interpreted as c. We begin with the archetypal classically valid sentence which
is not intuitionistically valid.

Example 2.7: As expected, the sentence ¢V -y (an instance of the law of the excluded
middle) is not intuitionistically valid. Let the frame C be

(C,{e})

(C,0)

(Thus we have taken C as the domain at both nodes, @ and 0, of the frame.)
At the bottom node, no atomic facts are true, i.e., A(B) is empty. At the upper
node 0, we have made the single atomic fact ¢ true by setting A(0) = {¢}.

Consider now whether or not @ I ¢ vV —~p. Certainly @ does not force ¢ since ¢
is atomic and not true in C(@), i.e., not in A(#). On the other hand, 0 I ¢ since
¢ € A(0). Thus @ does not force -y since it has an extension 0 forcing ¢. So
by definition, # does not force ¢ V —y and this sentence is not intuitionistically

valid.

Example 2.8: The sentence (~¢p — =) — (¥ — ) is not intuitionistically valid.
Let the frame C be

(C, { ¥})

(C,{¢})

Suppose, for the sake of a contradiction, that @ IF (= — —9) — (¥ — ). Then
@ Ik {(=p — =) would imply @ I (¢ — ) by Clause (ii) of the definition of
forcing (Definition 2.2). Now by Clause (iii) of the definition, neither @ nor 0
forces — since  is in A(0) and so forced at 0. Thus we see that @ does in fact
force (—p — —) by applying Clause (ii) again and the fact that § and 0 are
the only elements > 0. On the other hand, @ does not force () — ) because @
forces 1 but not ¢ and so we have our desired contradiction.
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Example 2.9: The sentence (¢ — %) V (¥ — ¢) is not intuitionistically valid. Let the
frame C be

(C,{e}) (C {¥})

(C,0)

In this frame, @ forces neither ¢ nor 1, 0 forces ¢ but not 9 and 1 forces ¥
but not . Since there is a node above @, namely 0, which forces ¢ but not 7,
@ does not force ¢ — 1. Similarly, @ does not force ¥ — . So @ does not force

(=) V(Y —o)

Example 2.10: The sentence ~(Vz)p(z) — (3x)—p(z) is not intuitionistically valid.
Let b be anything other than the sole element ¢ of C. Let the frame C be

({b,¢}, {(c)})

(C,0)

Now by Clause (iv) of Definition 2.2, neither @ nor 0 forces (Vz)p(z) since b €
C(0) but 0 does not force @(b). Thus @ I+ —(Vz)p(z). If B IF —(Vz)p(z) —
(3z)—p(x), as it would were our given sentence valid, then § would also force
(3z)~p(z). By Clause (v) of the definition this can happen only if there is a
¢ € C such that 0 I —p(c). As c is the only element of C and 0 I+ y(c), § does
not force (3z)—p(x).

Example 2.11: The sentence (Vz)(¢ V ¥(z)) — ¢ V (Vz)y(z) is not intuitionistically
valid. The required frame is

({6, ¢}, {e(c), 0})

(C,{¥(c)})
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We first claim that @ IF (Vz)(p V ¥(z)). As @ I+ ¢¥(c) and O IF ¢, combining
the clauses for disjunction (vii) and universal quantification (iv) we see that
0 I (Vz){p V9(z)) as claimed. Suppose now for the sake of a contradiction that
D I- (Vz)(p V ¥(x)) — ¢V (Yz)¥(z). We would then have that @ I+ ¢ Vv (Vz)y(z).
However, ® does not force ¢ and, as 0 does not force ¥(b), @ does not force
(V)i (z) either. Thus @ does not force the disjunction ¢ V (Vz)¥(z), so we have
the desired contradiction.

We now give some examples of intuitionistically valid sentences whose validity
can be verified directly using the definition of forcing. Before presenting the
examples, we prove a few basic facts about the forcing relation that are useful
for these verifications as well as future arguments. The first is perhaps the single
most useful fact about forcing. It expresses the stability of forcing as one moves
up in the partial ordering.

Lemma 2.12: (Monotonicity lemma) For every sentence ¢ of L and every p,q € R,
if pl- ¢ and q¢ > p, then g+ .

Proof: We prove the lemma by induction on the logical complexity of . The in-
ductive hypothesis is not needed to verify the conclusion that g I+ ¢ for Clauses
(i), (ii), (iii) and (iv). The first follows immediately from the definition of a
frame and Clause (i) itself which defines forcing for atomic sentences. The other
clauses define the meaning of (intuitionistic) implication, negation and universal
quantification precisely so as to make this lemma work. We use the induction
hypothesis in the verifications of Clauses (v), (vi) and (vii) which define forcing
for the existential quantifier, conjunction and disjunction, respectively.

(i) If o is atomic and p IF ¢, then ¢ is in A(p). By the definition of a frame,
however, A(p) C A(q), and so ¢ is in A(g). Thus, by definition, g I~ ¢.

(ii) Suppose p I ¢ — ¢ and ¢ > p. We show that g I+ ¢ — ¢ by showing
that if 7 > ¢ and r IF @, then r I ¢. Now r > p by transitivity and so our
assumptions that p I- ¢ — 1 and r I ¢ imply that r I 9, as required.

(iii) Suppose p I = and g > p. We show that ¢ I - by showing that if r 2 g,
then r does not force ¢. Again by transitivity, r > p. The definition of
p I+ =@ then implies that r does not force ¢.

(iv) Suppose p IF (Vz)p(z) and ¢ > p. We show that ¢ I (Vz)p(x) by showing
that, for any r > g and any ¢ € C(r), r I ¢(c). Again, r > p by transitivity.
The definition of p I (V) (x) then implies that for any cin C(r), 7 I+ ¢(c).

(v) Suppose p I (3z)A(z) and ¢ > p. Then by the definition of forcing there
is a ¢ in C(p) such that p I ¢(c). By the inductive hypothesis, ¢ > p and
p - o(c) imply that g IF ¢(c). Thus g I (3x)e(z).
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(vi) Suppose p It (pA) and g > p. Then by the definition of forcing p I ¢ and
p I+ 1. By the inductive hypothesis, ¢ IF ¢ and ¢ IF 9. Thus g I+ (¢ A ¥).

(vii) Suppose p I+ (¢ V 9), and g > p. Then by the definition of forcing either
p I+ ¢ or pIF ¢. By the inductive hypothesis, we get that either g I ¢ or
q IF 1. By the definition of forcing a disjunction, this says that g I- (¢ V).

d

Monotonicity says that the addition of new atomic sentences at later states of
knowledge ¢ will not change forcing at earlier states of knowledge. This mono-
tone character distinguishes “truth” in an intuitionistic frame from “truth” in
“nonmonotonic logics”, as discussed in IIL.7. In those logics, sentences forced at
state of knowledge p need not be forced at states of knowledge ¢ > p. In frames,
as time evolves, we learn new “facts” but never discover that old ones are false.

Lemma 2.13: (Double negation lemma) p I -~ if and only if for any q > p there
is an r > q such that r I+ .

Proof: p i+ ——yp if and only if every ¢ > p fails to force —p, or equivalently, if and
only if every g > p has an r > ¢ forcing . O

Lemma 2.14: (Weak quantifier lemma)

(i) p Ik ~(3z)~p(z) if and only if for all ¢ > p and for all c € C(q), there is
an r > q such that v IF p(c).

(ii) p Ik =(Vz)~p(z) if and only if for all ¢ > p, there exists an s > q and a
c € C(s) such that s I p(c).

Proof:

(i) This claim follows immediately from the definition.

(ii) g I+ (Vz)~p(z) if and only if for all r > ¢ and all ¢ € C(r) there is no
s > r such that s I ¢(c). Thus ¢ does not force (Vz)—¢(z) if and only
if there is an r > ¢ and a ¢ € C(r) such that for some s > r, s IF ¢(c).
So p Ik —(Vz)—p(z) if and only if for all ¢ > p, there is an r > ¢ and a
¢ € C(r) such that for some s > r, s I ¢(c). By transitivity s > ¢ and c is
in C(s) as required in the claim.

O

We now produce the promised examples of intuitionistic validity. In the following
examples (2.15-2.19) ¢ are 1 are arbitrary sentences.
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Example 2.15: ¢ — - is intuitionistically valid. To see that any p forces ¢ — ——¢p
we assume that ¢ > p and ¢ I ¢. We must show that ¢ I ——p. By the double
negation lemma, it suffices to show that for every r > ¢ there is an s > r such
that s I ¢. By the monotonicity lemma r It ¢, and so r is the required s.

Example 2.16: —(pA~y) is intuitionistically valid. To show that any p forces —((pA-p)
we need to show that no g > p forces ¢ A -y, or equivalently no ¢ > p forces
both ¢ and —p. Suppose then that ¢ forces both ¢ and —p. Now g I =y means
no r > q forces . Since ¢ > g, we have both ¢ forces ¢ and g does not force ¢
for the desired contradiction.

Example 2.17: (3z)—p(z) — ~(Vz)p(z) is intuitionistically valid. To see that any
p forces (3x)—p(z) — —(Vz)p(z), we need to show that if ¢ > p and ¢ I+
(3z)-p(z), then ¢ IF ~(Vz)p(z). Now ¢ IF (3x)~p(z) says there is a ¢ in C(q)
such that g I —¢(c). By monotonicity, any r > ¢ forces —p(c) as well, so no such
r forces (Vz)p(z), thus ¢ IF =(Vx)p(z). This example should be compared with
its contrapositive (Example 2.10) which is classically but not intuitionistically

valid.

Example 2.18: -(3z)p(z) — (Vz)-p(z) is intuitionistically valid. To see that any
p forces =(3x)p(z) — (Vz)—~p(z) we have to show that for any ¢ > p, if ¢ I+
—(3z)(z), then g I+ (Vz)—-p(z). Now g I+ —~(3z)p(x) says that, for every r > ¢
and every c in C(r), r does not force ¢(c). By transitivity s > r implies s > q. So
for every r > g and every cin C(r), no s > r forces ¢(c). This says q I+ (Vz)-p(z).

Example 2.19: If z is not free in @, then ¢ V (Vz)y(z) — (Vz)(¢ V¥(z)) is intuition-
istically valid. To see that any p forces ¢ V (Vx)i(z) — (Vz)(¢ V ¥(x)) we must
show that, for any ¢ > p, if ¢ IF ¢ or g IF (Vz)¥(z), then q I+ (Vz)(p V ¥(x)).
There are two cases. If ¢ I ¢, then for any r > g and any cin C(r), r IF ¢ V4(c),
so g I (Vz)(p V ¥(z)). If ¢ I+ (Vx)y¥(x), then for all r > ¢ and all ¢ in C(r),
r Ik y¥(c), so 7 IF ¢ V ¢(c). This says that g I+ (Vz)(¢ V ¥(z)). This example
should be compared with Example 2.11.

The frame definition of intuitionistic validity makes it remarkably simple to prove
two important properties of intuitionistic logic that embody its constructivity:
the disjunction and existence properties. The first says that, if a disjunction is
valid, then one of its disjuncts is valid. The second says that, if an existential
sentence of £ is valid, then one of its instances via a constant from £ is also
valid. When we combine this with the completeness theorem for intuitionistic
logic (Theorem 4.10), we see that this means that if we can prove an existential
sentence, we can in fact prove some particular instance. Similarly, if we can prove
a disjunction, then we can prove one of the disjuncts.

Theorem 2.20: (Disjunction property) If (¢1 V 2) is intuitionistically valid, then
one of i1, p2 is intuitionistically valid.
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Proof: We prove the theorem by establishing its contrapositive. So suppose neither
(1 nor g, is intuitionistically valid. Thus there are, for ¢ = 1,2, frames C; and
elements p; of the associated partial orderings R; such that ; is not forced by
p1 in C; and 2 is not forced by ps in C;. By the restriction lemma (2.4), we may
assume that p; is the least element of R;. By Exercise 11 we may assume that
no two distinct constants of the language £ are interpreted as the same element
in any one of the structures in either frame C;(p). Now simply by relabeling the
elements of C;(p) (and so of all the other structures in the frames C;) and R; we
may assume that the interpretation of each constant c of £ is the same in the
two structures C;(p;) and that the R; are disjoint. Let R be the union of R;, Ry,
and {ps}, with pp not in either R;. Make R into a partial order by ordering R,
and Ry as before and putting p, below p; and ps.

NN
NS

We define a frame C with this ordering on R by setting C(p) equal to C;(p) for
p € R; and C(py) equal to the structure defined on the set of the interpretations
of the constants of £ in C;(p;) (remember these interpretations are the same for
i = 1,2) by setting A(pp) = 0. (Our standing assumption that £ has at least
one constant guarantees that this structure is nonempty.) In this frame C, p;
does not force ¢; by the restriction lemma (2.4). Thus, p, does not force ¢; by
the monotonicity lemma (2.12). Similarly, p, does not force o as p; does not.
Thus, p, does not force ¢; V @2; hence ¢; V 2 is not intuitionistically valid:
contradiction. 0O

Theorem 2.21: (Existence property) If (3z)p(x) is an intuitionistically valid sentence
of a language L, then for some constant ¢ in L, p(c) is also intuitionistically
valid. (Remember that, by convention, L has at least one constant.)

Proof: Suppose that, for each constant a in £, ¢(a) is not intuitionistically valid.
Then, for each such constant, there is an L-frame C, with a partially ordered
set R, containing an element p, that does not force ¢(a). As in the previous
proof, we may, without loss of generality, assume that p, is the least element of
R, and all the R,’s are pairwise disjoint. We also assume that the interpretation
of some fixed constant c of £ is the same element d in every C(p,). We now
form a new partial ordering R by taking the union of all R, and the union of
the partial orders and adding on a new bottom element p, under all the p,. We
next define an L-frame associated with R, as in the previous proof, by letting
C(ps) = {d}, A(ps) = 0 and C(p) = C,(p) for every p € R, and every constant
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a of L. We can now imitate the argument in Theorem 2.20. As we are assuming
that 3zy(z) is intuitionistically valid, we must have py I-¢ 3zy(x). Then, by
definition, py I+ ¢(a) for some constant a in L. Applying first the monotonicity
lemma and then the restriction lemma we would have p, forcing ¢(a) first in C
and then in C,; this contradicts our initial hypothesis that p, and C, show that
(a) is not intuitionistically valid. a

Ezxercises

Sentences (1)—(6) below are classically valid. Verify that they are intuitionis-
tically valid by direct arguments with frames. Remember that ¢ < % is an
abbreviation for (¢ — ¥) A (¥ — ¢).

[

10.

11.

© © N o o s W ®

""up L d "‘I"‘1“"I(p

(o A=) = =(p = ¥)

(p = ¥) = (mop = =)

(==(p = ¥) © (=@ — =)

(e AY) & (o A )

== (Va)p(z) — (V£)--p(z)

Supply the proof for Lemma 2.4.

Supply the proofs for the remaining cases of Lemma 2.5.

Let K be the set of constants occurring in (3z)p(z) and suppose that
(3z)p(x) is intuitionistically valid. Show that, if K is nonempty, then for
some ¢ in K, p(c) is intuitionistically valid. (Hint: Define the restriction
of a given frame C for a language £ to one C’ for a given restriction £’
of £. Now prove that, for any sentence ¢ of £’ and any element p of the
appropriate partial ordering, p I¢ ¢ if and only if p iF¢r ¢.)

In case K is empty in the previous exercise, show that ¢(c) is intuitionisti-
cally valid for any constant c. (Hint: For any constants a and c of £ define
a map © on formulas of £ and on the frames for £ that interchanges a and
¢. Prove that, for every C and p, p ¢  if and only if p lFgc) 8(w).)

Suppose that A is a structure for a language £ containing a constant symbol
c. Let A’ be the expansion of A defined by setting A’ = AU {b;]i € N}
for distinct elements b; not in A, expanding the language to £’ by adding
on new constants d; naming the b; and declaring that, for d any sequence
of d; and ¥ any atomic formula, A’ k (d) if and only if A F ¥(¢) where
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every element of the sequence ¢ is just ¢. Prove that, for any sequence d of
d; and (%) any formula of £ with free variables Z, A’ F 7(&5 if and only
if A E v(¢) where again each element of ¢ is c.

3 Intuitionistic Tableaux

We describe a proof procedure for intuitionistic logic based on a tableau-style
system like that used for classical logic in II.6. In classical logic, the idea of a
tableau proof is to systematically search for a structure agreeing with the starting
signed sentence. We either get such a structure or see that each possible analysis
leads to a contradiction. When we begin with a signed sentence Fp, we thus
either find a structure in which ¢ fails or decide that we have a proof of ¢. For
intuitionistic logic we instead begin with a signed forcing assertion Tp I+ ¢ or
Fp I ¢ (¢ is again a sentence) and try to either build a frame agreeing with the
assertion or decide that any such attempt leads to a contradiction. If we begin
with Fp IF ¢, we either find a frame in which p does not force ¢ or decide that
we have an intuitionistic proof of ¢.

There are many possible variants on the tableau method suitable for intuitionistic
propositional and predicate logic due to Kripke, Hughes and Cresswell, Fitting,
and others. The one we choose is designed to precisely match our definition of
frame so that the systematic tableau represents a systematic search for a frame
agreeing with the starting signed forcing assertion. It is a variant of Fitting’s
[1983, 4.1] prefixed tableau.

The definitions of tableau and tableau proof for intuitionistic logic are formally
very much like those of 11.6 for classical logic. Intuitionistic tebleauzr and tableau
proofs are labeled binary trees. The labels (again called the entries of the tableau)
are now signed forcing assertions, i.e., labels of the form Tp I ¢ or Fp It ¢ for
¢ a sentence of any appropriate language. We read T'p I ¢ as p forces ¢ and
Fp - ¢ as p does not force .

In classical logic, the elements of the structure we built by developing a tableau
were the constant symbols appearing on some path of the tableau. We are now
attempting to build an entire frame. The p’s and ¢’s appearing in the entries of
some path P through our intuitionistic tableau constitute the elements of the
partial ordering for the frame. The ordering on them is also specified as part of
the development of the tableau. As in the classical case, we always build a tableau
based on a language expanded from the one for the starting signed assertion by
adding on new constants ¢p,¢;,... . The constants appearing in the sentences
@ of entries on P of the form Tq I ¢ or Fg I ¢ for ¢ < p are the elements of
the required domains C(p). (We use the entries with ¢ < p so as to ensure the
monotonicity required for domains in the definition of a frame.)

With this motivation in mind, we can specify the atomic intuitionistic tableauz.
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Definition 3.1: We begin by fixing a language £ and an expansion L¢ given by
adding new constant symbols ¢; for i € N. We list in Figure 55 the atomic
intuitionistic tableaux (for the language £). In the tableaux in this list, ¢ and
2, if unquantified, are any sentences in the language L¢ . If quantified, they are
formulas in which only z is free.

Formally, the precise meaning of “new ¢” and “new p” is defined along with the
definition of intuitionistic tableau. The intention for the constants is essentially
as in the classical case: When we develop TVzp(z), we can put in any c for z and
add on Ty(c) but, when we develop 3xp(z) by adding T'p(c) on to the tableau,
we can only use a ¢ for which no previous commitments have been made. One
warning is necessary here. When we say “any appropriate ¢’ we mean any ¢ in
the appropriate language. In the classical case that meant any c in L¢. Here, in
developing T'p IF Vzy(z) as in (TV) above, it means any c in £ or appearing on the
path so far in a forcing assertion about a ¢ < p. These restrictions correspond to
our intention to define C(p) in accordance with the requirement in the definition
of frame that C(q) C C(p) for ¢ < p. Technically, similar considerations could be
applied to the use of a new ¢ as in (T3) although as a practical matter we can
always choose ¢ from among the ¢; in L¢ which have not yet appeared anywhere
in the tableau. We do in fact incorporate such a choice into our formal definition.

The restrictions on the elements p introduced into the ordering should also be
understood in terms of the definition of frames. In (TAt), for example, we follow
the requirement in the definition of a frame that A(p) C A(p') if p < p’. The
reader should also keep in mind that we are determining the elements p of the
partial ordering for our frame as well as defining the ordering itself as we develop
the tableau. Thus, for example, when developing T'p I ~p we can, in accordance
with the definition of forcing a negation, add on Fp’ I ¢ for any p’ > p that
appears on the path so far. On the other hand, if we wish to assert that p does
not force -y, i.e., Fp I —p, then the definition of forcing tells us that there
must be some p’ > p that does force ¢. As with putting in a new constant, we
cannot use a p’ for which other commitments have already been made. Thus we
can develop Fp IF - as in (F-) by adding on Tp' I ¢ for a new element p’ of
the ordering of which we can only say that it is bigger than p. Thus, we require
that p’ is larger than p (and so by the requirement of transitivity bigger than
any ¢ < p) but that p’ is incomparable with all other elements of the ordering
introduced so far. (Again, technically, we only need to worry about the relation
between p’ and the q appearing on the branch so far. It is simpler to just take
an entirely new p/, i.e., one not yet appearing anywhere in the tableau. It is then
automatically true that p < q only if p and ¢ are on the same path through the

tableau.)

The formal definitions of tableaux and tableau proof for intuitionistic logic could
perhaps even be left as an exercise. As it would be an exercise with many pitfalls
for the unwary we give them in full detail.
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FIGURE 55.
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Definition 3.2: We continue to use our fixed language £ and extension by constants
Lo. We also fix a set S = {p;| ¢ € N} of potential candidates for the p’s
and ¢’s in our forcing assertions. An intuitionistic tableau (for L) is a binary
tree labeled with signed forcing assertions which are called the entries of the
tableau. The class of all intuitionistic tableaux (for L) is defined by induction.
We simultaneously define, for each tableau 7, an ordering <, on the elements of

S appearing in 7.

(1)

(i)

(iii)

Each atomic tableau 7 is a tableau. The requirement that ¢ be new in cases
(T3) and (FV) here simply means that c is one of the constants ¢; added
on to L to get Lc which does not appear in . The phrase “any ¢” in (F3)
and (TV) means any constant in £ or in ¢. The requirement that p’ be
new in (F—), (F-) and (FV) here means that p’ is any of the p; other than
p. We also declare p’ to be larger than p in the associated ordering. The
phrase “any p’ > p” in (T—), (T-), (TV) and (TAt) in this case simply
means that p’ is p. (Of course we always declare p < p for every p in every
ordering we define.)

If 7 is a finite tableau, P a path on 7, E an entry of 7 occurring on P and
7' is obtained from 7 by adjoining an atomic tableau with root entry E
to 7 at the end of the path P, then 7/ is also a tableau. The ordering <,
agrees with <, on the p; appearing in . Its behavior on any new element
is defined below when we explain the meaning of the restrictions on p’ in
the atomic tableaux for cases (F—), (F—) and (FV).

The requirement that ¢ be new in cases (T3) and (FV) here means that it
is one of the ¢; (and so not in £) that do not appear in any entry on T.
The phrase “any ¢” in (F3) and (TV) here means any c in £ or appearing
in an entry on P of the form Tq IF ¢ or Fql- ¢ with ¢ <; p.

In (F—), (F-) and (FV) the requirement that p’ > p be new means that
we choose a p; not appearing in 7 as p’ and we declare that it is larger than
p in <,. (Of course, we ensure transitivity by declaring that ¢ <, p’ for
every ¢ <, p.) The phrase “any p’ > p” in (T—), (T-), (TV) and (TAt)
means we can choose any p’ that appears in an entry on P and has already
been declared greater than or equal to p in <.

If To,T1y...,Tn,... is & sequence of finite tableaux such that, for every
n > 0, Th41 is constructed from 7, by an application of (ii), then 7 = U,
is also a tableau.

As in predicate logic, we insist that the entry E in Clause (ii) formally be repeated
when the corresponding atomic tableau is added on to P. This is again crucial to
the properties corresponding to a classical tableau being finished. In our examples
below, however, we typically omit them purely as a notational convenience.
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Note that if we do not declare that either p < p’ or p’ < p in our definition of
<,, then p and p’ are incomparable in <,.

We make good on our previous remark about the relation of the ordering <, to
paths through the tableau 7 with the following lemma.

Lemma 3.3: For any intuitionistic tableau 7 with associated ordering <., if p’ <, p,
then p and p’ both appear on some common path through 7.

Proof: The proof proceeds by an induction on the definition of 7 and <,. We leave it
as Exercise 31. O

Definition 3.4: (Intuitionistic tableau proofs ) Let 7 be a intuitionistic tableau and
P a pathin 7.

(i) P is contradictory if, for some forcing assertion p I ¢, both Tp I+ ¢ and
Fp I ¢ appear as entries on P.

(ii) 7 is contradictory if every path through 7 is contradictory.

(iii) 7 is an intuitionistic proof of ¢ if T is a finite contradictory intuitionistic
tableau with its root node labeled Fp I ¢ for some p € S. ¢ is intuition-
istically provable, o, if there is an intuitionistic proof of .

Note that, as in classical logic, if there is any contradictory tableau with root
node Fp I ¢, then there is one which is finite, i.e., a proof of ¢ : Just terminate
each path when it becomes contradictory. As each path is now finite, the whole
tree is finite by Konig’s lemma. Thus, the added requirement that proofs be finite
(tableaux) has no affect on the existence of proofs for any sentence. Another point
of view is that we could have required the path P in Clause (ii) of the definition of
tableaux be noncontradictory without affecting the existence of proofs. Thus, in
practice, when attempting to construct proofs we mark any contradictory path
with the symbol ® and terminate the development of the tableau along that

path.

Before dealing with the soundness and completeness of the tableau method for
intuitionistic logic we look at some examples of intuitionistic tableau proofs.
Remember that we are abbreviating the tableaux by not repeating the entry
that we are developing. We also number the levels of the tableau on the left and
indicate on the right the level of the atomic tableau whose development produced
the line. In all our examples, the set S from which we choose the domain of our
partial order is the set of finite binary sequences. The declarations of ordering
relations are dictated by the atomic tableau added on at each step and so can
also be omitted. In fact, we always choose our p’s and ¢’s so as to define our
orderings to agree with the usual ordering of inclusion on binary sequences.
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ot

FOIF o — (¥ — )

3 FOlFy—¢ byl

4 700 -9 by 3
5 FOOIF ¢ by 3
6 T00IF vy by 2
®
FIGURE 56.

Example 3.5: Let ¢ and ¢ be any atomic sentences of £. Figure 56 provides an
intuitionistic proof of ¢ — (¥ — ).

In this proof the first three lines are an instance of (F—) from the list of atomic
tableaux. Lines 4 and 5 are introduced by developing line 3 in accordance with
(F—) again. Line 6, which, together with line 5, provides our contradiction,
follows from line 2 by atomic tableau (TA t).

Example 3.6: Any sentence of £ of the following form is intuitionistically provable:

(3z)(p(z) V() — (Fz)p(x) v (B2)9¥(2).

In this proof (Figure 57) the first three lines are an instance of (F—). Line 4
follows by applying (T3) to line 2. Lines 5 and 6 follow by applying (FV) to
line 3. Lines 7 and 8 are applications of (FV) to lines 5 and 6, respectively. Line
9, which supplies the contradictions to lines 7 or 8 on its two branches, is an
application of (TV) to line 4.

Example 3.7: Consider (Vz)(p(z) A ¢(z)) — (Vx)p(z) A (VT)9¥(x).

Note here (Figure 58) that we develop both sides of the branching at line 4
and write the parallel developments side by side. Also of note is the use of (TV)
applied to line 2 to get line 6. We took advantage of the ability to choose both
the constants ¢ and d and the elements of the ordering 00 and 01.
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1 FOIF (Fz)(e(z) V ¥(z)) — B)p(2) V (Fz)d(z)

2 T0 I (3z)(p(z) V #(z)) by 1
3 FOIF (32)p(z) V (32)¥(z) by 1
4 TO Ik o(c) V ¥(c) by 2
5 FO I (32)p(z) by 3
6 FOIF (3z)¢(z) by 3
7 FOIF ¢(c) by 5
8 FO I+ ¢(c) by 6
9 T0 I ¢(c) TO IF 9(c) by 4
® ® by 7, 8,9

FIGURE 57.
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FOIF (Va)(p(z) A ¥(z)) — (V2)p(2) A (V2)i(2)

[y

9 TO I+ (Va)(¢(z) A ¢(z)) by 1
3 FOIF (Ya)p(z) A (V2 )b(z) by 1
4 FOIF (Vz)p(z) FOIF (Ye)¥(z) by 3
5  F00IF o(c) FO1 IF y(d) by 4
6 700 IF o(c) A(c) TOLIF p(d) A 9(d) by 2
7 TO00IF o(c) T01 IF o(d) by 6
8  TO00IF y(c) T01 It ¥(d) by 6

® ® by 5,7

and 5, 8

FIGURE 58.



